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APPROXIMATION PROPERTIES OF A MODIFIED GAMMA
TYPE OPERATOR

AJAY KUMAR

Abstract. This article presents a new sequence of Gamma-type operators that re-
tains the test function er(t) = tr, r ∈ N. Initially, we derive the moment formulas for
these operators. Later, we analyze the approximation properties using the standard
and weighted modulus of smoothness and prove an asymptotic Voronovskaja-type
theorem. Furthermore, we compare the convergence rate and error estimation of
the proposed operators with existing ones that preserve test functions in various
ways, using numerical examples.

1. Introduction

The classical Gamma operators were first introduced by Lupas and Müller in 1967
[17]. This is a well-known sequence of positive linear operators used for improving
the approximation of a target function on the interval [0, ∞). These classical Gamma
operators are defined as:

Gn(f, x) = xn+1

Γ(n + 1)

∫ ∞

0
e−xuunf

(
n

u

)
du, for all x ∈ R+ = (0, ∞), n ∈ N.(1.1)

The above operators not only maintain constants but also preserve linear functions.
To achieve more precise approximations compared to the original operator (1.1),
numerous researchers have proposed various modified versions of the classical Gamma
operators, which are extensively discussed in the literature. For additional information,
refer to the relevant sources [3,5,6,11,12,14,15,19–24] and the references cited theirin.
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A new modified form of the classical Gamma operators has been considered by
Betus and Usta [4] in recent times, which is expressed as follows:

G̃n(f, x) = xn

Γ(n + 1)

∫ ∞

0
e−xu1/n

f

(√(n − 1)(n − 2)
u1/n

)
du, n ∈ N.(1.2)

The modified form of the classical Gamma operators preserves the test functions
e0(t) = 1 and e2(t) = t2, as noted in [4]. Furthermore, it has been observed in the
same source that this modified form of the operators yields improved approximation
results compared to the original operator (1.1).

In the literature, several researchers have proposed new constructions or modifica-
tions of operators for better approximation results. King [13] was the first to present
a new construction of Bernstein operators that preserve the test functions er = xr

for r = 0, 2. Acar et al. [2] introduced a generalized form of (1.1) that can reproduce
exponential test functions and established some approximation properties for the
considered sequence. Deveci et al. [7] defined a refinement of Gamma operators that
preserves constants and functions of the form e2µ for µ > 0. Gupta and Agrawal [9]
considered modified Post-Widder operators that preserve the test functions er(t) = tr

for r ∈ N and discussed that these operators provide a better approximation for r = 3.
Based on the aforementioned discussion, we are motivated to modify the operator

(1.2) such that it preserves the test function er(t) = tr for r ∈ N. We shall start with
the following expression:

Gn,r(f, x) = (bn,r(x))n

Γ(n + 1)

∫ ∞

0
e−bn,r(x)u1/n

f

(√(n − 1)(n − 2)
u1/n

)
du,

where bn,r(x) ∈ R+. Then,

Gn,r(tr, x) = xr = (bn,r(x))n

Γ(n + 1)

∫ ∞

0
e−bn,r(x)u1/n

(√(n − 1)(n − 2)
u1/n

)r

du

=

(√
(n − 1)(n − 2)

)r

Γ(n + 1) (bn,r(x))n
∫ ∞

0
e−bn,r(x)u1/n 1

ur/n
du

= Γ(n − r)
Γ(n) (bn,r(x))r

(√
(n − 1)(n − 2)

)r
.

Above implies that

bn,r(x) =
(

Γ(n)
Γ(n − r)

)1/r
x√

(n − 1)(n − 2)
= x{(−1)r(−n + 1)r}1/r√

(n − 1)(n − 2)
,(1.3)

where the rising factorial is given by (−n + 1)r = (−n + 1)(−n + 2) · · · (−n + r),
(−n + 1)1 = −n + 1 and (−n + 1)0 = 1. Therefore, using (1.3), the modified form of
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the operator Gn,r(f, x) for r ∈ N can be written as:

Gn,r(f, x) = 1
Γ(n + 1)

