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STUDY OF NONLINEAR HYBRID FRACTIONAL DIFFERENTIAL
EQUATIONS INVOLVING y-HILFER GENERALIZED
PROPORTIONAL DERIVATIVE VIA TOPOLOGICAL DEGREE
THEORY

SAMIRA ZERBIB!, HAMID LMOU!, KHALID HILAL!, AND AHMED KAJOUNT!

ABSTRACT. In this paper, we investigate the existence and uniqueness of a solution
for a hybrid fractional differential equation involving the generalized proportional
fractional derivative of the y-Hilfer type. We first establish the equivalence between
the original problem and an integral equation. Using topological degree theory
for condensing maps, we investigate the existence of the solution. Then we apply
Banach’s fixed point theorem to study the uniqueness of the solution. Finally, we
present an illustrative example to demonstrate our main results.

1. INTRODUCTION

The origins of fractional calculus go back to the late 17th century, when Newton
and Leibniz laid the foundations of differential and integral calculus. But it is only in
the last three decades that fractional calculus has gained significant interest and seen a
proliferation of applications, with the concept of fractional derivatives having evolved
considerably. Fractional calculus extends the concept of conventional derivatives to
non-integer orders, allowing for greater flexibility in modeling. For further insights
into fractional derivatives, see references [2,3,11,18].

Dynamical models of fractional order, which use differentiation or integration of
non-integer orders are often more accurate in describing a variety of complex systems.
Compared to integer-order models, fractional-order systems tend to be more sensitive
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)

and exhibit richer dynamics. They are sometimes referred to as “memory systems’
because they can incorporate past behavior into their responses, especially when
considering initial conditions.

The potential of fractional calculus to reshape our understanding of the natural
world is considerable. Several theoretical and experimental studies suggest that
non-integer derivatives can better describe certain physical systems, including those
in electrochemical, thermal and viscoelastic contexts (see [1,5,8,18]). The use of
traditional models based on integer-order derivatives may not be suitable in these
cases.

As a result, new models based on differential equations with non-integer derivatives
have been developed (see [1,4,7,17,20]). These fractional-order models provide a pow-
erful tool to accurately represent complex systems, which can lead to more effective
analysis and control in various scientific and engineering applications. Recently, much
attention has been paid to the study of hybrid fractional differential equations. These
systems have attracted interest in both the automation and computing communities.
The main goal of studying hybrid dynamical systems is to provide solutions in terms
of models, methods, performance and overall quality for problems that can be inade-
quately solved by homogeneous approaches. More details about the theory of hybrid
systems can be found in [7,19-21].

The generalized proportional fractional derivative, or more specifically the 1-Hilfer
generalized proportional fractional derivative, is the new type of derivative that inter-
ests us in this work and that has been proposed and developed in several papers (see
[10,13,15,16]).

The authors of [14], have introduced and studied the following nonlocal mixed
boundary value problem involving v-Hilfer generalized proportional fractional deriva-
tive of order a € (1, 2]

D&Povy(t) = f(t,y(t), teled],
(1.1) y(c) =0, | )
y(d) = X1 () + Sy %27 y(N) + Sy oDy (),

where D?f"’"p is the vy-Hilfer generalized proportional fractional derivative of order
a € (1,2] and type 8 € [0,1], such that f € C([c,d] x R,R), nj,7i,pi € R, Ifl’a’w
is the generalized proportional fractional integral operator of order ¢; > 0, and
Vi )\’i7 JAS [67 d]

In [20] we have investigated the existence of solutions for the following p-Laplacian
hybrid fractional differential equation involving the generalized Caputo proportional
fractional derivative:

N, Y, T .
S5, (§D3 (giety) = H(t,o(1), t€©:=[0,8]

z(t) .
(S(t,x(t)))tzo =wy, wy € R,

(9(f,§ct()t>));:0 =0,
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where 0 < a < 1,1 < ¥ < 2, §Dy%() is the generalized Caputo proportional fractional
derivative of order o, ®,(x) = |z|P~2x, p > 1 is the p-Laplacian operator, g : © — R,
GeCO xR,R*) and H € C(O x R,R).

