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BRYANT-SCHNEIDER GROUP OF BASARAB LOOP

BENARD OSOBA1, TÈMÍTÓ. PÉ. GBÓ. LÁHÀN JAIYÉO. LÁ2, AND OLUWATOBI BALOGUN3

Abstract. A loop (Q, ◦) is called Basarab loop if it is both a left and a right
Basarab loop; (x ◦ yxρ) ◦ xz = x ◦ yz and yx ◦ (xλz ◦ x) = yz ◦ x hold for all
x, y, z ∈ Q respectively. In this paper, the characterizations of the Bryant-Schneider
group of a Basarab loop are studied using the left and right Basarab loop identities.
It is shown that the element, xλ (xρ) is in the left (right) nucleus if and only if the
middle inner map Tx (inverse T −1

x ) is an automorphism. It is revealed that every
crypto-automorphism of a Basarab loop is an element of the Bryant-Schneider group.
Some related algebraic properties were also characterized. Furthermore, elements
of the Bryant-Schneider group of a Basarab loop in terms of pseudo-automorphism
and automorphism are also characterized. A subgroup of the Bryant-Schneider
group, characterized by the Basarab loop, is established. Finally, a right pseudo-
automorphic characterization of the isotopy-isomorphy of a Basarab loop is carried
out.

1. Introduction

Let Q be a non-empty set. We can define a binary operation, denoted by ‘◦’, on
this set. If the result of s ◦ t is always an element of Q for any s and t in Q, then the
pair (Q, ◦) is called a groupoid. Moreover, if the equations k ◦ s = l and t ◦ k = l have
unique solutions s and t for all k and l in Q, then (Q, ◦) is called a quasigroup.

Furthermore, if (Q, ◦) is a quasigroup and there exists a unique element, denoted
as the identity e ∈ Q, with the property that for any s ∈ Q we have s ◦ e = e ◦ s = s,
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then (Q, ◦) is known as a loop. We use st to represent s ◦ t, with the understanding
that ‘◦’ has lower priority than juxtaposition among factors to be multiplied.

Additionally, if (Q, ◦) is a groupoid and k is a fixed element in Q, then the left and
right translations of k, denoted by Lk and Rk respectively, are defined as sLk = k ◦ s
and sRk = s ◦ k for all s in Q. It is evident that (Q, ◦) is a quasigroup if its left
and right translation mappings are permutations. Since the left and right translation
mappings of a quasigroup are bijective, the inverse mappings L−1

k and R−1
k exist.

Let
k\l = lL−1

k = kMl and k/l = kR−1
l = lM−1

k ,

and note that
k\l = m ⇔ k ◦ m = l and k/l = m ⇔ m ◦ l = k.

Thus, for any quasigroup (Q, ◦), we have two new binary operations; right division (/)
and left division (\). Mk is the middle translation for any fixed k ∈ Q. Consequently,
(Q, \) and (Q, /) are also quasigroups. Using the operations (\) and (/), the definition
of a loop can be restated as follows.

Definition 1.1. A loop (Q, ◦, /, \, e) is a set Q together with three binary operations
(◦), (/), (\) and one nullary operation e such that

(i) k ◦ (k\l) = l, (l/k) ◦ k = l for all k, l ∈ Q;
(ii) k\k = l/l or e ◦ k = k ◦ e = k for all k, l ∈ Q.

We also stipulate that (/) and (\) have higher priority than (◦) among factors to be
multiplied. For instance, k ◦ l/m and k ◦ l\m stand for k(l/m) and a(b\c), respectively.

In a loop (Q, ◦) with identity element e, the left inverse element of k ∈ Q is the
element kJλ = kλ ∈ Q such that

kλ ◦ k = e,

while the right inverse element of k ∈ Q is the element kJρ = kρ ∈ Q such that
k ◦ kρ = e.

If xρ = xλ, then we shall write Jλ = Jρ = J where xJ = x−1.
For more study on quasigroup and loop theories, readers can check [10, 11, 18, 20–

23,25,26,29,30].
The study of a Bryant-Schneider group on an arbitrary loop was first introduced

in the work of Robinson [28] in 1980. The concept has been extended to different
loop structures, e.g., the study of the isotopy-isomorphy of Bol loops, Moufang loops,
and Osborn loops. In 2003 Adeniran [1] studied some properties of Bryant-Schneider
groups of certain Bol loops. Jaiyéo. lá [13], and Jaiyéo. lá et al. [14, 15] extended the
concept of the Bryant-Schneider group to the study of Smarandache loop, Osborn
loop, and their universality. A characterization of isostrophy Bryant-Schneider group-
invariant of Bol loops was studied in 2023 by Jaiyéo. lá et al. [12]. The isotopic and
pseudo-automorphic characterizations of a loop were presented by (Capodaglio [3],
1993), where the crypto-automorphism of a loop was defined as a generalization
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of pseudo-automorphism. Further study of crypto-automorphism was carried out
by (Oyebo et al. [24], 2024). The work revealed that crypto-automorphisms of a
quasigroup with left and right identity elements forms a group.

In this study, we shall study the properties of the crypto-automorphism group and
Bryant-Schneider group of left (right) Basarab loop.