(
x{(−1)r(−n + 1)r}1/r√

(n − 1)(n − 2)

)n

×
∫ ∞

0
e

− x{(−1)r(−n+1)r}1/r
√

(n−1)(n−2)
u1/n

f

(√(n − 1)(n − 2)
u1/n

)
du.(1.4)

This modified form of the operator Gn,r(f, x), which is defined by (1.4), preserves
the test function er(t) = tr for r ∈ N, as well as the constant function. Notably, if
r = 2, the generalized operator (1.4) reduces to the original operator (1.2). In this
paper, we aim to investigate the approximation properties of the modified Gamma
operator defined by (1.4).

2. Auxiliary Results

The following lemma provides a general expression for moments of the proposed
operators.

Lemma 2.1. Let x ∈ R+ and em(t) = tm, m = 0, 1, 2, . . . Then, for r ∈ N, we have

Gn,r(em, x) = {(−1)r(−n + 1)r}m/r

(n − 1)(n − 2)(n − 3) · · · (n − m)xm

= {(−1)r(−n + 1)r}m/r

Πm
i=1(n − i) xm, m ∈ N ∪ {0}.

Proof. From (1.4), we have

Gn,r(em, x) = 1
Γ(n + 1)

(
x{(−1)r(−n + 1)r}1/r√

(n − 1)(n − 2)

)n

(2.1)

×
∫ ∞

0
e

− x{(−1)r(−n+1)r}1/r
√

(n−1)(n−2)
u1/n

(√(n − 1)(n − 2)
u1/n

)m

du.

Let αu1/n = t, where α = x{(−1)r(−n+1)r}1/r√
(n−1)(n−2)

. Substituting du = n
α

(
t
α

)n−1
dt and

1
um/n =

(
α
t

)m
in (2.1), we get

Gn,r(em, x) = (α)n{(n − 1)(n − 2)}m/2

Γ(n + 1)

∫ ∞

0
e−t

(
α

t

)m
n

α

(
t

α

)n−1

dt

= αm{(n − 1)(n − 2)}m/2

Γ(n)

∫ ∞

0
e−tt(n−m)−1dt

= αm{(n − 1)(n − 2)}m/2

Γ(n) Γ(n − m)

= {(−1)r(−n + 1)r}m/r

(n − 1)(n − 2)(n − 3) · · · (n − m)xm = {(−1)r(−n + 1)r}m/r

Πm
i=1(n − i) xm.
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Thus, the lemma is completed. □

Remark 2.1. Note that from Lemma 2.1, it is evident that when r = m, the operator
(1.4) preserves the test functions er(x) = xr for r ∈ N ∪ {0}. If we set r = 2, the
resulting operator (1.4) reduces to the operator (1.2) and preserves both the constant
function and the test function x2.

Lemma 2.2. Let us define the central moment for m ∈ N∪ {0} and r ∈ N as follows:
µGn,r

m (x) = Gn,r((t − x)m, x), n > m, then

µ
Gn,r

1 (x) =
[

{(−1)r(−n + 1)r}1/r

n − 1 − 1
]
x,

µ
Gn,r

2 (x) =
[

{(−1)r(−n + 1)r}2/r

(n − 1)(n − 2) − 2{(−1)r(−n + 1)r}1/r

n − 1 + 1
]
x2,

µ
Gn,r

4 (x) =
[

{(−1)r(−n + 1)r}4/r

(n − 1)(n − 2)(n − 3)(n − 4) − 4{(−1)r(−n + 1)r}3/r

(n − 1)(n − 2)(n − 3)

+ 6{(−1)r(−n + 1)r}2/r

(n − 1)(n − 2) − 4{(−1)r(−n + 1)r}1/r

n − 1 + 1
]
x4,

µ
Gn,r

6 (x) =
[

{(−1)r(−n + 1)r}6/r

(n − 1)(n − 2)(n − 3)(n − 4)(n − 5)(n − 6)

− 6{(−1)r(−n + 1)r}5/r

(n − 1)(n − 2)(n − 3)(n − 4)(n − 5) + 15{(−1)r(−n + 1)r}4/r

(n − 1)(n − 2)(n − 3)(n − 4)

− 20{(−1)r(−n + 1)r}3/r

(n − 1)(n − 2)(n − 3) + 15{(−1)r(−n + 1)r}2/r

(n − 1)(n − 2)

− 6{(−1)r(−n + 1)r}1/r

n − 1 + 1
]
x6.