Motivated by the above mentioned works, in the present paper we investigate the
existence and uniqueness results of the following nonlinear hybrid differential equation
with 1-Hilfer generalized proportional fractional derivative with order 0 < § < 1

2()-Q(ts 1% ()

H nB.oy
o Dal < L(ts 17V a(t)

[iCa (00T a(e)
0 at L(t17 2(t))

> = M(t,s I20a(t), teT:=[a,b],
(1.2)

> = 22:1 )\ka:(ek), € € [CL, b], >\k - R,
t=a

where T := [a,b] is a finite interval of R with 0 < a < b < +o0, §'DJ7%(:) is the
1-Hilfer generalized proportional fractional derivative of order 5 and type o, such that
0<f<1,0<0<1,0<6<1¢=0+0(1-8),(>p8,¢>0,¢c(0,1], 77
is the v-Hilfer generalized proportional fractional integral, £ € C'([a,b] x R,R\ {0})
and Q,M € C([a,b] x R, R).

This paper is structured as follows. Section 2 introduces some definitions and
lemmas. In Section 3, we present our main results concerning the existence and
uniqueness of solution to the problem described above. In Section 4, we present
an application to illustrate our main results. Finally, we present our conclusion in
Section 5.

2. PRELIMINARIES

In this section, we present definitions and lemmas related to the v-Hilfer generalized
proportional fractional derivative and the Kuratowski measure of noncompactness,
which will be consistently utilized throughout the following sections of this study.

e We denote by C(T,R) the space of all continuous functions with the norm || f|| =
sup{|f(t)| : t € T}.

e We consider the Banach space X = (C(T,R), || - ||).

e We denote by B,(0) = {u € X :||ul| <n} the closed ball centered at 0 with
radius 7).

Throughout this paper we consider the function ¢ : [a,b] — R, that is an increasing
differentiable function.

Definition 2.1 ([11,12]). Let § € (0,1], 8 > 0, ® € L'([a,b],R), The left-sided
generalized proportional fractional integral with respect to v of order 3 of the function
® is defined by
1 b5
Bip — 55 (W) —v(s)) _ p-1
R0 = gy [ €T O — () R(s)ds,

where T'(3) = [;" e "77~tdr, 3 > 0, is the Euler gamma function.

Definition 2.2 ([11,12]). Let 6 € [0,1], v, 0: [0, 1] xR — [0, +00) be continuous such
that lims_,g+ v(5,t) = 0, lims_,;- v(0,¢) = 1, limg_,o+ 0(0,%) = 1, lims_,1- 0(6,t) = 0,
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and v(0,t) #0, 6 € (0,1], 0(d,t) # 0, 6 € [0,1). Then, the proportional derivative of
order § with respect to ¢ of the function ® is given by

'(t)

Pr(t)

In particular, if y(d,t) = § and o(d,t) = 1 — ¢, then we have

'(t)

W(t)

Definition 2.3 ([11,12]). Let § € (0,1]. The left-sided ¢-Riemann-Liouville gen-

eralized proportional fractional derivative of order n — 1 < # < n of the function
o € C"([a, b)) is given by

sDIYD(t) =5 DIV I ()
6Dn7w t 51 (s o
= st . T O W) — vl ()i,

where n = [3] + 1 and s§D™¥ = DV .5 DV .. .5 D¥.

n—times

Definition 2.4 ([16]). Let § € (0,1]. The left-sided v-Hilfer generalized proportional
fractional derivative of order n —1 < 8 < n and type o € [0,1] of the function
¢ € C"([a,b],R) is given by

ngffﬂﬁq)(t) =5 I;f_(kn—ﬁ)ﬂﬁ(an,w)610(;—0)(71—5);1#(1)(0.