2. Preliminaries

Definition 2.1. The set of all permutations on a non-empty set Q forms a group
called the symmetric group of Q, denoted as SY M(Q). Let (Q, ◦) be a loop, and let
A, B, and C be elements of SY M(Q). If xA ◦ yB = (x ◦ y)C for all x, y ∈ Q, then
the triple (A, B, C) is termed an autotopism, and these triples form a group known
as the autotopism group of (Q, ◦), denoted as AUT (Q, ◦). If A = B = C, then A
is called an automorphism of (Q, ◦), and the set of all such automorphisms forms a
group called the automorphism group of (Q, ◦), denoted as AUM(Q, ◦). See [26].

Definition 2.2. Let (Q, ◦) be a loop.
(a) ϕ ∈ SY M(Q) is called a left pseudo-automorphism with companion a ∈ Q if

(ϕLa, ϕ, ϕLa) ∈ AUT (Q, ◦). The set of such maps forms a group (see [26]).
(b) ϕ ∈ SY M(Q) is called a right pseudo-automorphism with companion a ∈ Q if

(ϕ, ϕRa, ϕRa) ∈ AUT (Q, ◦). The set of such maps forms a group (see [26]).
(c) ϕ ∈ SY M(Q) is called a crypto-automorphism with companions a, b ∈ Q if

(Raϕ, Lbϕ, ϕ) ∈ AUT (Q, ◦). The set of such maps forms a group (see [24]).
(d) A mapping ϕ ∈ SY M(Q) such that (ϕR−1

g , ϕL−1
f , ϕ) ∈ AUT (Q, ◦) for some

f, g ∈ G is called a Bryant-Schneider map of (Q, ◦). The set of such maps
forms a group called the Bryant-Schneider group BS(Q, ◦) of (Q, ◦) (see [28]).

From Definition 2.2, it is clearly seen that
(ϕR−1

g , ϕL−1
f , ϕ) = (ϕ, ϕ, ϕ)(R−1

g , L−1
f , I),

which implies that ϕ is an isomorphism of (G, ◦) onto some f, g-isotope of it.

Theorem 2.1 ([28]). Let the set BS(Q, ◦) = {ϕ ∈ SY M(Q) : exists f, g ∈ Q ∋
(ϕR−1

g , ϕL−1
f , ϕ) ∈ AUT (Q, ◦)}, then BS(Q, ◦) ≤ SY M(Q).

Theorem 2.1 is associated with Theorem 2.2.

Theorem 2.2 ([26]). Let (Q, ◦) and (H, ◦) be two isotopic loops. For some f, g ∈ Q,
there exists an f, g-principal isotope (Q, ∗) of (Q, ◦) such that (H, ◦) ∼= (Q, ∗).

Definition 2.3 ([26]). Let (Q, ◦) be quasigroup with fixed elements a, b ∈ Q. The
isotope of this form (R−1

a , L−1
b , I) is called LP-isotope.

Definition 2.4 ([26]). Let (Q, ◦) be a quasigroup. Then, the following hold.
(a) Right inverse property (RIP) holds if there is a mapping Jρ : x → xρ such that

(y ◦ x) ◦ xρ = y for all x, y ∈ Q.
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(b) Left inverse property (LIP) holds if there is a mapping Jλ : x → xλ such that
xλ ◦ (x ◦ y) = y for all x, y ∈ Q.

(c) Inverse property (IP) if (a) and (b) hold.
(d) Right alternative property (RAP) if y ◦ xx = yx ◦ x for all x, y ∈ Q.
(e) Left alternative property (LAP) if x ◦ xy = xx ◦ y for all x, y ∈ Q.
(f) Flexible or elastic property if (x ◦ y) ◦ x = x ◦ (y ◦ x) holds for all x, y ∈ Q.
(g) Cross inverse property (CIP ) if there exist mapping Jλ : x → xλ or Jρ : x → xρ

such that xy ◦ xρ = y or x ◦ yxρ = y or xλ ◦ yx = y or xλy ◦ x = y for all
x, y ∈ Q.

Definition 2.5. A loop (Q, ◦) is said to be
(a) an automorphic inverse property loop (AIPL) if (xy)−1 = x−1y−1 for all x, y ∈

Q;
(b) an anti-automorphic inverse property loop (AAIPL) if (xy)−1 = y−1x−1 for all

x, y ∈ Q;
(c) a power associative loop if ⟨x⟩ is a subgroup for all x ∈ Q and a diassociative

loop if ⟨x, y⟩ is a subgroup for all x, y ∈ Q.

Definition 2.6. Let (Q, ◦) be a loop.
(a) Nλ = {v ∈ Q : (v ◦ x) ◦ y = v ◦ (x ◦ y) for all x, y ∈ Q} is called the left nucleus

of Q.
(b) Nρ = {v ∈ Q : y ◦ (x ◦ v) = (y ◦ x) ◦ v for all x, y ∈ Q} is called the right

nucleus of Q.
(c) Nµ = {v ∈ Q : (y ◦ v) ◦ x = y ◦ (v ◦ x) for all x, y ∈ Q} is called the middle

nucleus of Q.