Proof. The proof of this lemma can be obtained through straightforward computation
using (1.4) and Lemma 2.1. We omit the details of the proof. □

Lemma 2.3. For f ∈ C[0, ∞), we have ∥Gn,r(f)∥ ≤ ∥f∥.

Proof. Using (1.4) and Lemma 2.1, we can obtain the following expression:

|Gn,r(f, x)| ≤ 1
Γ(n + 1)

(
x{(−1)r(−n + 1)r}1/r√

(n − 1)(n − 2)

)n

×
∫ ∞

0
e

− x{(−1)r(−n+1)r}1/r
√

(n−1)(n−2)
u1/n

∣∣∣∣∣f
(√(n − 1)(n − 2)

u1/n

)∣∣∣∣∣du,

≤ ∥f∥
Γ(n + 1)

(
x{(−1)r(−n + 1)r}1/r√

(n − 1)(n − 2)

)n ∫ ∞

0
e

− x{(−1)r(−n+1)r}1/r
√

(n−1)(n−2)
u1/n

du

=∥f∥.
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Therefore, we have completed the proof. □

3. Convergence Properties of Gn,r

Let CB[0, ∞) denote the space of all real-valued uniformly continuous and bounded
functions on [0, ∞) equipped with the norm ∥f∥ = supx∈[0,∞) |f(x)|. For f ∈ CB[0, ∞)
and δ > 0, the n-th order modulus of continuity is defined as

ωn(f, δ) = sup
0≤h≤δ

sup
x∈[0,∞)

|∆n
hf(x)|, n ∈ N,

where ∆ denotes the forward difference operator. When n = 1, we obtain the usual
modulus of continuity, which is denoted by ω(f, δ).

Theorem 3.1. If f ∈ CB[0, ∞), then for every x ∈ [0, ∞), we have
|Gn,r(f, x) − f(x)| ≤ 2ω(f, er(r)),

where δ = er(r) =
√

µ
Gn,r

2 (x) is the error function for r = 1, 2, 3, . . .

Proof. Let x ∈ [0, ∞) and r ∈ N. In view of the fact that Gn,r(1; x) = 1, we have
|Gn,r(f ; x) − f(x)| = |Gn,r(f ; x) − Gn,r(f(x); x)| ≤ Gn,r (|f(t) − f(x)|; x) .

Now, using the property of modulus of continuity |f(t) − f(x)| ≤ ω(f ; δ)
(

(t−x)2

δ2 + 1
)

in the above inequality, we have

|Gn,r(f ; x) − f(x)| ≤ ω(f ; δ)
(

Gn,r((t − x)2; x)
δ2 + 1

)
.

By choosing δ =
√

µ
Gn,r

2 (x), we get the desired result. □

Thus for different preservation of the operators Gn,r, i.e. r = 1, 2, 3, we have

|Gn,1(f ; x) − f(x)| ≤ 2ω

(
f ; x√

(n − 2)

)
,

|Gn,2(f ; x) − f(x)| ≤ 2ω

(
f ; x

√√√√√2

√
(n − 1) −

√
(n − 2)√

(n − 2)

)
,

|Gn,3(f ; x) − f(x)| ≤ 2ω

(
f ; x

√√√√[ (n − 3)2

(n − 1)(n − 2)

]1/3

− 2
[

(n − 2)(n − 3)
(n − 1)2

]1/3

+ 1
)

.