D" D(t) = 0(8,1)@(t) +7(3,t)

sDYO(t) = (1 —0)®(t) + 6

In other way

SR =5 I D),
where ( = f+o(n — ) and n = [3] + 1.
Lemma 2.1 ([11,12]). Let 6 € (0,1], 8,p > 0 and ® € L'([a,b],R). Then, we have

SIEPGIEY () =5 1P ISP (1) =5 1570 (1)
Throughout this paper, as a simplification, we set
- 51 ((6)—b(a _
Q7 a) = T COTE(E) —y(a))

Lemma 2.2 ([16]). Let 6 € (0,1], n—1 < g <n, o € [0,1], ® € C([a,b],R) and
sIP®(t) € C™([a,b],R). Then, we have
n ()

SIHV(IDIT (1) = o) — >
k=1

where ( =+ o(n— ) and n = [3] + 1.

Lemma 2.3 ([11,12]). Let § € (0,1], n—1 < p < pf <n,n €N, g € [0,1] and
¢ € C"([a,b],R). Then, we have

DR (I (1)) =5 I 7 B(1).

k=G
SRD(C — k + 1)(6Ia+ ®(a)),
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Lemma 2.4 ([11,12]). Let 8 >0, p> 0 and § € (0,1]. Then, we have

(i) (5120 70O (1) — (a))") () = 5T (1, a);

(i) (D50 FOO-V@ () — (a) 1) () = L2001, a).

Lemma 2.5 ([11,12]). Let 3 > 0, 6 > 0 and ® € L'([a,b],R). Then, we have
limy ., (517 ®(t)) = 0.

We will now introduce definitions and properties related to the Kuratowski measure
of noncompactness, which serve as the basis for proving the existence of a solution to
the problem (1.2).

Definition 2.5 ([6]). Let X be a Banach space and E be a bounded subset of X. We
define the Kuratowski measure of noncompactness by the mapping w : £ — [0, +00)
defined as follows

w(F) = inf {0 > 0/F C UL, F; and diam(F}) < o}.

Lemma 2.6 ([11,12]). Let F' and G be two bounded subset of the Banach space X .
The Kuratowski measure of noncompactness w satisfies the following proprieties:

(1) FCG=w(F) <wG);

(2) wF+G) SwF)+w(G);

(3) w(F) = w(F) = w(conv(F)), where F and conv(F) denote the closure and the

convex hull of F, respectively;
(4) w(aF) = |alw(F), a € R;
(5) w(F) =0 if and only if F is relatively compact in X.

Definition 2.6 ([11,12]). Let A : E — X be a continuous bounded operator. Then,

A is w-Lipschitz if there exists a constant # > 0, such that for all F' C E we have
w(A(F)) < Ow(F).

Remark 2.1. If the constant # < 1, then the operator A becomes strict w-contraction.

Definition 2.7 ([11,12]). Let F' be a bounded subset of E. We say that the operator
A E — X is w-condensing if

w(A(F)) < w(F).
Remark 2.2. If w(A(F)) > w(F'), then this implies that w(F') = 0.

Lemma 2.7 ([9]). Let A, Y : E — X are two w-Lipschitz operators with constants
0 and v, respectively. Then, the operator A+ Y : E — X is w-Lipschitz with the
constant ¢ = 6 + 1.

Lemma 2.8 ([9]). Let A : E — X. Then, we have the following.

(2) If the map A is compact, then A is w-Lipschitz with constant 0 = 0.

(13) If the map A is Lipschitz with constant 9, then A is w-Lipschitz with the same
constant.
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Theorem 2.1 ([9]). Let I1: E — X be w-condensing and
A={zre X :x= Nz, e€[0,1]}.
If A is a bounded set in X, then there exists 1 > 0 such that A C B, (0) and
deg(I — M1, B,(0),0) =1, for all X € [0,1].

Therefore, 11 has at least one fixed point and the set of the fixed points of the operator
IT belongs to B,(0).

3. AUXILIARY RESULTS

In this section, we derive the solution formula for the problem (1.2) and identify the
conditions under which it has a solution. We also study the existence and uniqueness
of solutions to the problem (1.2).