Definition 2.7 ([3]). In a loop (Q, ◦), a permutation ϕ is called a crypto-automo-
rphism if there exists a, b ∈ Q called the companions of ϕ such that for every x, y ∈ Q

(x ◦ a)ϕ ◦ (b ◦ y)ϕ = (x ◦ y)ϕ.

Hence, ϕ is called a crypto-automorphism with companion (a, b).

Definition 2.8. Let (Q, ◦) be a quasigroup. A mapping ϕ ∈ SY M(Q) will be defined
as a two-middle pseudo-automorphism if there exists elements a and b in Q such that
(ϕR−1

a , ϕL−1
bλ , ϕ) ∈ AUT (Q, ◦).

Remark 2.1. The collection of two-middle pseudo-automorphisms will be denoted as
PSµ2(Q, ◦). It is worth noting that PSµ(Q, ◦) ⊆ PSµ2(Q, ◦).

Theorem 2.3 ([24]). The set of crypto-automorphisms CAUM(Q, ◦) of a quasigroup
(Q, ◦) with right and left identity elements forms a group.

Theorem 2.4 ([24]). Let (Q, ◦) be a loop. BS(Q, ◦) = CAUM(Q, ◦).

Theorem 2.5 ([26]). Let (Q, ◦) be an inverse property loop. Then, for any a ∈ Q:
(a) JλRaJρ = Laλ;
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(b) JρRaJρ = Laρ;
(c) JρLaJρ = Raρ;
(d) JλLaJρ = Raλ.

Theorem 2.6 ([26]). Let P = (A, B, C) ∈ AUT (Q, ◦) of a loop (Q, ◦).
(a) If (Q, ◦) is a left inverse property loop (LIPL), then Pλ = (JAJ, C, B) ∈

AUT (Q, ◦).
(b) If (Q, ◦) is a right inverse property loop (RIPL), then Pρ = (C, JBJ, A) ∈

AUT (Q, ◦).

Theorem 2.7 ([26,31]). Let (Q, ◦) be a RIP or LIP or AAIP loop. Then, Jρ = Jλ = J ,
i.e., aρ = aλ = a−1 for all a ∈ Q.

Definition 2.9. A loop (Q, ◦) is called
(a) left Basarab loop (LBaL) if it satisfies the identity (x ◦ yxρ) ◦ xz = x ◦ yz for

all x, y, z ∈ Q;
(b) right Basarab loop (RBaL) if it satisfies the identity yx ◦ (xλz ◦ x) = yz ◦ x for

all x, y, z ∈ Q.

A Basarab loop was studied in Basarab’s work before Cote et al. [2] in 2010 worked
on classification of loops of generalised Bol-Moufang type. Basarab published two
prominent papers [4, 5] in 1992, focusing on IK-loops in [6] and [7]. Some recent
studies of Basarab loop have been carried out in various fashions. The properties of
Basarab loop with invariants of inverse properties were examined in [16]. This study
revealed that a Basarab loop exhibits a cross inverse property if and only if it is an
abelian group, or if all left (right) translations of the loop are right (left) regular. The
same authors also investigated the Basarab loop and the generators of its total inner
mapping group [17]. In 2021, the characterization of subloops of a Basarab loop was
explored [8], and a recent announcement was made by Effiong et al. [9] regarding the
holomorphic characterization of a Basarab loop.

Theorem 2.8 ([16]). (a) In a left (right) Basarab loop, the following are equivalent:
i flexibility;
ii RIP (LIP);
iii RAP (LAP);
iv AAIP.

(b) In a Basarab loop, the following are equivalent:
i flexibility;
ii right inverse property;
iii left inverse property;
iv inverse property;
v right alternative property;
vi left alternative property;
vii alternative property.
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3. Main Results

Lemma 3.1. Let (Q, ◦) be a loop. Then, (Q, ◦) is a
(a) left Basarab loop if and only if any of the following hold for all a, b ∈ Q:

i (RaρLa, La, La) ∈ AUT (Q, ◦);
ii RaρLaRab = RbLa;
iii RaρLa = T −1

a = RbLaR−1
ab ;

iv LaLa◦baρ = LbLa;
v La◦baρ = L−1

a LbLa;
(b) right Basarab loop if and only if any of the following hold for all a, b ∈ Q:

i (Ra, LaλRa, Ra) ∈ AUT (Q, ◦);
ii RaLaλb◦a = RbRa;
iii Laλb◦a = R−1

a RbRa;
iv LaλRaLba = LbRa;
v LaλRa = Ta = LbRaL−1

ba .

Proof. Use Definition 2.9 with the aid of autotopisms and translations. □

Theorem 3.1. Let (Q, ◦) ba a Basarab loop.
(a) aρ ∈ Nρ if and only if T −1

a ∈ AUM(Q, ◦).
(b) aλ ∈ Nλ if and only if Ta ∈ AUM(Q, ◦).

Proof. (a) If (Q, ◦) is a left Basarab loop, then from Lemma 3.1, (RaρLa, La, La) ∈
AUT (Q, ◦) for all a ∈ Q. If aρ ∈ Nρ, then (I, Raρ , Raρ) is an autotopism of (Q, ◦) for
all a ∈ Q. The product

(I, Raρ , Raρ)(RaρLa, La, La) =(RaρLa, RaρLa, RaρLa)

is equivalent to (T −1
a , T −1

a , T −1
a ) is an autotopism of (Q, ◦) for all a ∈ Q. Thus, T −1

a

is automorphism of (Q, ◦).
For the converse, we reverse the procedures to obtain aρ ∈ Nρ if and only if

(RaρLa, RaρLa, RaρLa) ∈ AUT (Q, ◦) is equivalent to T −1
a ∈ AUM(Q, ◦).

