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HESITANT FUZZY SET THEORY APPLIED TO HILBERT
ALGEBRAS

AIYARED IAMPAN1,∗, S. YAMUNADEVI2, P. MARAGATHA MEENAKSHI3,
AND NEELAMEGARAJAN RAJESH,4

Abstract. The concept of hesitant fuzzy sets (HFSs) was first introduced by
Torra (V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst. 25 (2010), 529–539). In this
paper, the concept of HFSs to subalgebra, ideals, and deductive systems of Hilbert
algebras is introduced. The relationships between hesitant fuzzy subalgebras (HF
subalgebras), hesitant fuzzy ideals (HF ideals), and hesitant fuzzy deductive systems
(HF deductive systems) and their level subsets are provided.

1. Introduction

The concept of fuzzy sets was proposed by Zadeh [21]. The theory of fuzzy sets has
several applications in real-life situations, and many scholars have researched fuzzy
set theory. After introducing the concept of fuzzy sets, several research studies were
conducted on the generalizations of fuzzy sets. The integration of fuzzy sets and
uncertainty theories, such as soft sets and rough sets, has been discussed in [1, 2, 5].

In 2009-2010, Torra and Narukawa [19,20] introduced the notion of hesitant fuzzy
sets, which is, a function from a reference set to a power set of the unit interval.
The notion of hesitant fuzzy sets is the other generalization of the notion of fuzzy
sets. The hesitant fuzzy set theories developed by Torra and others have found many
applications in the domain of mathematics and elsewhere. After the introduction of the
notion of hesitant fuzzy sets by Torra and Narukawa [19,20], several researches were
conducted on the generalizations of the notion of hesitant fuzzy sets and application
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to many logical algebras, such as: in 2012, Zhu et al. [23] introduced the notion of
dual hesitant fuzzy sets, which is a new extension of fuzzy sets. In 2014, Jun, Ahn
and Muhiuddin [15] introduced the notions of hesitant fuzzy soft subalgebras and
(closed) hesitant fuzzy soft ideals in BCK/BCI-algebras. Jun and Song [16] introduced
the notions of (Boolean, prime, ultra, good) hesitant fuzzy filters and hesitant fuzzy
MV-filters of MTL-algebras. In 2015, Jun and Song [17] introduced the notions of
hesitant fuzzy prefilters (resp., filters) and positive implicative hesitant fuzzy prefilters
(resp., filters) of EQ-algebras. In 2016, Jun and Ahn [14] introduced the notions of
hesitant fuzzy subalgebras and hesitant fuzzy ideals of BCK/BCI-algebras. Iampan
[11] introduced a new algebraic structure called a UP-algebra, and Mosrijai et al. [18]
introduced the notion of hesitant fuzzy sets on UP-algebras. The notions of hesitant
fuzzy subalgebras, hesitant fuzzy filters and hesitant fuzzy ideals play an important
role in studying the many logical algebras. Diego proved [7] that Hilbert algebras
form a variety which is locally finite. Hilbert algebras were treated by Busneag [3, 4]
and Jun [13], and some of their filters forming deductive systems were recognized.
Dudek [8] considered the fuzzification of subalgebras/ideals and deductive systems in
Hilbert algebras. In 2022, Iampan et al. [12] introduced the concepts of anti-hesitant
fuzzy subalgebras, ideals, and deductive systems of Hilbert algebras.

This paper introduces the concept of HFSs to subalgebra, ideals, and deductive
systems of Hilbert algebras, which provides a generalization of the concept of HF
fuzzy subalgebras/ideals/deductive systems. The relationship between HF subalge-
bras/ideals/deductive systems and their level subsets is provided. In the future, our
research team hopes to apply these concepts to solving decision-making problems.

2. Preliminaries

Before we begin, let us go through the concept of Hilbert algebras as described by
Diego [7] in 1966.

Definition 2.1 ([7]). A Hilbert algebra is a triplet X = (X, ·, 1), where X is a
nonempty set, · is a binary operation, and 1 is a fixed element of X such that the
following axioms hold:

(1) (∀x, y ∈ X)(x · (y · x) = 1),
(2) (∀x, y, z ∈ X)((x · (y · z)) · ((x · y) · (x · z)) = 1),
(3) (∀x, y ∈ X)(x · y = 1, y · x = 1 ⇒ x = y).

The following result was proved in [8].

Lemma 2.1. Let X = (X, ·, 1) be a Hilbert algebra. Then,
(1) (∀x ∈ X)(x · x = 1),
(2) (∀x ∈ X)(1 · x = x),
(3) (∀x ∈ X)(x · 1 = 1),
(4) (∀x, y, z ∈ X)(x · (y · z) = y · (x · z)),
(5) (∀x, y, z ∈ X)((x · z) · ((z · y) · (x · y)) = 1).
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In a Hilbert algebra X = (X, ·, 1), the binary relation ≤ is defined by

(∀x, y ∈ X)(x ≤ y ⇔ x · y = 1),

which is a partial order on X with 1 as the largest element.

Definition 2.2 ([22]). A nonempty subset D of a Hilbert algebra X = (X, ·, 1) is
called a subalgebra of X if x · y ∈ D for all x, y ∈ D.

Definition 2.3 ([6]). A nonempty subset D of a Hilbert algebra X = (X, ·, 1) is
called an ideal of X if the following conditions hold:

(1) 1 ∈ D,
(2) (∀x, y ∈ X)(y ∈ D ⇒ x · y ∈ D),
(3) (∀x, y1, y2 ∈ X)(y1, y2 ∈ D ⇒ (y1 · (y2 · x)) · x ∈ D).

Definition 2.4 ([10]). A nonempty subset D of a Hilbert algebra X = (X, ·, 1) is
called a deductive system of X if

(1) 1 ∈ D,
(2) (∀x, y ∈ X)(x, x · y ∈ D ⇒ y ∈ D).

A fuzzy set [21] in a nonempty set X is defined to be a function µ : X → [0, 1],
where [0, 1] is the unit closed interval of real numbers.

Definition 2.5 ([8]). A fuzzy set µ in a Hilbert algebra X = (X, ·, 1) is said to be a
fuzzy subalgebra of X if the following condition holds:

(∀x, y ∈ X)(µ(x · y) ≥ min{µ(x), µ(y)}).