Theorem 3.2. Let f ∈ CB[0, ∞). Then,

|Gn,r(f ; x) − f(x)| ≤ Mω2(f,
√

ζn,r) + ω

(
f,

∣∣∣∣∣{(−1)r(−n + 1)r}1/r

n − 1 x − x

∣∣∣∣∣
)

,

where M is a positive constant and

ζn,r =
[

(2n − 3){(−1)r(−n + 1)r}2/r

(n − 1)2(n − 2) − 4{(−1)r(−n + 1)r}1/r

n − 1 + 2
]
x2, n ̸= 1, 2.
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Proof. Let us begin with the auxiliary operators G∗
n,r : CB[0, ∞) → CB[0, ∞) defined

by

G∗
n,r(f, x) = Gn,r(f ; x) − f

(
{(−1)r(−n + 1)r}1/r

n − 1 x

)
+ f(x).(3.1)

Let h ∈ C2
B[0, ∞), C2

B[0, ∞) = {h ∈ CB[0, ∞) : h′, h′′ ∈ CB[0, ∞)} and x, t ∈ [0, ∞).
In view of Taylor series expansion, we have

h(t) = h(x) + (t − x)h′(x) +
∫ t

x
(t − θ)h′′(θ)dθ.

Applying the operator G∗
n,r on both sides of the above equation and using Lemma 2.2,

we have

|G∗
n,r(h, x) − h(x)| ≤

∣∣∣∣∣G∗
n,r

(∫ t

x
(t − θ)h′′(θ)dθ, x

)∣∣∣∣∣
≤
∣∣∣∣∣Gn,r

(∫ t

x
(t − θ)h′′(θ)dθ, x

)∣∣∣∣∣
+
∣∣∣∣∣
∫ {(−1)r(−n+1)r}1/r

n−1 x

x

(
{(−1)r(−n + 1)r}1/r

n − 1 x − θ

)
h′′(θ)dθ

∣∣∣∣∣
≤µ

Gn,r

2 (x)∥h′′∥

+
∣∣∣∣∣
∫ {(−1)r(−n+1)r}1/r

n−1 x

x

(
{(−1)r(−n + 1)r}1/r

n − 1 x − θ

)
dθ

∣∣∣∣∣∥h′′∥,

|G∗
n,r(h, x) − h(x)| ≤

[
µ

Gn,r

2 (x) +
(

{(−1)r(−n + 1)r}1/r

n − 1 x − x

)2]
∥h′′∥ := ζn,r∥h′′∥.

(3.2)

With the help of Lemma 2.3 and (3.1), we get

∥G∗
n,r(f, x)∥ ≤ ∥Gn,r(f, x)∥ + 2∥f∥ ≤ 3∥f∥, f ∈ CB[0, ∞).(3.3)

Using (3.1), (3.2) and (3.3), we have

|Gn,r(f, x) − f(x)| ≤|G∗
n,r(f − h, x) − (f − h)(x)| + |G∗

n,r(h, x) − h(x)|

+
∣∣∣∣∣f
(

{(−1)r(−n + 1)r}1/r

n − 1 x

)
− f(x)

∣∣∣∣∣
≤4∥f − g∥ + ζn,r∥h′′∥ +

∣∣∣∣∣f
(

{(−1)r(−n + 1)r}1/r

n − 1 x

)
− f(x)

∣∣∣∣∣
≤M{∥f − h∥ + ζn,r∥h′′∥}

+ ω

(
f,

∣∣∣∣∣{(−1)r(−n + 1)r}1/r

n − 1 x − x

∣∣∣∣∣
)

.
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Taking the infimum in the last step of the above inequality and using Peetre’s K-
functional, which is defined as

K2(f, β) = inf
h∈C2

B [0,∞)
{∥f − h∥ + β∥h′′∥ : h ∈ C2

B[0, ∞)},

we obtain

|Gn,r(f, x) − f(x)| ≤ K2(f, ζn,r) + ω

(
f,

∣∣∣∣∣{(−1)r(−n + 1)r}1/r

n − 1 x − x

∣∣∣∣∣
)

.

Then by using Lorentz-DeVore property [8] K2(f, β) ≤ Mω2(f,
√

β), β > 0, we can
conclude our desired proof. □

Remark 3.1. For r ∈ N and sufficiently large n, from Theorem 3.2 one can easily verify
that the operator Gn,r(f, x) → f(x) as ζn,r → 0.