(b) If (Q, ◦) is a right Basarab loop, in Lemma 3.1, (Ra, LaρRa, Ra) ∈ AUT (Q, ◦)
for all a ∈ Q. If aλ ∈ Nλ, then (Laλ , I, Laλ) is an autotopism of (Q, ◦) for all a ∈ Q.
The product

(Laλ , I, Laλ)(Ra, LaρRa, Ra) =(LaλRa, LaρRa, LaλRa)

is equivalent to (Ta, Ta, Ta) ∈ AUT (Q, ◦). Hence, Ta is an automorphism of (Q, ◦).
For the converse, we simply do the reverse procedure. □

Theorem 3.2. Let U be a crypto-automorphism of LBaL (Q, ◦) with companion (a, b).
Then, LxU ∈ BS(Q, ◦) for all x ∈ Q.

Proof. If (Q, ◦) is a LBaL then P = (RxρLx, Lx, Lx) is an autotopism of (Q, ◦) for
all x ∈ Q. If U be a crypto-automorphism of (Q, ◦), then T = (RaU, LbU, U) is an



BRYANT-SCHNEIDER GROUP OF BASARAB LOOP 1303

autotopism of (Q, ◦) with a twin (a, b). The product

PT = (RxρLx, Lx, Lx)(RaU, LbU, U) = (RxρLxRaU, LxLbU, LxU) ∈ AUT (Q, ◦).
(3.1)

Set LxU = ω in (3.1) to obtain
(RxρLxRaU, LxLbU, ω) ∈ AUT (Q, ◦).(3.2)

Writing this in an equivalent form, for all y, z ∈ Q, we have
yRxρLxRaU ◦ zLxLbU = (y ◦ z)ω.(3.3)

Put y = e in (3.3) to obtain
eRxρLxRaU ◦ zLxLbU = (e ◦ z)ω ⇒(x ◦ exρ)RaU ◦ zLxLbU = zω

⇒zLxLbULaU = zω

⇒zLxLbU = zωL−1
aU ⇒ LxLbU = ωL−1

aU .(3.4)
Also, put z = e in (3.3) to get

yRxρLxRaU ◦ eLxLbU = yω ⇒yRxρLxRaU ◦ (ex)LbU = yω

⇒yRxρLxRaUR(bx)U = yω(3.5)
⇒yRxρLxRaU = yωR−1

(bx)U

⇒RxρLxRaU = ωR−1
(bx)U .(3.6)

Using (3.4) and (3.6) in (3.2), we have (ωR−1
(bx)U , ωL−1

aU , ω) ∈ AUT (Q, ◦). Thus, ω ∈
BS(Q, ◦) for all a, b ∈ Q. □

Corollary 3.1. Let U be a crypto-automorphism of LBaL (Q, ◦) with companion
(a, b). Then, LaU ∈ PSµ2(Q, ◦) with companion ((bx)U, (aU)ρ).

Proof. This follows as a consequence of Theorem 3.2. □

Theorem 3.3. Let U be a crypto-automorphism of RBaL (Q, ◦) with companion
(a, b). Then,

(a) RxU ∈ BS(Q, ◦) for all x ∈ Q;
(b) RxU ∈ PSµ2(Q, ◦) with companion (bU, ((xa)U)ρ) for all x ∈ Q

Proof. Follow similar steps as in Theorem 3.2. □

Theorem 3.4. Let (Q, ◦) be a LBaL with RIP. If the map θ ∈ BS(Q, ◦) such that
θ = ωL−1

x where ω : e → e, then ω is a unique right pseudo-automorphism with
companion (xg)−1 for all x ∈ Q and for some g ∈ Q.

Proof. Let θ ∈ BS(Q, ◦). Then, M = (θR−1
g , θL−1

f , θ) ∈ AUT (Q, ◦) for some f, g ∈ Q.
Since (Q, ◦) is a LBaL, N = (RxρLx, Lx, Lx) ∈ AUT (Q, ◦) for all x ∈ Q. The product

MN = (θR−1
g , θL−1

f , θ)(RxρLx, Lx, Lx) = (θR−1
g RxρLx, θL−1

f Lx, θLx) ∈ AUT (Q, ◦),
(3.7)
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for some f, g ∈ Q and for all x ∈ Q.
Let (Q, ◦) be a RIPL, applying Theorem 2.6 to the autotopism in (3.7), we get

(θLx, JθL−1
f LxJ, θR−1

g RxρLx) ∈ AUT (Q, ◦),(3.8)

for some f, g ∈ Q and for all x ∈ Q.
Let α = JθL−1

f LxJ in (3.8). Then,

(θLx, α, θR−1
g RxρLx) ∈ AUT (Q, ◦),(3.9)

for some g ∈ Q and for all x ∈ Q. For all y, z ∈ Q, we have

yθLx ◦ zα = (y ◦ z)θR−1
g RxρLx.