Definition 2.6 ([9]). A fuzzy set µ in a Hilbert algebra X = (X, ·, 1) is said to be a
fuzzy ideal of X if the following conditions hold:

(1) (∀x ∈ X)(µ(1) ≥ µ(x)),
(2) (∀x, y ∈ X)(µ(x · y) ≥ µ(y)),
(3) (∀x, y1, y2 ∈ X)(µ((y1 · (y2 · x)) · x) ≥ min{µ(y1), µ(y2)}).

Definition 2.7 ([8]). A fuzzy set µ in a Hilbert algebra X = (X, ·, 1) is said to be a
fuzzy deductive system of X if the following conditions hold:

(1) (∀x ∈ X)(µ(1) ≥ µ(x)),
(2) (∀x, y ∈ X)(µ(y) ≥ min{µ(x · y), µ(x)}).

Definition 2.8 ([19]). Let X be a reference set. A hesitant fuzzy set (HFS) on X is
a mapping h : X → P([0, 1]), where P([0, 1]) means the power set of [0, 1].

We will review the definition of the characteristic HFS, which is an important and
convenient tool for investigating various properties of HF subalgebras/ideals/deductive
systems of Hilbert algebras.
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Let X be a reference set. If Y ⊆ X, the characteristic HFS hY on X is a function
of X into P([0, 1]) defined as follows:

(∀x ∈ X)
(

hY (x) =
{

[0, 1], if x ∈ Y,
∅, otherwise

)
.(2.1)

By the definition of characteristic HFSs, hY is a function of a nonempty set X into
{∅, [0, 1]}. Hence, hY is an HFS on X.

Definition 2.9 ([19]). Let h be an HFS on a nonempty set X. The HFS h is defined
by h(x) = [0, 1] − h(x) for all x ∈ X which is said to be the complement of h on X.

3. Hesitant Fuzzy Subalgebras/Ideals/Deductive System of Hilbert
Algebras

In this section, we introduce the concepts of HF subalgebras/ideals/deductive
systems of Hilbert algebras and investigate some related properties.

Definition 3.1. An HFS h on a Hilbert algebra X = (X, ·, 1) is called a hesitant
fuzzy subalgebra (HF subalgebra) of X if it satisfies the following property:

(∀x, y ∈ X)(h(x · y) ⊇ h(x) ∩ h(y)).(3.1)

Example 3.1. Let X = {a, b, c, d, 1} with the following Cayley table:
· a b c d 1
a 1 1 1 1 1
b a 1 c 1 1
c a b 1 1 1
d a b c 1 1
1 a b c d 1

.

Then, X is a Hilbert algebra. We define an HFS h on X as follows:
h(1) = {0.5, 0.2}, h(a) = h(b) = h(c) = h(d) = {0.2}.

Then, h is an HF subalgebra of X.

Proposition 3.1. If h is an HF subalgebra of a Hilbert algebra X = (X, ·, 1), then
(∀x ∈ X)(h(1) ⊇ h(x)).(3.2)

Proof. For any x ∈ X, we have h(1) = h(x · x) ⊇ h(x) ∩ h(x) = h(x). □

Lemma 3.1. The constant 1 of a Hilbert algebra X = (X, ·, 1) is in a nonempty
subset S of X if and only if hS(1) ⊇ hS(x) for all x ∈ X.

Proof. If 1 ∈ S, then hS(1) = [0, 1]. Thus, hS(1) = [0, 1] ⊇ hS(x) for all x ∈ X.
Conversely, assume that hS(1) ⊇ hS(x) for all x ∈ X. Since S is a nonempty subset

of X, we have a ∈ S for some a ∈ X. Thus, hS(1) ⊇ hS(a) = [0, 1], so hS(1) = [0, 1].
Hence, 1 ∈ S. □
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Theorem 3.1. A nonempty subset S of a Hilbert algebra X = (X, ·, 1) is a subalgebra
of X if and only if the characteristic HFS hS is an HF subalgebra of X.

Proof. Assume that S is a subalgebra of X. Let x, y ∈ X.
Case 1: x, y ∈ S. Then, hS(x) = [0, 1] and hS(y) = [0, 1]. Thus, hS(x) ∩ hS(y) =

[0, 1]. Since S is a subalgebra of X, we have x · y ∈ S and so hS(x · y) = [0, 1].
Therefore, hS(x · y) = [0, 1] ⊇ [0, 1] = hS(x) ∩ hS(y).

Case 2: x ∈ S and y /∈ S. Then, hS(x) = [0, 1] and hS(y) = ∅. Thus, hS(x)∩hS(y) =
∅. Therefore, hS(x · y) ⊇ ∅ = hS(x) ∩ hS(y).

Case 3: x /∈ S and y ∈ S. Then, hS(x) = ∅ and hS(y) = [0, 1]. Thus, hS(x)∩hS(y) =
∅. Therefore, hS(x · y) ⊇ ∅ = hS(x) ∩ hS(y).

Case 4: x /∈ S and y /∈ S. Then, hS(x) = ∅ and hS(y) = ∅. Thus, hS(x)∩hS(y) = ∅.
Therefore, hS(x · y) ⊇ ∅ = hS(x) ∩ hS(y).

Hence, hS is an HF subalgebra of X.
Conversely, assume that hS is an HF subalgebra of X. Since hS(1) ⊇ hS(x) for all

x ∈ X, it follows from Lemma 3.1 that 1 ∈ S. Let x, y ∈ S. Then, hS(x) = [0, 1] and
hS(y) = [0, 1]. Thus, hS(x · y) ⊇ hS(x) ∩ hS(y) = [0, 1], so hS(x · y) = [0, 1]. Hence,
x · y ∈ S and so S is a subalgebra of X. □

Definition 3.2. An HFS h on a Hilbert algebra X = (X, ·, 1) is called a hesitant
fuzzy ideal (HF ideal) of X if it satisfies the following properties:

(∀x ∈ X)(h(1) ⊇ h(x)),(3.3)
(∀x, y ∈ X)(h(x · y) ⊇ h(y)),(3.4)
(∀x, y1, y2 ∈ X)(h((y1 · (y2 · x)) · x) ⊇ h(y1) ∩ h(y2)).(3.5)

Example 3.2. Let X = {1, x, y, z, 0} with the following Cayley table:

· 1 x y z 0
1 1 x y z 0
x 1 1 y z 0
y 1 x 1 z z
z 1 1 y 1 y
0 1 1 1 1 1

.

