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POSITIVITY AND PERIODICITY IN NONLINEAR NEUTRAL
MIXED TYPE LEVIN-NOHEL INTEGRO-DIFFERENTIAL

EQUATIONS

KARIMA BESSIOUD1, ABDELOUAHEB ARDJOUNI1, AND AHCENE DJOUDI2

Abstract. In this work, we give sufficient conditions for the existence of periodic
and positive periodic solutions for a nonlinear neutral mixed type Levin-Nohel
integro-differential equation with variable delays by using Krasnoselskii’s fixed point
theorem. Also, we obtain the existence of a unique periodic solution of the posed
equation by means of the contraction mapping principle. As an application, we give
an example to illustrate our results. Previous results are extended and generalized.

1. Introduction

Differential and integro-differential equations with delays have received great atten-
tion and have become an active area of research. This is due to the fact that several
phenomena in life sciences, engineering, chemistry and physics can be described by
means of delay equations. Indeed, problems concerning the positivity, periodicity
and stability of solutions for differential and integro-differential equations with delays
have received the considerable attention of many authors, see [1]–[24], [26,27] and the
references therein.
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In this paper, we consider the following nonlinear neutral mixed type Levin-Nohel
integro-differential equation with variable delays

d

dt
x (t) = −

m∑
j=1

∫ t

t−τj(t)
aj (t, s)x (s) ds−

m∑
j=1

∫ t+σj(t)

t
bj (t, s)x (s) ds

+ d

dt
g (t, x (t− τ1 (t)) , . . . , x (t− τm (t))) ,(1.1)

where aj, bj, τj, σj and g are continuous functions with τj (t) > 0, σj (t) > 0, j =
1, . . . ,m. In this work, we use the idea of integrating factor to convert the equation
(1.1) into an integral equation. Then, we employ Krasnoselskii’s fixed point theorem
to show the existence of periodic and positive periodic solutions of (1.1). Also, we
obtain the existence of a unique periodic solution by using the contraction mapping
principle. An example is given to illustrate our main results.

In [9], we investigated the asymptotic stability of the zero solution for (1.1) by using
the contraction mapping theorem. Also, in the special case aj (t, s) = 0, j = 2, . . . ,m,
bj (t, s) = 0, j = 1, . . . ,m and g (t, x1, x2, . . . , xm) = g1 (t, x1), in [10], we proved the
existence and uniqueness of periodic solutions and the existence of positive solutions
for (1.1) by appealing Krasnoselskii’s fixed point theorem and the contraction mapping
theorem. Then, the results presented in this paper extend and generalize the main
results in [10].

2. Existence and Uniqueness of Periodic Solutions

For T > 0 let PT be the set of all continuous scalar functions x periodic in t of
period T . Then (PT , ∥·∥) is a Banach space with the supremum norm

∥x∥ = sup
t∈R

|x (t)| = sup
t∈[0,T ]

|x (t)| .

Since we are searching for the existence of periodic solutions for (1.1), it is natural to
suppose that

aj (t+ T, s+ T ) =a (t, s) , bj (t+ T, s+ T ) = bj (t, s) ,
τj (t+ T ) =τj (t) , σj (t+ T ) = σj (t) ,(2.1)

with τj and σj being scalar continuous functions, τj (t) ≥ τ ∗
j > 0 and σj (t) ≥ σ∗

j > 0,
j = 1, . . . ,m. Also, we suppose

(2.2)
∫ T

0
A (z) dz > 0, A (t) =

m∑
j=1

∫ t

t−τj(t)
aj (t, s) ds+

m∑
j=1

∫ t+σj(t)

t
bj (t, s) ds.

The function g (t, x1, x2, . . . , xm) is periodic in t of period T , it is also globally Lipschitz
continuous in xj, j = 1, . . . ,m. That is

(2.3) g (t+ T, x1, x2, . . . , xm) = g (t, x1, x2, . . . , xm) ,
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and there are positive constants Ej, j = 1, . . . ,m, such that

(2.4) |g (t, x1, x2, . . . , xm) − g (t, y1, y2, . . . , ym)| ≤
m∑
j=1

Ej |xj − yj| .

The next lemma is crucial to our results.