If θ = ωL−1
x , then θLx = ω, so, α = JωL−1

x L−1
f LxJ . Next, we have

yω ◦ zα = (y ◦ z)ωL−1
x R−1

g RxρLx.(3.10)

Let y = e in (3.10). Then, we have

eω ◦ zα = zωL−1
x R−1

g RxρLx ⇒zα = zωL−1
x R−1

g RxρLx ⇒ α = ωL−1
x R−1

g RxρLx.

(3.11)

Using (3.10) and (3.11), (3.9) becomes

(ω, ωL−1
x R−1

g RxρLx, ωL−1
x R−1

g RxρLx) ∈ AUT (Q, ◦),

for some g ∈ Q and for all x ∈ Q.
Since, (Q, ◦) is a left Basarab loop, RxρLx = RgLxR−1

xg . Hence,

(ω, ωL−1
x R−1

g RgLxR−1
xg , ωL−1

x R−1
g RgLxR−1

xg )
=(ω, ωL−1

x R−1
g RgLxR−1

xg , ωL−1
x R−1

g RgLxR−1
xg ) = (ω, ωR−1

xg , ωR−1
xg )

is an autotopism of (Q, ◦) for some g ∈ Q and for all x ∈ Q. Thus, ω is a right
pseudo-automorphism with companion (xg)−1.

Let ω1L
−1
x1 = ω2L

−1
x2 , where ω1, ω2 : e → e, for all x1, x2 ∈ Q. Then, L−1

x1 Lx2 = ω−1
1 ω2.

So, eL−1
x1 Lx2 = eω−1

1 ω2 implies L−1
x1 Lx2 = I, implies Lx1 = Lx2 . Hence, x1 = x2 and so

ω1 = ω2. This implies that for all x ∈ Q, there exists a unique ω such that θ = ωL−1
x .

Hence, θ = ωL−1
x where ω is a unique right pseudo-automorphism with companion

(xg)−1 for all x ∈ Q and for some g ∈ Q. □

Corollary 3.2. Let (Q, ◦) be a LBaL with RIP. For some θ ∈ BS(Q, ◦) such that
ωL−1

x = θ, where ω : e → e, ω ∈ AUM(Q, ◦) is unique for all x ∈ Q.

Proof. Set x = g−1 in Theorem 3.4. □

Theorem 3.5. Let (Q, ◦) be a RBaL with LIP. If the map θ ∈ BS(Q, ◦) such that
θ = ωR−1

x , where ω : e → e, then ω is a unique left pseudo-automorphism with
companion (fx)−1 for all x ∈ Q and for some f ∈ Q.
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Proof. Let θ ∈ BS(Q, ◦) then M = (θR−1
g , θL−1

f , θ) ∈ AUT (Q, ◦) for some f, g ∈ Q.
Since (Q, ◦) is a RBaL, N = (Rx, LxλRx, Rx) ∈ AUT (Q, ◦) for all x ∈ Q. The product

(θR−1
g , θL−1

f , θ)(Rx, LxλRx, Rx) = (θR−1
g Rx, θL−1

f LxλRx, θRx) ∈ AUT (Q, ◦),
for some f, g ∈ Q and all x ∈ Q. If (Q, ◦) is LIPL, by Theorem 2.6,

(JθR−1
g RxJ, θRx, θL−1

f LxλRx) ∈ AUT (Q, ◦),(3.12)
for some f, g ∈ Q and all x ∈ Q. Let α = JθR−1

g RxJ in (3.12), to get
(α, θRx, θL−1

f LxλRx) ∈ AUT (Q, ◦),
for all x ∈ Q and some f ∈ Q.

If θ = ωR−1
x , then ω = θRx. Thus, α = JωR−1

x R−1
g RxJ . Here, (3.12) becomes

(α, ω, ωR−1
x L−1

f LxλRx) ∈ AUT (Q, ◦),(3.13)
for all x ∈ Q and some f ∈ Q. For all y, z ∈ Q, we have yα◦zω = (y◦z)ωR−1

x L−1
f LxλRx.

Put z = e. Then,

yα ◦ eω =yωR−1
x L−1

f LxλRx ⇒ yα = yωR−1
x L−1

f LxλRx ⇒ α = ωR−1
x L−1

f LxλRx.

(3.14)

Now, using (3.14) in (3.13), we get
(ωR−1

x L−1
f LxλRx, ω, ωR−1

x L−1
f LxλRx) ∈ AUT (Q, ◦),(3.15)

for all x ∈ Q and some f ∈ Q. Since (Q, ◦) is a RBaL, by Lemma 3.1, LxλRx =
LfRxL−1

fx for all x, f ∈ Q. Thus, we have the last autotopism
(ωR−1

x L−1
f LfRxL−1

fx , ω, ωR−1
x L−1

f LfRxL−1
fx ) = (ωL−1

fx , ω, ωL−1
fx ) ∈ AUT (Q, ◦),

for all x ∈ Q and some f ∈ Q. Thus, ω is a left pseudo-automorphism with companion
(fx)−1 for all x ∈ Q and for some f ∈ Q. The proof of the uniqueness of ω is similar
to the one in Theorem 3.4. □

Corollary 3.3. Let (Q, ◦) be a RBaL with LIP. For some θ ∈ BS(Q, ◦) such that
θ = ωR−1

x , where ω : e → e, ω ∈ AUM(Q, ◦) is unique for all x ∈ Q and for some
f ∈ Q.