Then, X is a Hilbert algebra. We define an HFS h on X as follows:

h(1) = {0.4, 0.5, 0.7}, h(x) = {0.4, 0.5}, h(y) = {0.5}, h(z) = h(0) = ∅.

Then, h is an HF ideal of X.

Proposition 3.2. If h is an HF ideal of a Hilbert algebra X = (X, ·, 1), then

(∀x, y ∈ X)(h((y · x) · x) ⊇ h(y)).(3.6)

Proof. Putting y1 = y and y2 = 1 in (3.5), we have h((y · x) · x) ⊇ h(y) ∩ h(1) = h(y)
for all x, y ∈ X. □
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Lemma 3.2. If h is an HF ideal of a Hilbert algebra X = (X, ·, 1), then

(∀x, y ∈ X)(x ≤ y ⇒ h(x) ⊆ h(y)).(3.7)

Proof. Let x, y ∈ X be such that x ≤ y. Then, x · y = 1 and so
h(y) =h(1 · y) = h(((x · y) · (x · y)) · y)

⊇h(x · y) ∩ h(x)
=h(1) ∩ h(x) = h(x). □

Theorem 3.2. Every HF ideal of a Hilbert algebra X = (X, ·, 1) is an HF subalgebra
of X.

Proof. Let h be an HF ideal of X and let x, y ∈ X. Since y ≤ x · y and by Lemma
3.2, we have h(y) ⊇ h(x · y). It follows from (3.4) that

h(x · y) ⊇ h(y) ⊇ h(x · y) ∩ h(x) ⊇ h(x) ∩ h(y).
Hence, h is an HF subalgebra of X. □

Definition 3.3. An HFS h on a Hilbert algebra X = (X, ·, 1) is called a hesitant fuzzy
deductive system (HF deductive system) of X if it satisfies the following properties:

(∀x ∈ X)(h(1) ⊇ h(x)),(3.8)
(∀x, y ∈ X)(h(y) ⊇ h(x · y) ∩ h(x)).(3.9)

Proposition 3.3. Every HF ideal of a Hilbert algebra X = (X, ·, 1) is an HF deductive
system of X.

Proof. Let h be an HF ideal of X and let x, y ∈ X. If y1 = x · y and y2 = x, then by
Lemma 2.1 and (3.5), we have

h(y) = h(1 · y) = h(((x · y) · (x · y)) · y) ⊇ h(x · y) ∩ h(x).
Hence, h is an HF deductive system of X. □

Lemma 3.3. If h is an HF deductive system of a Hilbert algebra X = (X, ·, 1), then

(∀x, y, z ∈ X)(z ≤ x · y ⇒ h(y) ⊇ h(x) ∩ h(z)).(3.10)

Proof. Let x, y, z ∈ X be such that z ≤ x · y. Then, z · (x · y) = 1 and so
h(y) ⊇h(x · y) ∩ h(x) ⊇ h(z · (x · y)) ∩ h(z) ∩ h(x)

=h(1) ∩ h(z) ∩ h(x) = h(x) ∩ h(z). □

Lemma 3.4. If h is an HF deductive system of a Hilbert algebra X = (X, ·, 1), then

(∀x, y ∈ X)(x ≤ y ⇒ h(y) ⊇ h(x)).(3.11)

Proof. Let x, y ∈ X be such that x ≤ y. Then, x ·y = 1 and so h(y) ⊇ h(x ·y)∩h(x) =
h(1) ∩ h(x) = h(x). □



HESITANT FUZZY SET THEORY APPLIED TO HILBERT ALGEBRAS 1125

Theorem 3.3. A nonempty subset D of a Hilbert algebra X = (X, ·, 1) is a deductive
system of X if and only if the characteristic HFS hD is an HF deductive system of X.

Proof. Assume that D is a deductive system of X. Since 1 ∈ D, it follows from
Lemma 3.1 that hD(1) ⊇ hD(x) for all x ∈ X. Next, let x, y ∈ X.

Case 1: x, y ∈ D. Then, hD(x) = [0, 1] and hD(y) = [0, 1]. Thus, hD(y) = [0, 1] ⊇
hD(x · y) = hD(x · y) ∩ hD(x).

Case 2: x /∈ D and y ∈ D. Then, hD(x) = ∅ and hD(y) = [0, 1]. Thus, hD(y) =
[0, 1] ⊇ ∅ = hD(x · y) ∩ hD(x).

Case 3: x ∈ D and y /∈ D. Then, hD(x) = [0, 1] and hD(y) = ∅. Since D is a
deductive system of X, we have x · y /∈ D or x /∈ D. But x ∈ D, so x · y /∈ D. Then,
hD(x · y) = ∅. Thus, hD(y) = ∅ ⊇ ∅ = hD(x · y) ∩ hD(x).

Case 4: x /∈ D and y /∈ D. Then, hD(x) = ∅ and hD(y) = ∅. Thus, hD(y) = ∅ ⊇
∅ = hD(x · y) ∩ hD(x).

Hence, hD is an HF deductive system of X.
Conversely, assume that hD is an HF deductive system of X. Since hD(1) ⊇ hD(x)

for all x ∈ X, it follows from Lemma 3.1 that 1 ∈ D. Next, let x, y ∈ X be such
that x · y ∈ D and x ∈ D. Then, hD(x · y) = [0, 1] and hD(x) = [0, 1]. Thus,
hD(y) ⊇ hD(x · y) ∩ hD(x) = [0, 1], so hD(y) = [0, 1]. Therefore, y ∈ D and so D is a
deductive system of X. □

Theorem 3.4. A nonempty subset I of a Hilbert algebra X = (X, ·, 1) is an ideal of
X if and only if the characteristic HFS hI is an HF ideal of X.