We observe that at r = 1, Theorem 3.2 reduces to the result as follows.

Corollary 3.1. Let f ∈ CB[0, ∞) and x ∈ [0, ∞). Then,

|Gn,r(f, x) − f(x)| ≤ Mω

(
f,

x√
n − 2

)
,

where M is a positive constant.

4. Weighted Modulus of Continuity

Let us define the weighted space of real-valued functions f : [0, ∞) → R with the
property |f(x)| ≤ Mfϕ(x) by Bϕ[0, ∞) = {f : [0, ∞) → R : |f(x)| ≤ Mfϕ(x), x ∈
[0, ∞)}, where Mf is a positive constant depending on f but independent of x and a
weight function ϕ(x) = 1 + x2, which is continuous on R.

Let Cϕ[0, ∞) = C[0, ∞) ∩ Bϕ[0, ∞) and by CJ
ϕ [0, ∞), we denote the subspace of

all continuous functions f ∈ Cϕ[0, ∞) for which limx→∞
|f(x)|
1+x2 = Jf , exists and finite,

where Jf is a constant depending on f . Then, for each f ∈ Cϕ[0, ∞), the weighted
modulus of continuity is defined as (see [1])

Ω(f, δ) = sup
|h|<δ,x∈(0,∞)

|f(x + h) − f(x)|
1 + x2 + h2 + h2x2 .

The next result is a quantitative Voronovskaja type asymptotic formula.

Theorem 4.1. Let f ′′ ∈ CJ
ϕ [0, ∞) and x > 0. Then, we have∣∣∣∣∣Gn,r(f, x) − f(x) −

(
{(−1)r(−n + 1)r}1/r

n − 1 − 1
)

xf ′(x)

−
(

{(−1)r(−n + 1)r}2/r

(n − 1)(n − 2) − 2{(−1)r(−n + 1)r}1/r

n − 1 + 1
)

x2f ′′(x)
∣∣∣∣∣

≤16(1 + x2)Ω
(

f ′′,

(
µ

Gn,r

6 (x)
µ

Gn,r

2 (x)

)1/4)
µ

Gn,r

2 (x),
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where µ
Gn,r

2 (x) and µ
Gn,r

6 (x) are defined in Lemma 2.2.

Proof. Let f ′′ ∈ CJ
ϕ [0, ∞) and x ∈ (0, ∞). Then, by Taylor’s expansion, we have

f(t) − f(x) = (t − x)f ′(x) + (t − x)2

2! f ′′(x) + h(x, t)(t − x)2,

where h(x, t) := f ′′(ξ)−f ′′(x)
2 , is a continuous function and ξ ∈ (x, t). Now, applying

Gn,r on both sides of the above equation, we have

Gn,r(f(t) − f(x), x) =Gn,r

(
(t − x)f ′(x), x

)
+ Gn,r

(
(t − x)2

2! f ′′(x), x

)
+ Gn,r

(
h(x, t)(t − x)2, x

)
.

Using Lemma 2.2, we obtain∣∣∣∣∣Gn,r(f, x) − f(x) −
(

{(−1)r(−n + 1)r}1/r

n − 1 − 1
)

xf ′(x)

−
(

{(−1)r(−n + 1)r}2/r

(n − 1)(n − 2) − 2{(−1)r(−n + 1)r}1/r

n − 1 + 1
)

x2f ′′(x)
∣∣∣∣∣

≤Gn,r(|h(x, t)|(t − x)2, x).

In view of the inequality |ξ − x| ≤ |x − t| and by simple computation, we can write

|h(t, x)| ≤ 8(1 + x2)
(

1 + (t − x)4

δ4

)
Ω(f ′′, δ).

In view of Lemma 2.2, we obtain

Gn,r(|h(x, t)|(t − x)2, x) ≤ 8(1 + x2)Ω(f ′′, δ)
{

µ
Gn,r

2 (x) + µ
Gn,r

6 (x)
δ4

}

= 8(1 + x2)Ω(f ′′, δ)
{

1 + 1
δ4 · µ

Gn,r

6 (x)
µ

Gn,r

2 (x)

}
µ

Gn,r

2 (x).