Lemma 2.1. Suppose that (2.1)–(2.3) hold. Then, x ∈ PT is a solution of the equation
(1.1) if and only if x satisfies

x (t) =Gx (t) −
(

1 − e
−
∫ t

t−T
A(z)dz

)−1

×
∫ t

t−T
[Lx (s) +Nx (s) + A (s)Gx (s)] e−

∫ t

s
A(z)dzds,(2.5)

where

(2.6) Gx (t) = g (t, x (t− τ1 (t)) , . . . , x (t− τm (t))) ,

and

Lx (t) =
m∑
j=1

∫ t

t−τj(t)
aj (t, s)

(∫ t

s

(
m∑
k=1

∫ u

u−τk(u)
ak (u, ν)x (ν) dν

+
m∑
k=1

∫ u+σk(u)

u
bk (u, ν)x (ν) dν

)
du+Gx (s) −Gx (t)

)
ds(2.7)

and

Nx (t) =
m∑
j=1

∫ t+σj(t)

t
bj (t, s)

(∫ t

s

(
m∑
k=1

∫ u

u−τk(u)
ak (u, ν)x (ν) dν

+
m∑
k=1

∫ u+σk(u)

u
bk (u, ν)x (ν) dν

)
du+Gx (s) −Gx (t)

)
ds.(2.8)

Proof. Obviously, we have

x (s) = x (t) −
∫ t

s

∂

∂u
x (u) du.

Inserting this relation into (1.1), we obtain

d

dt
x (t) +

m∑
j=1

∫ t

t−τj(t)
aj (t, s)

(
x (t) −

∫ t

s

∂

∂u
x (u) du

)
ds

+
m∑
j=1

∫ t+σj(t)

t
bj (t, s)

(
x (t) −

∫ t

s

∂

∂u
x (u) du

)
ds− d

dt
Gx (t) = 0.
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So,

d

dt
x (t) + x (t)

 m∑
j=1

∫ t

t−τj(t)
aj (t, s) ds+

m∑
j=1

∫ t+σj(t)

t
bj (t, s) ds


−

m∑
j=1

∫ t

t−τj(t)
aj (t, s)

(∫ t

s

∂

∂u
x (u) du

)
ds

−
m∑
j=1

∫ t+σj(t)

t
bj (t, s)

(∫ t

s

∂

∂u
x (u) du

)
ds− d

dt
Gx (t) = 0.

Substituting ∂x
∂u

from (1.1), we get

d

dt
x (t) + x (t)

 m∑
j=1

∫ t

t−τj(t)
aj (t, s) ds+

m∑
j=1

∫ t+σj(t)

t
bj (t, s) ds


−

m∑
j=1

∫ t

t−τj(t)
aj (t, s)

[∫ t

s

(
−

m∑
k=1

∫ u

u−τk(u)
ak (u, ν)x (ν) dν

−
m∑
k=1

∫ u+σk(u)

u
bk (u, ν)x (ν) dν + ∂

∂u
Gx (u)

)
du

]
ds

−
m∑
j=1

∫ t+σj(t)

t
bj (t, s)

[∫ t

s

(
−

m∑
k=1

∫ u

u−τk(u)
ak (u, ν)x (ν) dν

−
m∑
k=1

∫ u+σk(u)

u
bk (u, ν)x (ν) dν + ∂

∂u
Gx (u)

)
du

]
ds− d

dt
Gx (t) = 0.(2.9)

By performing the integration, we obtain

(2.10)
∫ t

s

∂

∂u
Gx (u) du = Gx (t) −Gx (s) .

Substituting (2.10) into (2.9), we get
d

dt
x (t) + A (t)x (t) + Lx (t) +Nx (t) − d

dt
Gx (t) = 0,

where A and Lx and Nx are given by (2.2), (2.7) and (2.8), respectively. We rewrite
this equation as

(2.11) d

dt
{x (t) −Gx (t)} = −A (t) (x (t) −Gx (t)) − A (t)Gx (t) − Lx (t) −Nx (t) .