Proof. Assume that I is an ideal of X. Since 1 ∈ I, it follows from Lemma 3.1 that
hI(1) ⊇ hI(x) for all x ∈ X. Next, let x, y ∈ X.

Case 1: x, y ∈ I. Then hI(x) = [0, 1] and hI(y) = [0, 1]. Thus, hI(x · y) = [0, 1] ⊇
hI(y).

Case 2: x /∈ I and y ∈ I. Then, hI(x) = ∅ and hI(y) = [0, 1]. Thus, hI(x · y) =
[0, 1] ⊇ hI(y).

Case 3: x ∈ I and y /∈ I. Then, hI(x) = [0, 1] and hI(y) = ∅. Since I is an ideal
of X, we have x · y /∈ I or x /∈ I. But x ∈ I, so x · y /∈ I. Then, hI(x · y) = ∅. Thus,
hI(x · y) = ∅ ⊇ ∅ = hI(y).

Case 4: x /∈ I and y /∈ I. Then, hI(x) = ∅ and hI(y) = ∅. Thus, hI(x · y) = ∅ ⊇
∅ = hI(y).

Now, let x, y1, y2 ∈ X.
Case 1: x, y1, y2 ∈ I. Then, hI(x) = [0, 1], hI(y1) = [0, 1], and hI(y2) = [0, 1]. Since

I is an ideal of X, we have (y1 · (y2 · x)) · x ∈ I. Thus, hI((y1 · (y2 · x)) · x) = [0, 1] ⊇
hI(y1) ∩ hI(y2).

Case 2: x /∈ I and y1, y2 ∈ I. Then, hI(x) = ∅ and hI(y1) = hI(y2) = [0, 1]. Since
I is an ideal of X, we have (y1 · (y2 · x)) · x ∈ I. Thus, hI((y1 · (y2 · x)) = [0, 1] ⊇
hI(y1) ∩ hI(y2).
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Case 3: x ∈ I, and y1 /∈ I or y2 /∈ I. Then, hI(x) = [0, 1] and hI(y1) = ∅ or hI(y2) =
∅. Since I is an ideal of X, we have y1 · (y2 · x) · x /∈ I. Then, hI((y1 · (y2 · x)) · x) = ∅.
Thus, hI((y1 · (y2 · x)) · x) = ∅ ⊇ ∅ = hI(y1) ∩ hI(y2).

Case 4: x /∈ I, and y1 /∈ I or y2 /∈ I. Then, hI(x) = ∅, and hI(y1) = ∅ or hI(y2) = ∅.
Since I is an ideal of X, we have (y1 · (y2 · x)) · x /∈ I. Then, hI((y1 · (y2 · x)) · x) = ∅.
Thus, hI((y1 · (y2 · x)) · x) = ∅ ⊇ ∅ = hI(y1) ∩ hI(y2).

Hence, hI is an HF ideal of X.
Conversely, assume that hI is an HF ideal of X. Since hI(1) ⊇ hI(x) for all x ∈ X,

it follows from Lemma 3.1 that 1 ∈ I. Let x ∈ X and y ∈ I. Then, hI(y) = [0, 1].
Thus, hI(x · y) ⊇ hI(y) = [0, 1], so hI(x · y) = [0, 1]. Hence, x · y ∈ I. Next, let
x, y1, y2 ∈ X be such that y1 ∈ I and y2 ∈ I. Then, hI(y1) = hI(y2) = [0, 1]. Thus,
hI((y1 · (y2 · x)) · x) ⊇ hI(y1) ∩ hI(y2) = [0, 1], so hI((y1 · (y2 · x)) · x) = [0, 1]. Hence,
(y1 · (y2 · x)) · x ∈ I and so I is an ideal of X. □

4. Level Subsets of an HFS on Hilbert Algebras

In this section, we provide the relationship between HF subalgebras, ideals, and
deductive systems and their level subsets.

Definition 4.1. Let h be an HFS on a Hilbert algebra X = (X, ·, 1). For any π ∈
P([0, 1]), the sets U(h, π) = {x ∈ X | h(x) ⊇ π} and U+(h, π) = {x ∈ X | h(x) ⊃ π}
are called an upper π-level subset and an upper π-strong level subset of h, respectively.
The sets L(h, π) = {x ∈ X | h(x) ⊆ π} and L−(h, π) = {x ∈ X | h(x) ⊂ π} are
called a lower π-level subset and a lower π-strong level subset of h, respectively. The
set E(h, π) = {x ∈ X | h(x) = π} is called an equal π-level subset of h. Then,
U(h, π) = U+(h, π) ∪ E(h, π) and L(h, π) = L−(h, π) ∪ E(h, π).

Theorem 4.1. An HFS h on a Hilbert algebra X = (X, ·, 1) is an HF subalgebra of
X if and only if for all π ∈ P([0, 1]), a nonempty subset U(h, π) of X is a subalgebra
of X.

Proof. Assume that h is an HF subalgebra of X. Let π ∈ P([0, 1]) be such that
U(h, π) ̸= ∅ and let x ∈ U(h, π). Then, h(x) ⊇ π. Since h is an HF subalgebra of X,
we have h(1) ⊇ h(x) ⊇ π. Thus, 1 ∈ U(h, π). Let x, y ∈ U(h, π). Then, h(x) ⊇ π and
h(y) ⊇ π. Since h is an HF subalgebra of X, we have h(x · y) ⊇ h(x) ∩ h(y) ⊇ π and
thus, x · y ∈ U(h, π). Hence, U(h, π) is a subalgebra of X.