Choosing δ =
(

µ
Gn,r
6 (x)

µ
Gn,r
2 (x)

)1/4
, we have∣∣∣∣∣Gn,r(f, x) − f(x) −

(
{(−1)r(−n + 1)r}1/r

n − 1 − 1
)

xf ′(x)

−
(

{(−1)r(−n + 1)r}2/r

(n − 1)(n − 2) − 2{(−1)r(−n + 1)r}1/r

n − 1 + 1
)

x2f ′′(x)
∣∣∣∣∣

≤16(1 + x2)Ω
(

f ′′,

(
µ

Gn,r

6 (x)
µ

Gn,r

2 (x)

)1/4)
µ

Gn,r

2 (x),

as desired. □
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Remark 4.1. For r ∈ N and fixed x ∈ [0, ∞), we observe that

µ
Gn,r

6 (x)
µ

Gn,r

2 (x)
→ 0, as n → ∞,

which guarantees the convergence of Theorem 4.1.

Let [0, α], α ≥ 0, be the closed interval. The standard modulus of continuity is
denoted by ωα(f, δ) and defined as

ωα(f, δ) = sup
|t−x|≤δ,t,x∈[0,α]

|f(t) − f(x)|.

It is also clear that, for any f ∈ CB[0, ∞), the modulus of continuity ωα(f, δ) → 0 as
δ → 0.

Theorem 4.2. Let f ∈ CB[0, α] and α > 0. Then, the following inequality satisfies
|G∗

n,r(f, x) − f(x)| ≤ 4Mf (1 + x2)δ2
n(x) + 2ωα+1 (f ; δn(x)) ,

where

δ2
n(x) =

[
{(−1)r(−n + 1)r}2/r

(n − 1)(n − 2) − 2{(−1)r(−n + 1)r}1/r

n − 1 + 1
]

x2

and Mf is a constant depending on f.

Proof. From [10], for all 0 ≤ x ≤ α and t > α + 1, we have

|f(t) − f(x)| ≤ 4Mf (1 + x2)(t − x)2 +
(

1 + |t − x|
δ

)
ωα+1 (f ; δn(x)) , δ > 0.

Applying the operator G∗
n,r and Cauchy-Schwartz inequality on both sides of the above

equation, we have
|G∗

n,r(f, x) − f(x)| ≤4Mf (1 + x2)G∗
n,r((t − x)2, x)

+
1 +

√
G∗

n,r((t − x)2, x)
δ

ωα+1 (f ; δn(x)) ,

=4Mf (1 + x2)δ2
n(x) +

(
1 + δn(x)

δ

)
ωα+1 (f ; δn(x)) .

By choosing δ = δn(x), we get the desired result. □

Remark 4.2. For r = 1 and x ∈ [0, α], from Theorem 4.2, we have

|G∗
n,1(f, x) − f(x)| ≤ 4Mf (1 + x2) x2

n − 2 + 2ωα+1

(
f ; x√

n − 2

)
, n > 2.

Also, for x ∈ [0, α] and r = 2, Theorem 4.2 reduced to Theorem 4 of [4] as

|G∗
n,2(f, x) − f(x)| ≤4Mf (1 + x2)x2

[
2 − 2

√
n − 2
n − 1

]
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+ 2ωα+1

(
f ;

√√√√[2 − 2
√

n − 2
n − 1

]
x2

)
, n > 1.

It is also observed that G∗
n,1(f, x) and G∗

n,2(f, x) converges to f(x), as n → ∞.

5. Point-wise Estimates

This section is dedicated to some point-wise estimates of the rate of convergence for
the modified Gamma operator G∗

n,r defined in (1.4). First, we define the relationship
between the local smoothness of f and local approximation.

Let η ∈ (0, 1] and S ⊂ [0, ∞). A function f ∈ CB[0, ∞) is in LM(η) on S, if it
satisfies the following condition

|f(t) − f(x)| ≤ M |t − x|η, t ∈ [0, ∞), x ∈ S,

where M is a constant depending on f and η.