Multiply both sides of (2.11) with e
∫ t

0 A(z)dz and then integrate from t − T to t to
obtain ∫ t

t−T

∂

∂s
[x (s) −Gx (s)] e

∫ s

0 A(z)dzds

= −
∫ t

t−T
[Lx (s) +Nx (s) + A (s)Gx (s)] e

∫ s

0 A(z)dzds.
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As a consequence, we arrive at

(x (t) −Gx (t)) e
∫ t

0 A(z)dz − (x (t− T ) −Gx (t− T )) e
∫ t−T

0 A(z)dz

= −
∫ t

t−T
[Lx (s) +Nx (s) + A (s)Gx (s)] e

∫ s

0 A(z)dzds.

Dividing both sides of the above equation by e
∫ t

0 A(z)dz and using the fact that x (t) =
x (t− T ), we obtain

x (t) −Gx (t)

= −
(

1 − e
−
∫ t

t−T
A(z)dz

)−1 ∫ t

t−T
[Lx (s) +Nx (s) + A (s)Gx (s)] e−

∫ t

s
A(z)dzds.

Since each step is reversible, the converse follows easily. This completes the proof. □

Define the mapping H by

(Hφ) (t) =Gφ (t) −
(

1 − e
−
∫ t

t−T
A(z)dz

)−1

×
∫ t

t−T
[Lφ (s) +Nφ (s) + A (s)Gφ (s)] e−

∫ t

s
A(z)dzds.(2.12)

It is clear form (2.12) that H : PT → PT by the way it was constructed in Lemma 2.1.
Next, we state Krasnoselskii’s fixed point theorem which enables us to prove the

existence of periodic and positive periodic solutions. For the proof of Krasnoselskii’s
fixed point theorem we refer the reader to [25].

Theorem 2.1 (Krasnoselskii). Let M be a closed bounded convex nonempty subset
of a Banach space (B, ∥·∥). Suppose that C and B map M into B such that

(i) x, y ∈ M implies Cx+By ∈ M ;
(ii) C is continuous and CM is contained in a compact set;
(iii) B is a contraction mapping.

Then there exists z ∈ M , with z = Cz +Bz.

We note that to apply the above theorem we need to construct two mappings; one
is contraction and the other is continuous and compact. Therefore, we express (2.12)
as

(Hφ) (t) = (Bφ) (t) + (Cφ) (t) ,
where C,B : PT → PT are given by

(2.13) (Bφ) (t) = Gφ (t) ,

and
(2.14)

(Cφ) (t) = −
(

1 − e
−
∫ t

t−T
A(z)dz

)−1 ∫ t

t−T
[Lφ (s) +Nφ (s) + A (s)Gφ (s)] e−

∫ t

s
A(z)dzds.
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To simplify notations, we introduce the following constants

η =
(

1 − e
−
∫ t

t−T
A(z)dz

)−1
, ρ = sup

t∈[0,T ]

 sup
s∈[t−T,t]

m∑
j=1

(∫ s

s−τj(s)
|aj (s, w)| dw

) ,
ϱ = sup

t∈[0,T ]

 sup
s∈[t−T,t]

m∑
j=1

(∫ s+σj(s)

s
|bj (s, w)| dw

) , γ = sup
t∈[0,T ]

(
sup

s∈[t−T,t]
e−
∫ t

s
A(z)dz

)
,

δ = sup
t∈[0,T ]

(
sup

s∈[t−T,t]

(
sup

w∈[t−T,t]

∫ s

w

(
m∑
k=1

∫ u

u−τk(u)
|ak (u, ν)| dν

+
m∑
k=1

∫ u+σk(u)

u
|bk (u, ν)| dν

)
du

))
, α = sup

t∈[0,T ]
|G0 (t)| .

(2.15)

Lemma 2.2. Let C be given in (2.14). Suppose that (2.1)–(2.4) hold. Then C : PT →
PT is continuous and the image of C is contained in a compact set.

Proof. To see that C is continuous, let φ, ψ ∈ PT . Given ϵ > 0, take β = ϵ
N

with
N = ηγT

(
ρ + ϱ

) (
δ + 3∑m

j=1 Ej
)

where Ej, j = 1, . . . ,m, are given by (2.4). Now,
for ∥φ− ψ∥ < β, we get

∥Cφ− Cψ∥

≤ηγ
∫ t

t−T

ρ
δ + 2

m∑
j=1

Ej

 ∥φ− ψ∥ + ϱ

δ + 2
m∑
j=1

Ej

 ∥φ− ψ∥

+ (ρ+ ϱ)
 m∑
j=1

Ej

 ∥φ− ψ∥

 ds
≤ηγ

∫ t

t−T
(ρ+ ϱ)

δ + 3
m∑
j=1

Ej

 ∥φ− ψ∥ ds

≤N ∥φ− ψ∥ < ϵ.