Conversely, assume that for all π ∈ P([0, 1]), a nonempty subset U(h, π) of X is a
subalgebra of X. Let x, y ∈ X. Choose π = h(x) ∩ h(y) ∈ P([0, 1]). Then h(x) ⊇ π
and h(y) ⊇ π. Thus, x, y ∈ U(h, π) ̸= ∅. By assumption, U(h, π) is a subalgebra of X
and thus x · y ∈ U(h, π). So, h(x · y) ⊇ π = h(x) ∩ h(y). Hence, h is an HF subalgebra
of X. □

Theorem 4.2. An HFS h on a Hilbert algebra X = (X, ·, 1) is an HF ideal of X if
and only if for all π ∈ P([0, 1]), a nonempty subset U(h, π) of X is an ideal of X.
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Proof. Assume that h is an HF ideal of X. Let π ∈ P([0, 1]) be such that U(h, π) ̸= ∅
and let x ∈ U(h, π). Then, h(x) ⊇ π. Since h is an HF ideal of X, we have
h(1) ⊇ h(x) ⊇ π. Thus, 1 ∈ U(h, π). Next, let x, y ∈ X be such that y ∈ U(h, π).
Then, h(y) ⊇ π. Since h is an HF ideal of X, we have h(x · y) ⊇ h(y) ⊇ π. So,
x · y ∈ U(h, π). Let x, y1, y2 ∈ X be such that y1, y2 ∈ U(h, π). Then, h(y1) ⊇ π and
h(y2) ⊇ π. Since h is an HF ideal of X, we have h((y1 ·(y2 ·x)) ·x)) ⊇ h(y1)∩h(y2) ⊇ π.
So, (y1 · (y2 · x)) · x ∈ U(h, π). Hence, U(h, π) is an ideal of X.

Conversely, assume that for all π ∈ P([0, 1]), a nonempty subset U(h, π) of X is
an ideal of X. Let x ∈ X. Then h(x) ∈ P([0, 1]). Choose π = h(x) ∈ P([0, 1]).
Then, h(x) ⊇ π. Thus, x ∈ U(h, π) ̸= ∅. By assumption, we have U(h, π) is an
ideal of X and thus, 1 ∈ U(h, π). So, h(1) ⊇ π = h(x). Next, let x, y ∈ X. Then,
h(x), h(y) ∈ P([0, 1]). Choose π = h(y) ∈ P([0, 1]). Then, h(y) ⊇ π, so x ∈ X and y ∈
U(h, π) ̸= ∅. By assumption, we have U(h, π) is an ideal of X and then x ·y ∈ U(h, π).
Thus, h(x · y) ⊇ π = h(y). Let x, y1, y2 ∈ X. Then, h(x), h(y1), h(y2) ∈ P([0, 1]).
Choose π = h(y1) ∩ h(y2) ∈ P([0, 1]). Then, h(y1) ⊇ π and h(y2) ⊇ π, so x ∈ X
and y1, y2 ∈ U(h, π) ̸= ∅. By assumption, we have U(h, π) is an ideal of X and then
(y1 · (y2 · x)) · x ∈ U(h, π). Thus, h((y1 · (y2 · x)) · x) ⊇ π = h(y1) ∩ h(y2). Hence, h is
an HF ideal of X. □

Theorem 4.3. An HFS h on a Hilbert algebra X = (X, ·, 1) is an HF deductive
system of X if and only if for all π ∈ P([0, 1]), a nonempty subset U(h, π) of X is a
deductive system of X.
Proof. Assume that h is an HF deductive system of X. Let π ∈ P([0, 1]) be such that
U(h, π) ̸= ∅ and let x ∈ U(h, π). Then, h(x) ⊇ π. Since h is an HF deductive system
of X, we have h(1) ⊇ h(x) ⊇ π. Thus, 1 ∈ U(h, π). Next, let x, y ∈ X be such that
x, x · y ∈ U(h, π). Then, h(x) ⊇ π and h(x · y) ⊇ π. Since h is an HF deductive
system of X, we have h(y) ⊇ h(x · y) ∩ h(x) ⊇ π. So, y ∈ U(h, π). Hence, U(h, π) is
a deductive system of X.

Conversely, assume that for all π ∈ P([0, 1]), a nonempty subset U(h, π) of X is
a deductive system of X. Let x ∈ X. Then h(x) ∈ P([0, 1]). Choose π = h(x) ∈
P([0, 1]). Then h(x) ⊇ π. Thus, x ∈ U(h, π) ̸= ∅. By assumption, U(h, π) is a
deductive system of X and thus 1 ∈ U(h, π). So, h(1) ⊇ π = h(x). Let x, y ∈ X.
Then, h(x), h(x · y) ∈ P([0, 1]). Choose π = h(x) ∩ h(x · y) ∈ P([0, 1]). Then, h(x) ⊇ π
and h(x · y) ⊇ π, so x, x · y ∈ U(h, π) ̸= ∅. By assumption, U(h, π) is a deductive
system of X and then y ∈ U(h, π). Thus, h(y) ⊇ π = h(x) ∩ h(x · y). Hence, h is an
HF deductive system of X. □

Theorem 4.4. Let h be an HFS on a Hilbert algebra X = (X, ·, 1). Then the following
statements hold.

(1) If h is an HF subalgebra of X, then for all π ∈ P([0, 1]), U+(h, π) is a subalgebra
of X if U+(h, π) is nonempty and E(h, π) is empty.

(2) If Im(h) is a chain and for all π ∈ P([0, 1]), a nonempty subset U+(h, π) of X
is a subalgebra of X, then h is an HF subalgebra of X.
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Proof. (1) It is straightforward by Theorem 4.1.
(2) Assume that Im(h) is a chain and for all π ∈ P([0, 1]), a nonempty subset

U+(h, π) of X is a subalgebra of X. Assume that there exist x, y ∈ X such that
h(x · y) ⊉ h(x) ∩ h(y). Since Im(h) is a chain, we have h(x · y) ⊂ h(x) ∩ h(y). Then,
h(x · y) ∈ P([0, 1]). Choose π = h(x · y) ∈ P([0, 1]). Then, h(x) ⊃ π and h(y) ⊃ π.
Thus, x, y ∈ U+(h, π) ̸= ∅. By assumption, we have U+(h, π) is a subalgebra of
X and thus x · y ∈ U+(h, π). So, h(x · y) ⊃ π = h(x · y), a contradiction. Hence,
h(x · y) ⊇ h(x) ∩ h(y) for all x, y ∈ X. Therefore, h is an HF subalgebra of X. □

Theorem 4.5. Let h be an HFS on a Hilbert algebra X = (X, ·, 1). Then the following
statements hold.

(1) If h is an HF ideal of X, then for all π ∈ P([0, 1]), U+(h, π) is an ideal of X
if U+(h, π) is nonempty and E(h, π) is empty.