Lemma 3.1. Let £ € C([a,b] x R,R\ {0}), Q.M € C([a,b] x R,R) and
(3.1) X =06""T(C) = Y MeL(enss ffiwx(ﬁk))%_l(ek, a) # 0.
k=1

The solution of the hybrid fractional differential equation (1.2) is then given by
B s oD (1) & o
o(t) =Qt,s L1 (1) + Lt 10 w(8) =" 3 e (Qewss 13 (er))
k=1
(3.2)
+ L €pos I (1)) I M e, 5 Jfﬁx(ek))) + L(ts I ()5 I0 Mt 177 2(1)).
Proof. Let t € T, then we consider that z(t) is a solution of the problem (1.2), then by

applying the operator s/ fﬁ’() on both sides of the problem (1.2) and using Lemma 2.2,
we obtain

(3.3)

2(t) =Q(t,s I7Ya(t)) + Lt [fﬁx(t))w =G (m(t) — Qs lfﬁw(t))

0IT(C) 5 L(ts I a(t))
+ Lt L () LMt 12 (E)).
In (3.3) we take t = ¢, and multiply its two members by A, and we get
)\k$(€k) :AkQ(Ek,g [5Lw$(€]€))

v B
+ AL (€ fﬁfpx(%))w -Gy <x(a) — Qa7 x(a))

5IT(C) 5 o L(a,s 1% x(a))
+ ML (s T2 () )s 12 M(egs 17 (e
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Then, we have
(3.4)

i )\kx(ek) = i )\kQ(Ek75 If—;-wli(ek))
k=1 k=1

+ i AL (€grs I’Bf/’x(ek))w ]’i;(ﬂli (x(a) — Q(as ffﬁ;;(a))

k=1 ¢ 6IT(C) 5 L(a,s Ifjrwx a
57 L (ens I () I M5 12 2 (e)).
k=1

_ ;Ba—Qa,I*B’wxa
From the initial condition s} ¥ ( (L)(a,g(fﬁiwﬂa))( )> = > r_; Ax(eg) and (3.4), we

obtain
(3.5)

_ z(a) — Qa,s I’V x(a 5¢1(¢
st (£ lal 1)) FEEOD (550000 12wt
30 Lo+

+ ZML s 12w (e)) I M (€6 17 37(6k>>>

k=1
Substituting (3.5) into (3.3) we get

Qi_l (t,a

o(t) =0t I5V0(1)) + £(ts T2V (1)) i A (Q(ckss I8 (er))

+ L(eps 15w (ep)) TP Mg 12 x(ek))>
+ L(ts ]ai x(t ))5]5?3%(15,5 Ifjrwx(t)).
The opposite follows by direct computation. 0
As we prepare to provide the main results of this investigation, we first present the

following hypotheses.
(Hy) There exists a constant C; > 0 such that for all p,q € R, and ¢t € T we have

| M(t, p) — M(t, q)] < Cilp—ql.

(H;) There exists a constant £ > 0 such that for all p € R, r € (0,1), and t € T we
have:

IM(,p)| < &lpl".
(Hj3) There exists a constant Cy > 0 such that for all p,q € R, and t € T we have
19(t,p) — Q(t,9)| < Calp — 4.

(H,) There exist constants ¢ > 0 and N > 0 such that for all p € R, and t € T we
have

L(t,p)| <o, |9t p)|<N.
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Define the two operators A, B : X — X as follows:
A(t) —Q(f~ TP o szfl(tv a) § o
x(t) =Q(t,s I x(t)) + L(t,s 17 x(t)) 1;1 Ak (Q(Ek,(; I x(ey))
+ Ll IV (0) ) 12 M (e 1 x(ek») ted,
and
Ba(t) = L(t,s 7w (t)s 17 M (t,s I7Px(t), teT.
We consider the operator II : X — X defined by
x(t) = Ax(t) + Bx(t), teT.
Next, we have the following lemmas.