Theorem 5.1. Let f ∈ CB[0, ∞) ∩ LM(η). Then, we have

|G∗
n,r(f, x) − f(x)| ≤ M

({
µ

Gn,r

2 (x)
} η

2 + 2dη(x, S)
)

,

where µ
Gn,r

2 (x) is defined in Lemma 2.2 and d(x, S) is a distance function from x to
S and defined as

d(x, S) = inf{|t − x| : t ∈ S}.

Proof. Let S̄ be the closure of S in [0, ∞). Then there exists at least one point s0 in
S̄ such that d(x, S) = |x − s0|. By the monotonicity property of G∗

n,r, we get
|G∗

n,r(f, x) − f(x)| ≤ G∗
n,r(|f(t) − f(s0)|, x) + G∗

n,r(|f(x) − f(s0)|, x)

≤ M
(
G∗

n,r (|t − s0|η, x) + |x − s0|η
)

≤ M
(
G∗

n,r (|t − x|η, x) + 2|x − s0|η
)

.

Thus, applying Hölder’s inequality with p = 2
η

and q = 2
2−η

, we have

|G∗
n,r(f, x) − f(x)| ≤ M

({
G∗

n,r((t − x)2, x)
} η

2 + 2|x − s0|η
)

.

Finally, using Lemma 2.2, we obtain the desired result. □

Next, we discuss the local direct estimation for the operator (1.4), with the help of
Lipschitz-type maximal function of order η defined by B. Lenze [16] as

ω̃η(f, x) = sup
t̸=x,t∈[0,∞)

|f(t) − f(x)|
|t − x|η

, x ∈ [0, ∞) and η ∈ (0, 1].(5.1)

Theorem 5.2. Let f ∈ CB[0, ∞) and 0 < η ≤ 1. Then, for all x ∈ [0, ∞), we have

|G∗
n,r(f, x) − f(x)| ≤ ω̃η(f, x)

{
µ

Gn,r

2 (x)
} η

2 ,

where µ
Gn,r

2 (x) is defined in Lemma 2.2.
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Proof. In view of (5.1), we have

|G∗
n,r(f, x) − f(x)| ≤ ω̃η(f, x)G∗

n,r

(
|t − x|η, x

)
.

Using Hölder’s inequality in the above equation, we obtain

|G∗
n,r(f, x) − f(x)| ≤ ω̃η(f, x)G∗

n,r

(
|t − x|2, x

) η
2 ≤ ω̃η(f, x)

{
µ

Gn,r

2 (x)
} η

2 .

Thus, the theorem is completed. □

Let us consider the Lipschitz-type space with two parameters defined in [18], for
any u, v > 0, such that

Lu,v
M (η) =

{
f ∈ C[0, ∞) : |f(t) − f(x)| ≤ M |t − x|η

(ux2 + vx + t) η
2

, x, t ∈ (0, ∞)
}

,

where M is a positive constant and 0 < η ≤ 1.

Theorem 5.3. For f ∈ Lu,v
M (η). Then, for all x > 0, we have

|G∗
n,r(f, x) − f(x)| ≤ M

(
µ

Gn,r

2 (x)
ux2 + vx

) η
2

.

Proof. The proof of this theorem is divided into two parts. In the first part, we prove
our theorem for η = 1. Then, for f ∈ Lu,v

M (1) and x ∈ (0, ∞), we have

|G∗
n,r(f, x) − f(x)| ≤ G∗

n,r(|f(t) − f(x)|, x) ≤ MG∗
n,r

(
|t − x|

(ux2 + vx + t) 1
2
, x

)

≤ M

(ux2 + vx) 1
2
G∗

n,r (|t − x|, x) .

Applying Cauchy-Schwarz inequality, we obtain

|G∗
n,r(f, x) − f(x)| ≤ M

(ux2 + vx) 1
2

(
G∗

n,r(t − x)2, x
) 1

2 ≤ M

(
µ

Gn,r

2 (x)
ux2 + vx

) 1
2

.