(2) If Im(h) is a chain and for all π ∈ P([0, 1]), a nonempty subset U+(h, π) of X
is an ideal of X, then h is an HF ideal of X.

Proof. (1) It is straightforward by Theorem 4.2.
(2) Assume that Im(h) is a chain and for all π ∈ P([0, 1]), a nonempty subset

U+(h, π) of X is an ideal of X. Assume that there exists x ∈ X such that h(1) ⊉ h(x).
Since Im(h) is a chain, we have h(1) ⊂ h(x). Choose π = h(1) ∈ P([0, 1]). Then
h(x) ⊃ h(1) = π. Thus, x ∈ U+(h, π) ̸= ∅. By assumption, we have U+(h, π) is
an ideal of X and thus 1 ∈ U+(h, π). So, h(1) ⊃ π = h(1), a contradiction. Hence,
h(1) ⊇ h(x) for all x ∈ X. Assume that there exist x, y ∈ X such that h(x · y) ⊉ h(y).
Since Im(h) is a chain, we have h(x · y) ⊂ h(y). Choose π = h(x · y) ∈ P([0, 1]). Then,
h(y) ⊃ π. Thus y ∈ U+(h, π) ̸= ∅. By assumption, we have U+(h, π) is an ideal of
X and thus x · y ∈ U+(h, π). So, h(x · y) ⊃ π = h(x · y), a contradiction. Hence,
h(x · y) ⊇ h(y) for all x, y ∈ X. Assume that there exist x, y1, y2 ∈ X such that
h((y1 · (y2 ·x)) ·x) ⊉ h(y1)∩h(y2). Since Im(h) is a chain, we have h((y1 · (y2 ·x)) ·x) ⊂
h(y1)∩h(y2). Choose π = h((y1 ·(y2 ·x))·x) ∈ P([0, 1]). Then, h(y1) ⊃ π and h(y2) ⊃ π.
Thus, y1, y2 ∈ U+(h, π) ̸= ∅. By assumption, we have U+(h, π) is an ideal of X and
thus (y1 · (y2 · x)) · x ∈ U+(h, π). So, h((y1 · (y2 · x)) · x) ⊃ π = h((y1 · (y2 · x)) · x), a
contradiction. Hence, h((y1 ·(y2 ·x)) ·x) ⊇ h(y1)∩h(y2) for all x, y1, y2 ∈ X. Therefore,
h is an HF ideal of X. □

Theorem 4.6. Let h be an HFS on a Hilbert algebra X = (X, ·, 1). Then the following
statements hold.

(1) If h is an HF deductive system of X, then for all π ∈ P([0, 1]), U+(h, π) is a
deductive system of X if U+(h, π) is nonempty and E(h, π) is empty.

(2) If Im(h) is a chain and for all π ∈ P([0, 1]), a nonempty subset U+(h, π) of X
is a deductive system of X, then h is an HF deductive system of X.

Proof. (1) It is straightforward by Theorem 4.3.
(2) Assume that Im(h) is a chain and for all π ∈ P([0, 1]), a nonempty subset

U+(h, π) of X is a deductive system of X. Assume that there exists x ∈ X such that
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h(1) ⊉ h(x). Since Im(h) is a chain, we have h(1) ⊂ h(x). Choose π = h(1) ∈ P([0, 1]).
Then, h(x) ⊃ h(1) = π. Thus, x ∈ U+(h, π) ̸= ∅. By assumption, we have U+(h, π) is
a deductive system of X and thus, 1 ∈ U+(h, π). So, h(1) ⊃ π = h(1), a contradiction.
Hence, h(1) ⊇ h(x) for all x ∈ X. Assume that there exist x, y ∈ X such that
h(y) ⊉ h(x · y) ∩ h(x). Since Im(h) is a chain, we have h(y) ⊂ h(x · y) ∩ h(x). Choose
π = h(y) ∈ P([0, 1]). Then, h(x · y) ⊃ π and h(x) ⊃ π. Thus, x · y, x ∈ U+(h, π) ̸= ∅.
By assumption, we have U+(h, π) is a deductive system of X and thus y ∈ U+(h, π).
So, h(y) ⊃ π = h(y), a contradiction. Hence, h(y) ⊇ h(x · y) ∩ h(x) for all x, y ∈ X.
Therefore, h is an HF deductive system of X. □

Theorem 4.7. Let h be an HFS on a Hilbert algebra X = (X, ·, 1). Then, h is an
HF subalgebra of X if and only if for all π ∈ P([0, 1]), a nonempty subset L(h, π) of
X is a subalgebra of X.

Proof. Assume that h is an HF subalgebra of X. Let π ∈ P([0, 1]) be such that
L(h, π) ̸= ∅ and let x, y ∈ L(h, π). Then h(x) ⊆ π and h(y) ⊆ π. Since h is
an HF subalgebra of X, we have h(x · y) ⊇ h(x) ∩ h(y) and so [0, 1] − h(x · y) ⊇
([0, 1] − h(x)) ∩ ([0, 1] − h(y)) = [0, 1] − (h(x) ∪ h(y)). Thus, h(x · y) ⊆ h(x) ∪ h(y) ⊆ π.
So, x · y ∈ L(h, π). Hence, L(h, π) is a subalgebra of X.

Conversely, assume that for all π ∈ P([0, 1]), a nonempty subset L(h, π) of X is a
subalgebra of X. Let x, y ∈ X. Choose π = h(x) ∪ h(y) ∈ P([0, 1]). Then h(x) ⊆ π
and h(y) ⊆ π. Thus, x, y ∈ L(h, π) ̸= ∅. By assumption, we have L(h, π) is a
subalgebra of X and thus x · y ∈ L(h, π). So, h(x · y) ⊆ π = h(x) ∪ h(y). Thus,
h(x · y) = [0, 1] − h(x · y) ⊇ [0, 1] − (h(x) ∪ h(y)) = ([0, 1] − h(x)) ∩ ([0, 1] − h(y)) =
h(x) ∩ h(y). Hence, h is an HF subalgebra of X. □

Theorem 4.8. Let h be an HFS on a Hilbert algebra X = (X, ·, 1). Then h is an HF
ideal of X if and only if for all π ∈ P([0, 1]), a nonempty subset L(h, π) of X is an
ideal of X.