Lemma 3.2. The operator A is Lipschitz and satisfies the following condition

No((®) — v(a))! @
A 2 I

£p(1b(b) — (a))Pr+D+e-1
TX‘(W(T‘*‘I( (B +1))r+! ||| Z|>\k|

[Az]| <N +

_|_

Proof. Let x,y € X, then by using hypotheses Hy, H3, H;, Lemma 2.4 (7), and using
the fact that e 5 ®®—¥(@) < 1 we get

| Az (t) — Ay(t)]
< ’Q(t,(; 122 (t)) — Q(t,s Ifiwy(t))\
x|

=t I (0) 3 MeDlek ffilﬁy(ek»\
k=1

L [B¢ Z )\k 6].;,5 Iffz’x(ek))

Lt 1572(0) S ML ers 157w (ex)) I Megs 10 w(ey,))

k=1
— L(ts 12 y(6) > AeL(ews I y(en)) 12 Mg 11 y(ek>>|

. o((b) — ¥(a))!
x|

<y |29 0)lnls) —yto)lds +
< zij Ml |9eks I a(er) — Qs I yler))

2 _ (-1 n
+ 210 lew(a)) Il T [ Meps 15 a(er) = M(epss 1 y(er))|
k=1
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t B R
Saﬁ(rj?m/a (¥ () = () (5)]a(s) = y(s)lds + @Cz“fsib&wég !

n &% 4 , Cip?*(P(b) — ()"
x Z|Ak|/ Qe )0 (5)|2(s) — y(s)lds + X[0°T(3)

32 Il [l =06 (s [ s Olate) ) s
(i0) — ¢(@)'C: BSOS

))5 ' (s)ds|z — y

B 0Co(Y(b) — P(a))ftet & o
lo ol + =2 G et 2 lle =l

+

Cr2(1h(b) — 1b(a))f+e—1 &
SPE BT+ 1) 2™ [ w
W) ~ ¥(a))’Cs
- T8+
Cr2(1h(b) — 1p(a))?PH+e-1 &
! wlx|525(F(6 e 2 el
<R[z —yl|.

Therefore, the operator A is Lipschitz with a constant
_(¥(b) — ()’ oCo(1b(b) — b(a))S~1 &
- T(B+1) <02+ N Z|)\k|
Cro(h(b) — ¥(a))PHet &
(3.6) PTG ) ZWO-

Moreover, using Hypotheses (Hs) and (Hy), we get

— a 1 n a -1
Aa(t)] < 4 NPEO) )~ ZlMIJr P2 ((b) — ¥(a)) ol

X = XI3°T(5)

r

n x - / 1 ) ,
X ;W/a Q" (er, )0 (s) W/a QI (s, 1)/ (7)dr| ds

No@(b) — (@) ¢ £GP (b) — (a)+¢
IX] 2 M e T B+ )

Sl [0 ()

— a (-1 n
N@w(b)lxlw( : ZIAkI
£2(Y(b) — ()P

I[P DT (B + 1))+ [

<N +

"

<N +

(3.7) -




16 S. ZERBIB, H. LMOU, K. HILAL, AND A. KAJOUNI

Therefore,
N b) — -1z
k=1
b Blr+1)+¢—1
(3.5) ¢ )~ vla) ol 3

[X[0PCFI((B + 1))+

Lemma 3.3. The operator B is continuous, and verifies the following condition

(1/1([?) — ¢(a))ﬂ(r+l) “xHT
AEEDIE+ 1)+

B < =

Proof. Let z,,z € C(T,R), such that x,, — x as n — 4+00. Then, we have
B (t) — Ba(t)]]
t
s(m‘:’@ @0 = ()7 () [ M. 120 (5)) = M5 L2 (5)) | ds.
Thanks to the continuity of the function M and Lebesgue dominated convergence

theorem we get
|Bx,(t) — Bx(t)|| = 0 as n— +oc.

This implies that the operator B is continuous.
On the other hand, by using the hypotheses (Hsy) and (Hy), we get

3%
B (1)l S(SB(HT)(F(ﬁ))(Hr)

x [ i) — () (s)

LU0 V)
- 56 r+l( (5+1))r+1

" (0(s) = () (e ds

(3.9)

Lemma 3.4. The operator B is compact.