Proof. Set x = f−1 in Theorem 3.5. □

Theorem 3.6. Let (Q, ◦) be a LBaL and let ω = ω(f, g) ∈ BS(Q, ◦) such that
ω : e → e. Then, ω = ω(f, g) ≡ ω(f, fρ) and ω ≡ ω(f, g) = ω(gλ, g).
Proof. Let ω ∈ BS(Q, ◦), then (ωR−1

g , ωL−1
f , ω) ∈ AUT (Q, ◦) for some f, g ∈ Q.

Since (Q, ◦) is a LBaL, (RxρLx, Lx, Lx) ∈ AUT (Q, ◦) for all x ∈ Q. The product
(ωR−1

g , ωL−1
f , ω)(RxρLx, Lx, Lx) = (ωR−1

g RxρLx, ωL−1
f Lx, ωLx)(3.16)

is an autotopism of (Q, ◦) for some f, g ∈ Q and for all x ∈ Q. For all y, z ∈ Q we
have

yωR−1
g RxρLx ◦ zωL−1

f Lx = (y ◦ z)ωLx.(3.17)
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Put z = e in (3.17) to obtain

yωR−1
g RxρLx ◦ eωL−1

f Lx = yωLx ⇒yωR−1
g RxρLx ◦ eL−1

f Lx = yωLx

⇒yωR−1
g RxρLxRxfρ = yωLx

⇒R−1
g RxρLxRxfρ = Lx

⇒R−1
g = LxR−1

xfρL−1
x R−1

xρ ,

for some f ∈ Q and for all x ∈ Q. Set x = f in the last equality to get

R−1
g = LfL−1

f R−1
fρ = R−1

fρ .

Hence, g = fρ. On the other hand, set y = e in (3.17) to get

eωR−1
g RxρLx ◦ zωL−1

f Lx = zωLx ⇒eR−1
g RxρLx ◦ zωL−1

f Lx = zωLx

⇒
(
x ◦ g−1xρ

) (
zωL−1

f Lx

)
= zωLx

⇒L−1
f = LxL−1

(x◦g−1xρ)L
−1
x .

Set x = gλ, to get

L−1
f = LgλL−1

(gλ◦g−1(g)λρ)L
−1
gλ = L−1

gλ .

Thus, L−1
f = L−1

gλ implies f = gλ. □

Corollary 3.4. Let (Q, ◦) be a LBaL. If ω ≡ ω(f, g) ∈ BS(Q, ◦), such that ω : e → e,
for some f, g ∈ Q, the following hold:

(a) ω is a right pseudo-automorphism with companion f ;
(b) |f | = 2 or |g| = 2.

Proof. Putting R−1
g = R−1

fρ and L−1
f = L−1

gλ in (3.16), we get the autotopism

(ωR−1
fρ RxρLx, ωL−1

gλ Lx, ωLx)

of (Q, ◦) for some f, g ∈ Q and for all x ∈ Q. Set x = f , to get (ωLf , ωL−1
gλ Lf , ωLf ) ∈

AUT (Q, ◦) for some f, g ∈ Q. Let g = f . Then, (ωLf , ωL−1
fλ Lf , ωLf) ∈ AUT (Q, ◦)

for some f ∈ Q. For all y, z ∈ Q, we have yωLf ◦ zωL−1
fλ Lf = (y ◦ z)ωLf . Setting

z = e, we get

yωLf ◦ eωL−1
fλ Lf = yωLf ⇒ yωLf ◦ f 2 = yωLf ⇒ yωLfRf2 = yωLf ⇒ |f | = 2.

Thus, (ωLf , ω, ωLf) ∈ AUT (Q, ◦) for some f ∈ Q. Therefore, ω is a pseudo-
automorphism with companion f for some f ∈ Q. □
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Theorem 3.7. Let (Q, ◦) be a LBaL with AAIP. Then,

BS ′(Q, ◦) =
{

ω ∈ BS(Q, ◦) | ω : e → e and (xω)−1 =
(
x−1

)
ω

}
=

{
ω ∈ SY M(Q) | exists f ∈ Q ∋

(
ωR−1

f−1 , ωL−1
f , ω

)
∈ AUT (Q), eω = e

and (xω)−1 = (x−1)ω for all x ∈ Q
}

=
{

ω ∈ SY M(Q) | exists g ∈ Q ∋
(
ωR−1

g , ωL−1
g−1 , ω

)
∈ AUT (Q),

eω = e and (xω)−1 = (x−1)ω for all x ∈ Q
}

≤BS(Q, ◦).

Proof. Let

BS ′(Q, ◦) =
{

ω ∈ BS(Q, ◦) | ω : e → e and (xω)−1 =
(
x−1

)
ω

}
⊆ BS(Q, ◦).