This proves that C is continuous. To show that the image of C is contained in
a compact set, we consider D = {φ ∈ PT : ∥φ∥ ≤ R} where R is a fixed positive
constant. Let φ ∈ D. Observe that in view of (2.4) we have

|Gφ (t)| = |Gφ (t) −G0 (t) +G0 (t)| ≤ |Gφ (t) −G0 (t)| + |G0 (t)| ≤
m∑
j=1

Ej ∥φ∥ + α.
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Consequently,

∥Cφ∥ ≤ηγ
∫ t

t−T

ρ
δR + 2

R m∑
j=1

Ej + α


+ϱ

δR + 2
R m∑

j=1
Ej + α

+ (ρ+ ϱ)
R m∑

j=1
Ej + α

 ds
≤ηγT (ρ+ ϱ)

δR + 3
R m∑

j=1
Ej + α

 = L.

So, C (D) is uniformly bounded. Next, we calculate (Cφ)′ (t) and prove that C (D)
is equicontinuous. By making use of (2.1)–(2.3) we get by taking the derivative in
(2.14) that

(Cφ)′ (t) = −A (t) (Cφ) (t) − Lφ (t) −Nφ (t) − A (t)Gφ (t) .

Thus, the above expression yields
∥∥∥(Cφ)′

∥∥∥ ≤ F , for some positive constant F . So,
C (D) is uniformly bounded and equicontinuous. Hence by Ascoli-Arzela’s theorem
C (D) is relatively compact. Then, C (D) is contained in a compact set. □

Lemma 2.3. Suppose that (2.1), (2.3) and (2.4) hold, and

(2.16)
m∑
j=1

Ej < 1,

where Ej, j = 1, . . . ,m, are given by (2.4). If B is given by (2.13), then B is a
contraction mapping.

Proof. Let B be defined by (2.13). Then for φ, ψ ∈ PT we obtain

∥Bφ−Bψ∥ = sup
t∈[0,T ]

|(Bφ) (t) − (Bψ) (t)|

≤
m∑
j=1

Ej sup
t∈[0,T ]

|φ (t− τj (t)) − ψ (t− τj (t))|

≤

 m∑
j=1

Ej

 ∥φ− ψ∥ .

Hence, B defines a contraction mapping. □

Theorem 2.2. Assume that (2.1)–(2.4) and (2.16) hold. Let J be a positive constant
satisfying the inequality

(2.17) J
m∑
j=1

Ej + α + ηγT (ϱ+ ρ)
δJ + 3

J m∑
j=1

Ej + α

 ≤ J.

Let M = {φ ∈ PT : ∥φ∥ ≤ J}. Then the equation (1.1) has a solution in M .
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Proof. By Lemma 2.2, C : M → PT is continuous and C (M) is contained in a
compact set. Also, by Lemma 2.3, the mapping B is a contraction and it is clear
that B : M → PT . Next, we prove that if φ, ψ ∈ M , we have ∥Cφ+Bψ∥ ≤ J . Let
φ, ψ ∈ M with ∥φ∥ , ∥ψ∥ ≤ J . Then

∥Cφ+Bψ∥

≤

 m∑
j=1

Ej

 ∥ψ∥ + α + ηγ
∫ t

t−T

ρ
δ ∥φ∥ + 2

 m∑
j=1

Ej ∥φ∥ + α


+ϱ

δ ∥φ∥ + 2
 m∑
j=1

Ej ∥φ∥ + α

+ (ϱ+ ρ)
 m∑

j=1
Ej

 ∥φ∥ + α

 ds
≤J

m∑
j=1

Ej + α + ηγT (ϱ+ ρ)
δJ + 3

J m∑
j=1

Ej + α


≤J.