Proof. Assume that h is an HF ideal of X. Let π ∈ P([0, 1]) be such that L(h, π) ̸= ∅
and let a ∈ L(h, π). Then, h(a) ⊆ π. Since h is an HF ideal of X, we have h(1) ⊇ h(a).
Thus, [0, 1] − h(1) ⊇ [0, 1] − h(a). So, h(1) ⊆ h(a) ⊆ π. Hence, 1 ∈ L(h, π). Next, let
x, y ∈ X be such that y ∈ L(h, π). Then, h(y) ⊆ π. Since h is an HF ideal of X, we
have h(x·y) ⊇ h(y) and so [0, 1]−h(x·y) ⊇ [0, 1]−h(y). Thus, h(x·y) ⊆ h(y) ⊆ π. So,
x · y ∈ L(h, π). Also, let x, y1, y2 ∈ X be such that y1, y2 ∈ L(h, π). Then, h(y1) ⊆ π
and h(y2) ⊆ π. Since h is an HF ideal of X, we have h((y1 · (y2 ·x) ·x)) ⊇ h(y1)∩h(y2)
and so [0, 1]−h(((y1·(y2·x))·x)) ⊇ ([0, 1]−h(y1))∩([0, 1]−h(y2)) = [0, 1]−(h(y1)∪h(y2)).
Thus, h((y1 · (y2 · x)) · x) ⊆ h(x) ∪ h(y) ⊆ π. So, (y1 · (y2 · x)) · x ∈ L(h, π). Hence,
L(h, π) is an ideal of X.

Conversely, assume that for all π ∈ P([0, 1]), a nonempty subset L(h, π) of X
is an ideal of X. Let x ∈ X. Choose π = h(x) ∈ P([0, 1]). Then, h(x) ⊆ π,
so x ∈ L(h, π) ̸= ∅. By assumption, we have L(h, π) is an ideal of X. Thus,
1 ∈ L(h, π). So, h(1) ⊆ π = h(x). Hence, h(1) = [0, 1] − h(1) ⊇ [0, 1] − h(x) =
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h(x). Next, let x, y ∈ X. Choose π = h(y) ∈ P([0, 1]). Then, h(y) ⊆ π. Thus,
y ∈ L(h, π) ̸= ∅. By assumption, L(h, π) is an ideal of X and thus, x · y ∈ L(h, π).
So, h(x · y) ⊆ π = h(y). Thus, h(x · y) = [0, 1] − h(x · y) ⊇ [0, 1] − h(y) = h(y).
Also, let x, y1, y2 ∈ X. Choose π = h(y1) ∪ h(y2) ∈ P([0, 1]). Then h(y1) ⊆ π and
h(y2) ⊆ π. Thus, y1, y2 ∈ L(h, π) ̸= ∅. By assumption, L(h, π) is an ideal of X
and thus, (y1 · (y2 · x)) · x ∈ L(h, π). So, h((y1 · (y2 · x)) · x) ⊆ π = h(y1) ∪ h(y2).
Thus, h((y1 · (y2 · x)) · x) = [0, 1] − h((y1 · (y2 · x)) · x) ⊇ [0, 1] − (h(y1) ∪ h(y2)) =
([0, 1] − h(y1)) ∩ ([0, 1] − h(y2)) = h(y1) ∩ h(y2). Hence, h is an HF ideal of X. □

Theorem 4.9. Let h be an HFS on a Hilbert algebra X = (X, ·, 1). Then h is an HF
deductive system of X if and only if for all π ∈ P([0, 1]), a nonempty subset L(h, π)
of X is a deductive system of X.

Proof. Assume that h is an HF deductive system of X. Let π ∈ P([0, 1]) be such that
L(h, π) ̸= ∅ and let a ∈ L(h, π). Then h(a) ⊆ π. Since h is an HF deductive system of
X, we have h(1) ⊇ h(a). Thus [0, 1]−h(1) ⊇ [0, 1]−h(a). So, h(1) ⊆ h(a) ⊆ π. Hence,
1 ∈ L(h, π). Next, let x, y ∈ X be such that x · y, x ∈ L(h, π). Then, h(x · y) ⊆ π and
h(x) ⊆ π. Since h is an HF deductive system of X, we have h(y) ⊇ h(x · y) ∩ h(y) and
so [0, 1] − h(y) ⊇ ([0, 1] − h(x · y)) ∩ ([0, 1] − h(x)) = [0, 1] − (h(x · y) ∪ h(x)). Thus,
h(y) ⊆ h(x · y) ∪ h(x) ⊆ π. So, y ∈ L(h, π). Hence, L(h, π) is a deductive system
of X.

Conversely, assume that for all π ∈ P([0, 1]), a nonempty subset L(h, π) of X is a
deductive system of X. Let x ∈ X. Choose π = h(x) ∈ P([0, 1]). Then, h(x) ⊆ π,
so x ∈ L(h, π) ̸= ∅. By assumption, L(h, π) is a deductive system of X. Thus,
1 ∈ L(h, π). So, h(1) ⊆ π = h(x). Hence, h(1) = [0, 1] − h(1) ⊇ [0, 1] − h(x) = h(x).
Next, let x, y ∈ X. Choose π = h(x · y) ∪ h(x) ∈ P([0, 1]). Then, h(x · y) ⊆ π and
h(x) ⊆ π. Thus, x · y, x ∈ L(h, π) ̸= ∅. By assumption, L(h, π) is a deductive system
of X and thus y ∈ L(h, π). So, h(y) ⊆ π = h(x ·y)∪h(x). Thus, h(y) = [0, 1]−h(y) ⊇
[0, 1] − (h(x · y) ∪ h(x)) = ([0, 1] − h(x · y)) ∩ ([0, 1] − h(x)) = h(x · y) ∩ h(x). Hence,
h is an HF deductive system of X. □

Theorem 4.10. Let h be an HFS on a Hilbert algebra X = (X, ·, 1). Then, the
following statements hold.