Using the connection from Theorem 3.6,

BS ′(Q, ◦) =
{

ω ∈ BS(Q, ◦) | ω : e → e and (xω)−1 =
(
x−1

)
ω

}
=

{
ω ∈ SY M(Q) | exists f ∈ Q ∋

(
ωR−1

f−1 , ωL−1
f , ω

)
∈ AUT (Q),

eω = e and (xω)−1 = (x−1)ω for all x ∈ Q
}

=
{

ω ∈ SY M(Q) | exists g ∈ Q ∋
(
ωR−1

g , ωL−1
g−1 , ω

)
∈ AUT (Q),

eω = e and (xω)−1 = (x−1)ω for all x ∈ Q
}

.

Note that eI = e and (gI)−1 = (g−1)I for all g ∈ Q and (IR−1
e , IL−1

e , I) = (I, I, I) ∈
AUT (Q, ◦). Then, I ∈ BS ′(Q, ◦). Hence, BS ′(Q, ◦) contains the identity map, thus
BS ′(Q, ◦) is not empty.

Let α, σ ∈ BS ′(Q, ◦). Then, α, σ ∈ BS(Q, ◦) and eα = e and (xα)−1 = (x−1)α,
eσ = e and (xσ)−1 = (x−1)σ for all x ∈ Q.

In addition, there exist f1, g1, f11, g11 ∈ Q with g1 = f−1
1 , f11 = g−1

11 such that
P =(αR−1

g1 , αL−1
f1 , α), T = (σR−1

g11 , σL−1
f11 , σ),

T −1 =(Rg11σ−1, Lf11σ−1, σ−1) ∈ AUT (Q, ◦),
PT −1 =(αR−1

g1 , αL−1
f1 , α)(Rg11σ−1, Lf11σ−1, σ−1)

=(αR−1
g1 Rg11σ−1, αL−1

f1 Lf11σ−1, ασ−1) ∈ AUT (Q, ◦).
Let ϱ = σR−1

g1 Rg11σ−1 and γ = σL−1
f1 Lf11σ−1, such that (ασ−1ϱ, ασ−1γ, ασ−1) ∈

AUT (Q, ◦) if and only if for all a, b ∈ Q

(3.18) aασ−1ϱ ◦ bασ−1γ = (a ◦ b)ασ−1.
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Setting a = e in Q and replacing b by bσα−1 in (3.18), we have
(eασ−1ϱ) ◦ (bγ) = b ⇒ bγL(eασ−1ϱ) = b ⇒ γ = L−1

(eασ−1ϱ).

Analogously, setting b = e in Q, the identity element and replacing a by aσα−1 in
(3.18), we have

(aϱ) ◦ (eασ−1γ) = a ⇒ aϱR(eασ−1γ) = a ⇒ ϱ = R−1
(eασ−1γ).

Thus, g = eασ−1γ = eγ = eσL−1
f1 Lf11σ−1 = [f11 ◦ (f1\e)]σ−1 = [f11 ◦ f−1

1 ]σ−1 and
f = eασ−1ϱ = eϱ = eσR−1

f−1
1

Rf−1
11

σ−1 = eR−1
f−1

1
Rf−1

11
σ−1 = [(e/f−1

1 ) ◦ f−1
11 ]σ−1 = (f1 ◦

f−1
11 )σ−1. Then, using Theorem 2.7, f−1 = [(f1 ◦f−1

11 )σ−1]−1 = (f1 ◦f−1
11 )−1σ−1 = (f11 ◦

f−1
1 )σ−1 = g. Hence, PT −1 = (ασ−1ϱ, ασ−1γ, ασ−1) = (ασ−1R−1

f−1 , ασ−1L−1
f , ασ−1) is

an autotospism of (Q, ◦), eασ−1 = e and (x−1)ασ−1 = (xασ−1)−1 for all x ∈ Q. So,
ασ−1 ∈ BS ′(Q, ◦). Also,

PT −1 = (ασ−1R−1
g , ασ−1L−1

g−1, ασ−1)

is an autotopism of (Q, ◦) and eασ−1 = e and (x−1)ασ−1 = (xασ−1)−1 for all x ∈ Q.
So, ασ−1 ∈ BS ′(Q, ◦). Hence, BS ′(Q, ◦) ≤ BS(Q, ◦). □

Corollary 3.5. Let (Q, ◦) be a LBaL with AAIP. Then, AUM(Q, ◦) ≤ BS ′(Q, ◦) ≤
BS(Q, ◦).

Proof. This follows as a consequence of Theorem 3.7. □

Theorem 3.8. Let (Q, ◦) be a LBaL with a RIP and let H = (A, B, C) ∈ AUT (Q, ◦).
Then, there exists a right pseudo-automorphism ω with companion yx, where eA = x
and eB = y such that

(A, B, C) = (ω, ωRyx, ωRyx)(Lx−1 , JLx−1J, R−1
xρ Lx−1)−1.

Proof. Let (Q, ◦) be a LBaL, then (R−1
xρ Lx−1 , Lx−1 , Lx−1) ∈ AUT (Q, ◦) for all x ∈ Q.

Applying Theorem 2.6, (Lx−1 , JLx−1J, R−1
xρ Lx−1) ∈ AUT (Q, ◦) for all x ∈ Q. Suppose

that K = (A, B, C) is an autotopism of (Q, ◦), then the product
(A, B, C)(Lx−1 , JLx−1J, R−1

xρ Lx−1)
=(ALx−1 , BJLx−1J, CR−1

xρ Lx−1) ∈ AUT (Q, ◦), for all x ∈ Q.