We now see that all the conditions of Krasnoselskii’s theorem are satisfied. Thus there
exists a fixed point z in M such that z = Cz + Bz. By Lemma 2.1, this fixed point
is a solution of (1.1). Hence, (1.1) has a T -periodic solution. □

Theorem 2.3. Suppose that (2.1)–(2.4) hold. If

(2.18)
m∑
j=1

Ej + ηγT (ϱ+ ρ)
δ + 3

m∑
j=1

Ej

 < 1,

then the equation (1.1) has a unique T -periodic solution.

Proof. Let the mapping H be given by (2.12). For φ, ψ ∈ PT , in view of (2.12), we
obtain

∥Hφ−Hψ∥ ≤

 m∑
j=1

Ej + ηγT (ϱ+ ρ)
δ + 3

m∑
j=1

Ej

 ∥φ− ψ∥ .

This completes the proof by invoking the contraction mapping principle. □

Corollary 2.1. Suppose that (2.1)–(2.3) hold. Let J be a positive constant and define
M = {φ ∈ PT : ∥φ∥ ≤ J}. Suppose there are positive constants E∗

j , j = 1, . . . ,m, so
that for x, y ∈ M we have

|g (t, x (t− τ1 (t)) , . . . , x (t− τm (t))) − g (t, y (t− τ1 (t)) , . . . , y (t− τm (t)))|

≤
m∑
j=1

E∗
j |x (t− τj (t)) − y (t− τj (t))| .
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If
m∑
j=1

E∗
j < 1 and ∥Hφ∥ ≤ J for φ ∈ M , then (1.1) has a T -periodic solution in M .

Moreover, if
m∑
j=1

E∗
j + ηγT (ϱ+ ρ)

δ + 3
m∑
j=1

E∗
j

 < 1,

then (1.1) has a unique T -periodic solution in M .

Proof. Let the mapping H be given by (2.12). Then, the results follow immediately
from Theorem 2.2 and Theorem 2.3. □

Example 2.1. For small positive ϵ1, ϵ2 and ϵ3, we consider the nonlinear neutral mixed
type Levin-Nohel integro-differential equation with variable delay

d

dt
x (t) + ϵ1

∫ t

t− 2π
ω

(1 + sinω (t− s))x (s) ds

+ ϵ2

∫ t+ π
ω

t
(2 + cosω (s− t))x (s) ds− ϵ3

d

dt

(
sin (ωt)x2

(
t− 2π

ω

))
= 0,(2.19)

where ω is a positive constant. So, we have
a1 (t, s) =ϵ1 (1 + sinω (t− s)) , b1 (t, s) = ϵ2 (2 + cosω (s− t)) ,
aj (t, s) =bj (t, s) = τj (t) = σj (t) = 0, j = 2, . . . ,m,

τ1 (t) =2π
ω
, σ1 (t) = π

ω
,

and
g (t, x (t− τ1 (t)) , . . . , x (t− τm (t))) = ϵ3 sin (ωt)x2

(
t− 2π

ω

)
.

Proof. Define M =
{
φ ∈ P 2π

ω
: ∥φ∥ ≤ J

}
, where J is a positive constant. For φ ∈ M ,

we have

∥Hφ∥ ≤ϵ3J
2 +

(
1 − e−(ϵ1+ϵ2)( 2π

ω )2)−1
(8ϵ1 + 6ϵ2)

π2

ω2

[
8ϵ1

π2

ω2J + 6ϵ2
π2

ω2J + 3ϵ3J
2
]
.

Thus, the inequality

(2.20) ϵ3J
2 +

(
1 − e−(ϵ1+ϵ2)( 2π

ω )2)−1
(8ϵ1 + 6ϵ2)

π2

ω2

[
8ϵ1

π2

ω2J + 6ϵ2
π2

ω2J + 3ϵ3J
2
]

≤ J,

which is satisfied for small ϵ1, ϵ2 and ϵ3, implies ∥Hφ∥ ≤ J . Hence, (2.19) has a
2π
ω

-periodic solution, by Corollary 2.1.
For the uniqueness of the periodic solution, we let φ, ψ ∈ M . From (2.19) we see

that
η =

(
1 − e−(ε1+ε2)( 2π

ω )2)−1
, ρ = 2π

ω
ε1, ϱ = 2π

ω
ε2, γ ≤ 1.