Proof. To prove that the operator B is compact, we prove that B(B,) is relatively
compact by using the Arzela-Ascoli Theorem. Let ¢t € T, x € B,,, from the inequality
(3.9) we have

Ep((b) — ¢(a)?HD)
SAC+D(T(5 + 1))r+1 -

B <

By extension, this suggests that the operator B(B,) is uniformly bounded.
Now we show that operator B is equicontinuous. Let t1,t, € T and x € B,, then
we have

|Bx(ta) — Ba(ty)]
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1, ,
sz@wﬁﬂmgﬁ—/sﬁ%m@wwmwuﬁﬂwm

— L(t1,s IP¥a(ty)) (t, )0 ()| M(s,5 I7 P x(s))|ds

T

Collz|]"
S 9T()

= [Mw) - v )

el ) = (e
=GR L) (DB + 1))

)
)

/az( (t2) — ¢(s))5 1¢/<3)ds—/ (w(tl)w(s))ﬁ_lw’(s)ds
¥(a))

Colall (6(b) — ¥(@)? a
S T T »Tl\wag—ww»ﬂ—w@oww%w

By using the continuity of the function v, we obtain |Bz(ts) — Bz (t1)| — 0 as t; — o,
this implies that the operator B is equicontinuous.

Therefore, according to the above arguments, the operator B is bounded and
equicontinuous. Thanks to Arzeld-Ascoli theorem, the operator B is compact. 0J

s ) v

[ @) = v (ryar

GWw@»—wﬁwlww>

1

5T(5) s

X

Theorem 3.1. Let us assume that the hypotheses (Hy), (Hz), (Hs) and (H,) are
verified. Then, the problem (1.2) has at least one solution x € X provided that R < 1
and the set of solutions is bounded in C(T,R), where R is given by (3.6).

Proof. Let A, B and II be the bounded and continuous operators defined above. Then,
thanks to Lemma 3.2 and Lemma 2.8 (77), the operator A is w-Lipschitz with constant
0 < R < 1 and according to Lemma 3.4 and Lemma 2.8, (i), the operator B is w-
Lipschitz with constant 0. Consequently, the operator I is w-Lipschitz with constant
R. Since R < 1, II is therefore w-condensing.

We consider the set A defined as follows:

A={re X o=z, e€[0,1]}.
The set A is bounded. Indeed, let x € A. Then, using inequalities (3.8) and (3.9), we
get
2] =lIA(Az + Bz
<A(Az] + [Bl)

Np((b) —@ZJ(a))C L ( (b ) ¢(a))ﬁ(r+1)+c 1

§B(r+1) ( (5_|_ 1))r+1

<N +

+
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e((b) — P(a))t & Eo(y(b) — (a))Pr Dz
<N (H A kZlM’“') TSR (B 1 1))
— a C_l n
Y (ETERTES SN

This implies that the set A is bounded in X. If this is not the case, we assume that
e := ||z|| = 400 and divide both sides of the above inequality by &, we get:

| < lim Y (1 | ) = le) 3 W;I)

e—+o0 g |X| 1
- Ep((b) = (@)UY ]| [((b) = P(a)) Tt &
+ all)gloo 0B (D(B + 1))+ ( Y| kz::l | A&| + 1)
=0.

This is absurd; hence, the set A is bounded. Consequently, by Theorem 2.1, the
operator Il has at least one fixed point in X, which serves as a solution to the
problem (1.2).

The proof is completed. 0

Theorem 3.2. Suppose that the hypotheses (Hy), (Hs) and (Hy) are satisfied. Then,
the problem (1.2) has a unique solution provided that

pCL(1(b) — ¢(a))*

(3.10) R+ 52(T(3 + 1))

<1,

where R is given by (3.6).