Replace ALx−1 with ω and note that eω = eALx−1 = x−1 ◦ x = e,
tω ◦ zBJLx−1J = (t ◦ z)CR−1

xρ Lx−1(3.19)
for all t, z ∈ Q. Set t = e in (3.19), we obtain

eω ◦ zBJLx−1J = zCR−1
xρ Lx−1 ⇒zBJLx−1J = zCR−1

xρ Lx−1

⇒BJLx−1J = CR−1
xρ Lx−1 ,

for all x ∈ Q. So, (3.19) becomes
(3.20) tω ◦ zBJLx−1J = (t ◦ z)BJLx−1J,
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for all t, z ∈ Q. Let z = e, then it follows from (3.20) that yω◦eBJLx−1J = yBJLx−1J
implies ωyJLx−1J = BJLx−1J , implies ωRyx = BJLx−1J . Using this information in
(3.20), we get (ω, ωRyx, ωRyx) ∈ AUT (Q, ◦). Hence, ω is a right pseudo-automorphism
with companion (yx). So,

(A, B, C)(Lx−1 , JLx−1J, R−1
xρ Lx−1) = (ω, ωRyx, ωRyx)

⇒(A, B, C) = (ω, ωRyx, ωRyx)(Lx−1 , JLx−1J, R−1
xρ Lx−1)−1. □

Theorem 3.9. Let (Q, ◦) be a LBaL with a RIP such that |xz| = 2 for all z ∈ Q, and
let a ⊕ b = aR−1

x ◦ bL−1
y , for any arbitrarily fixed a, b ∈ Q and for all x, y ∈ Q. Then,

(Q, ⊕) ∼= (Q, ◦) if and only if there exists right pseudo-automorphism ω of (Q, ◦) with
companion yx.

Proof. Let C be isomorphism between (Q, ⊕) and (Q, ◦). Then,

(a ◦ b)C = aC ⊕ bC = aCR−1
x ◦ bCL−1

y = aB ◦ bA,

for all a, b ∈ Q, where B = CR−1
x and A = CL−1

y . So, (B, A, C) ∈ AUT (Q, ◦).
Let e and e∗ denote the identity elements in (Q, ◦) and (Q, ⊕), respectively. So,

since C is an isomorphism, we have eC = e∗, where e∗ = y ◦ x, and

eA =eCR−1
x = e∗R−1

x = (y ◦ x)R−1
x = y,(3.21)

eB =eCL−1
y = e∗L−1

y = (y ◦ x)L−1
y = x.(3.22)

By Theorem 3.8, and going by (3.21), and (3.22), we have

(B, A, C) = (ω, ωRyx, ωRyx)(Lx−1 , JLx−1J, R−1
xρ Lx−1)−1,

where ω is a right pseudo-automorphism of (Q, ◦) with companion yx.
Conversely, if ω is right pseudo-automorphism with companion yx, then

(ω, ωRyx, ωRyx) is a autotopism of (Q, ◦). On the other hand, since (Q, ◦) is LBaL,
we have that (Ly−1 , JLy−1J, R−1

yρ Ly−1)−1 is an autotopism of (Q, ◦). Now,

(B, A, C) =(ω, ωRyx, ωRyx)(Ly−1 , JLy−1J, R−1
yρ Ly−1)−1

=(ω, ωRyx, ωRyx)(L−1
y−1 , JL−1

y−1J, L−1
y−1Ryρ)

=
(
ωL−1

y−1 , ωRyxJL−1
y−1J, ωRyxL−1

y−1Ryρ

)
∈ AUT (Q, ◦).

Writing it in an equivalent relation form, for all a, b ∈ Q, we have

aωL−1
y−1 ◦ bωRyxJL−1

y−1J = (a ◦ b)ωRyxL−1
y−1Ryρ ⇒ (a ◦ b)C = aB ◦ bA,(3.23)

where C = ωRyxL−1
y−1Ryρ , B = ωL−1

y−1 and A = ωRyxJL−1
y−1J . So,

eB = eωL−1
y−1 = eL−1

y−1 = y−1\e = y,

eA = eωRyxJL−1
y−1J = eRyxJL−1

y−1J =
[
y−1\(yx)−1

]−1

⇒eA = [y\(yx)]−1 = x−1 = x.(3.24)
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Note that we used the assumptions that |z| = 2 for all z ∈ Q and Q has RIP, which
by Theorem 2.8 is equivalent to flexibility in a left Basarab loop.

Now, setting b = e in (3.23), to get

aC = aB ◦ eA ⇒ aC = aB ◦ x ⇒ aC = aBRx ⇒ B = CR−1
x .(3.25)

Put a = e in (3.23) to obtain

bC = eB ◦ bA ⇒ bC = y ◦ bA ⇒ bC = bALy ⇒ A = CL−1
y .(3.26)

So, using (3.23), (3.25) and (3.26), we obtain

(a ◦ b)C = aB ◦ bA = aCR−1
x ◦ bCL−1

y = aC ⊕ bC,

for all a, b ∈ Q. Hence, (Q, ⊕) ∼= (Q, ◦). □
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