Also α = 0, E = 2ε3J
2, where J is given by (2.20). If

2ε3J +
(

1 − e−(ε1+ε2)( 2π
ω )2)−1

(8ε1 + 6ε2)
π2

ω2

[
8ε1

π2

ω2 + 6ε2
π2

ω2 + 6ε3J

]
< 1,
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is satisfied for small ε1, ε2 and ε3, then (2.19) has a unique 2π
ω

-periodic solution, by
Corollary 2.1. □

3. Existence of Positive Periodic Solutions

For a non-negative constant L and a positive constant K, we define the set
M = {φ ∈ PT : L ≤ φ ≤ K} ,

which is a closed convex and bounded subset of the Banach space PT . To simplify
notation, we let

θ = max
t∈[0,T ]

(
max

s∈[t−T,t]
e−
∫ t

s
A(z)dz

)
, λ = min

t∈[0,T ]

(
min

s∈[t−T,t]
e−
∫ t

s
A(z)dz

)
.

In this section we obtain the existence of a positive periodic solution of (1.1) by
considering the two cases; Gx (t) ≥ 0 and Gx (t) ≤ 0 for all t ∈ R, x ∈ M.

In the case Gx (t) ≥ 0, we assume that there exist non-negative constants k1j and
positive constants k2j, j = 1, . . . ,m, such that

m∑
j=1

k1jx (t− τj (t)) ≤Gx (t) ≤
m∑
j=1

k2jx (t− τj (t)) ,(3.1)

m∑
j=1

k2j <1,(3.2)

and for all t ∈ [0, T ], x ∈ M

(3.3)
L

(
1 −

m∑
j=1

k1j

)
ηλT

≤ Fx (t) ≤
K

(
1 −

m∑
j=1

k2j

)
ηθT

,

where Fx (t) = −Lx (t) −Nx (t) − A (t)Gx (t) .

Theorem 3.1. Assume that (2.1)–(2.4), (2.16) and (3.1)–(3.3) hold. Then the equa-
tion (1.1) has a positive T -periodic solution x in the subset M.

Proof. By Lemma 2.1 x is a solution of (1.1) if x = Cx + Bx, where C and B are
given by (2.14) and (2.13), respectively. By Lemma 2.2, C is continuous and compact.
Moreover, by Lemma 2.3, B is a contraction. We just need to prove that condition
(i) of Theorem 2.1 is satisfied. Toward this, let φ, ψ ∈ M, then

(Bψ) (t) + (Cφ) (t)

=Gψ (t) − η
∫ t

t−T
[Lφ (s) +Nφ (s) + A (s)Gφ (s)] e−

∫ t

s
A(z)dzds

≤K
m∑
j=1

k2j + ηθT

K

(
1 −

m∑
j=1

k2j

)
ηθT

= K.
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On the other hand, we have
(Bψ) (t) + (Cφ) (t)

=Gψ (t) − η
∫ t

t−T
[Lφ (s) +Nφ (s) + A (s)Gφ (s)] e−

∫ t

s
A(z)dzds

≥L
m∑
j=1

k1j + ηλT

L

(
1 −

m∑
j=1

k1j

)
ηλT

= L.

Clearly, all the hypotheses of Krasnoselskii’s theorem are satisfied. Thus there exists
a fixed point x ∈ M such that x = Bx + Cx. By Lemma 2.1 this fixed point is a
solution of (1.1) and the proof is complete. □

In the case Gx (t) ≤ 0, we substitute conditions (3.1)–(3.3) with the following
conditions respectively. We suppose that there exist negative constants k3j and non-
positive constants k4j, j = 1, . . . ,m, such that

m∑
j=1

k3jx (t− τj (t)) ≤Gx (t) ≤
m∑
j=1

k4jx (t− τj (t)) ,(3.4)

−
m∑
j=1

k3j <1,(3.5)

and for all t ∈ [0, T ], x ∈ M

(3.6)
L−K

m∑
j=1

k3j

ηλT
≤ Fx (t) ≤

K − L
m∑
j=1

k4j

ηθT
.

Theorem 3.2. Suppose that (2.1)–(2.4), (2.16) and (3.4)–(3.6) hold. Then the equa-
tion (1.1) has a positive T -periodic solution x in the subset M.

The proof follows along the lines of Theorem 3.1, and hence we omit it.

Acknowledgements. The authors gratefully acknowledge the reviewers for their
helpful comments.
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