Proof. Suppose that the hypotheses (H;), (H3) and (H,) are satisfied, and let z,y €
C(T,R). Using the same arguments as in the proof of Lemma 3.2 we obtain the
following

[Tar(t) — Ty (6)] =| (A (t) + Ba(t)) — (Ay(t) + By(1))]
<|Ax(t) — Ay(t)] + |Ba(t) — By(t)|
<Rl|z =yl + [£(ts I 2 ()s I Mt 1202 (1))
= (s I y(O)s I Mg I3 y(8))
<R||w = yll + @5 LMt 11 (1)) — M(t,5 12 y(0))

<Al =l + 5
0000 (s [ s Olet) = (o))
Ry 4 EC0 @)
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x [~ 6> 9 sl — yl

£ §(0) ~ ¥(a)”
< (r+ Sty ) b

From the condition (3.10) it follows that the operator II is a contraction. It follows
that II has a unique fixed point according to the Banach fixed point theorem, which
is the solution of the nonlinear hybrid fractional differential equation (1.2).

The proof is completed. 0J

4. EXAMPLE

In this section, we illustrate our main results with an example. Consider the

following problem:
Al )) _ ey 0) oy

I 17
112 z(t)
(4.1) L 3ot ‘
l—g,t %I()Jr x(t)‘ . 3
2 1+ l102-0: I(t)‘
p t=0
In this example, we take T = [0,1], ¥(t) =t, f = %, o= i, 0= %, ¢ = g, Al = %,
Ao = 11,)\3:%,51:12—5,5 8,and€3 E
Comparing Problem (4.1) with Problem (1.2), we find
Y t
I”x(t)‘ t cos (2]2’x(t)>
1 24p+ o+
Ot 1572(0) = 5y | Ml (D) =

1+ ’ [02+ )‘

and
Lt,s I a(t)) = 1.
Then for all p,q € R and ¢ € [0, 1] we have
t 1
— - _ < Zlp—ol.
Mt p) = M(¢, g)| = =l cos(p) — cos(a)] < 1-lp — 4]

This implies that the function T is Lipschitz, with a Lipschitz constant C} = =, then

T
hypothesis (H;) is satisfied. Also, we have

IM(Z, p)

=]+ lpl

= |7 e8P = 17

Hence, hypothesis (Hs) is satisfied with r = 1 and £ = =
It is clear that for all p,q € R and ¢ € [0, 1], we have

p| lq|

Q(t,p) — Q(t
9t p) - Q(t, 9)| = 2t+54‘1—|—\p! 1+ |q] =5

!p q|.
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This implies that the function Q is Lipschitz, with a Lipschitz constant Cy = < 4, then
hypothesis (Hj) is satisfied.
Next, to check hypothesis Hy, we have L(t,s Ifﬁx(t)) =1=¢p and

1q
112490(15)’
Q( 1’51[)()) 1 Qolt SNZL
2t +54 | 1 I m(t)‘ 54

Now it only remains to verify the conditions (3.1) and (3.6). We have

X =0T = S NeL(enos I () Q5 (en, @)

INT _ /5 3. =3
_ () r () — 3 e e = 1,295 £ 0
2 s) &

and
.
-0 5BF 6+ ( » )!><|1/}<a))C kZ::lM
e — > )
3
i (514 i S M T T 'A’“‘)
~0,0713 < 1.

We remark that all the conditions and the hypotheses are satisfied, then Problem
(4.1) has a solution in C'(7,R). In addition, we have:

@Cy(1(b) — Y(a)®
S2(T(B+1)2 0,0713+ 17 x iT2(2)
~0,2211 < 1,

R+

this implies that the problem (4.1) has a unique solution in C(7,R).

5. CONCLUSION

In this study, we have developed the theory of hybrid fractional differential equa-
tions, which includes the v-Hilfer generalized proportional fractional derivative. We
have used the Banach fixed point theorem and topological degree theory to analyze
the existence and uniqueness of solutions. An illustrative example is provided to
demonstrate our main findings.

As a possible direction for future research, we intend to investigate the existence,
uniqueness and Ulam-Hyers stability of a novel class of hybrid Langevin equations
and their associated formulations.
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