Thus the result holds for η = 1.
Now, we prove the result for 0 < η < 1. Then, for x ∈ (0, ∞) and f ∈ Lu,v

M (η), we
obtain

|G∗
n,r(f, x) − f(x)| ≤ G∗

n,r(|f(t) − f(x)|a, x) ≤ MG∗
n,r

(
|t − x|η

(ux2 + vx + t) η
2

, x

)

≤ M

(ux2 + vx) η
2

G∗
n,r (|t − x|η, x) .

Applying Hölder’s inequality by taking p = 2
η

and q = 2
2−η

, we obtain

|G∗
n,r(f, x) − f(x)| ≤ M

(ux2 + vx) η
2

G∗
n,r

(
(t − x)2, x

)η/2
.

Finally, using Lemma 2.2, we get the desired result. □
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Remark 5.1. At particular r = 2, Theorem 5.2 and Theorem 5.3 are reduced to the
Theorem 6 and Theorem 7 respectively of [4].

6. Numerical Experiments

In this section, we provide numerical examples to verify the approximation proper-
ties of the modified Gamma operator (1.4) with different preservation of test functions.
The implementation is carried out in Mathematica.

Example 1. Consider the test function f(x) = x8 + 8x + 2 on the interval [1, 2].
Figure 1 indicates that the operator Gn,r(f, x) approaches the function f(x) faster
as the value of r increases. Moreover, Figure 2 suggests that the error function
En,r(f, x) = |Gn,r(f, x) − f(x)| tends to the x-axis, which means that the error
decreases as the value of r increases.

f(x)=x8+8x+2

G20,4(f, x)

G20,3(f, x)

G20,2(f, x)

G20,1(f, x)

1.2 1.4 1.6 1.8 2.0

100

200

300

400

Figure 1. Convergence of Gn,r(f ; x) to f(x) = x8 + 8x + 2 for n = 20
and r = 1, 2, 3, 4 on the interval [1, 2].

Example 2. Consider the test function f(x) = xe−x on the interval [0, 4]. Figure
3 indicates that the operator Gn,r(f, x) approaches the function f(x) faster as the
value of r increases. Moreover, Figure 4 suggests that the error function En,r(f, x) =
|Gn,r(f, x) − f(x)| tends to the x-axis, which means that the error decreases as the
value of r increases.

Therefore, based on the aforementioned observations and figures, we can conclude
that the approximation gets better as the value of r increases. Further, we can also
notice that the operator (1.4) produces better convergence over the operator (1.2) for
r ≥ 2.
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|G20,4(f, x)-f(x)|

|G20,3(f, x)-f(x)|

|G20,2(f, x)-f(x)|

|G20,1(f, x)-f(x)|

1.2 1.4 1.6 1.8 2.0

10

20

30

40

50

Figure 2. Error estimation of the operator Gn,r(f ; x) to the function
f(x) = x8 + 8x + 2 for n = 20 and r = 1, 2, 3, 4 on the interval [1, 2].

|G20,4(f, x)-f(x)|

|G20,3(f, x)-f(x)|

|G20,2(f, x)-f(x)|

|G20,1(f, x)-f(x)|

1 2 3 4

0.0005

0.0010

Figure 3. Convergence of Gn,r(f ; x) to f(x) = xe−x for n = 20 and
r = 1, 2, 3, 4 on the interval [0, 4].

7. Conclusion

The aim of the present study was to construct a modified sequence of Gamma-
type operators, which preserves the test function er(t) = tr, r ∈ N. These newly
defined Gamma-type operators play a crucial role in encompassing existing Gamma-
type operators and facilitating the definition of new ones that can yield improved
approximation results under suitable conditions. To establish that these newly defined
operators constitute an approximation process, we also present some of their funda-
mental properties. Finally, we offer numerical experiments to validate our theoretical
findings.
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f(x)=x e-x

G20,4(f, x)

G20,3(f, x)

G20,2(f, x)

G20,1(f, x)

1 2 3 4

0.1

0.2

0.3

0.4

0.5

0.6

Figure 4. Error estimation of the operator Gn,r(f ; x) to the function
f(x) = xe−x for n = 20 and r = 1, 2, 3, 4 on the interval [0, 4].
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