(1) If h is an HF subalgebra of X, then for all π ∈ P([0, 1]), L−(h, π) is a subalgebra
of X if L−(h, π) is nonempty and E(h, π) is empty.

(2) If Im(h) is a chain and for all π ∈ P([0, 1]), a nonempty subset L−(h, π) of X
is a subalgebra of X, then h is an HF subalgebra of X.

Proof. (1) It is straightforward by Theorem 4.7.
(2) Assume that Im(h) is a chain and for all π ∈ P([0, 1]), a nonempty subset

L−(h, π) of X is a subalgebra of X. Assume that there exist x, y ∈ X such that
h(x · y) ⊉ h(x) ∩ h(y). Since Im(h) is a chain, we have h(x · y) ⊂ h(x) ∩ h(y) and
so [0, 1] − h(x · y) ⊂ ([0, 1] − h(x)) ∩ ([0, 1] − h(y)) = [0, 1] − (h(x) ∪ h(y)). Then,
h(x · y) ⊃ h(x) ∪ h(y). Choose π = h(x · y) ∈ P([0, 1]). Then h(x) ⊂ π and h(y) ⊂ π.
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Thus, x, y ∈ L−(h, π) ̸= ∅. By assumption, we have L−(h, π) is a subalgebra of X
and thus x · y ∈ L−(h, π). So, h(x · y) ⊂ π = h(x · y), a contradiction. Hence,
h(x · y) ⊇ h(x) ∩ h(y) for all x, y ∈ X. Therefore, h is an HF subalgebra of X. □

Theorem 4.11. Let h be an HFS on a Hilbert algebra X = (X, ·, 1). Then the
following statements hold.

(1) If h is an HF ideal of X, then for all π ∈ P([0, 1]), L−(h, π) is an ideal of X
if L−(h, π) is nonempty and E(h, π) is empty.

(2) If Im(h) is a chain and for all π ∈ P([0, 1]), a nonempty subset L−(h, π) of X
is an ideal of X, then h is an HF ideal of X.

Proof. (1) It is straightforward by Theorem 4.8.
(2) Assume that Im(h) is a chain and for all π ∈ P([0, 1]), a nonempty subset

L−(h, π) of X is an ideal of X. Assume that there exists x ∈ X such that h(1) ⊉ h(x).
Since Im(h) is a chain, we have h(1) ⊂ h(x). Then, [0, 1] − h(1) ⊂ [0, 1] − h(x).
Choose π = h(1) ∈ P([0, 1]). Then, h(x) ⊂ h(1) = π. Thus, x ∈ L−(h, π) ̸= ∅.
By assumption, L−(h, π) is an ideal of X and thus 1 ∈ L−(h, π). So, h(1) ⊃ π =
h(1), a contradiction. Hence, h(1) ⊇ h(x) for all x ∈ X. Assume that there exist
x, y ∈ X such that h(x · y) ⊉ h(y). Since Im(h) is a chain, h(x · y) ⊂ h(y) and so
[0, 1] − h(x · y) ⊂ [0, 1] − h(y). Then, h(x · y) ⊃ h(y). Choose π = h(x · y) ∈ P([0, 1]).
Then, h(y) ⊂ π. Thus, y ∈ L−(h, π) ̸= ∅. By assumption, L−(h, π) is an ideal of
X and thus x · y ∈ L−(h, π). So, h(x · y) ⊃ π = h(x · y), a contradiction. Hence,
h(x · y) ⊇ h(y) for all x, y ∈ X. Assume that there exist x, y1, y2 ∈ X such that
h((y1·(y2·x))·x) ⊉ h(y1)∩h(y2). Since Im(h) is a chain, h((y1·(y2·x))·x) ⊂ h(y1)∩h(y2)
and so [0, 1]−h((y1 ·(y2 ·x))·x) ⊂ ([0, 1]−h(y1))∩([0, 1]−h(y2)) = [0, 1]−(h(y1)∪h(y2).
Then. h((y1 · (y2 · x)) · x) ⊃ h(y1) ∪ h(y2). Choose π = h((y1 · (y2 · x)) · x) ∈ P([0, 1]).
Then, h(y1) ⊂ π and h(y2) ⊂ π. Thus, y1, y2 ∈ L−(h, π) ̸= ∅. By assumption, L−(h, π)
is an ideal of X and thus (y1 · (y2 · x)) · x ∈ L−(h, π). So, h((y1 · (y2 · x)) · x) ⊃ π =
h((y1 · (y2 · x)) · x), a contradiction. Hence, h((y1 · (y2 · x)) · x) ⊇ h(y1) ∩ h(y2) for all
x, y1, y2 ∈ X. Therefore, h is an HF ideal of X. □

Theorem 4.12. Let h be an HFS on a Hilbert algebra X = (X, ·, 1). Then the
following statements hold.

(1) If h is an HF deductive system of X, then for all π ∈ P([0, 1]), L−(h, π) is a
deductive system of X if L−(h, π) is nonempty and E(h, π) is empty.

(2) If Im(h) is a chain and for all π ∈ P([0, 1]), a nonempty subset L−(h, π) of X
is a deductive system of X, then h is an HF deductive system of X.

Proof. (1) It is straightforward by Theorem 4.9.
(2) Assume that Im(h) is a chain and for all π ∈ P([0, 1]), a nonempty subset

L−(h, π) of X is a deductive system of X. Assume that there exists x ∈ X such that
h(1) ⊉ h(x). Since Im(h) is a chain, we have h(1) ⊂ h(x). Then [0, 1]−h(1) ⊂ [0, 1]−
h(x). Choose π = h(1) ∈ P([0, 1]). Then h(x) ⊂ h(1) = π. Thus, x ∈ L−(h, π) ̸= ∅.
By assumption, we have L−(h, π) is a deductive system of X and thus, 1 ∈ L−(h, π).
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So, h(1) ⊃ π = h(1), a contradiction. Hence, h(1) ⊇ h(x) for all x ∈ X. Assume
that there exist x, y ∈ X such that h(y) ⊉ h(x · y) ∩ h(x). Since Im(h) is a chain, we
have h(y) ⊂ h(x · y) ∩ h(x) and so [0, 1] − h(y) ⊂ ([0, 1] − h(x · y)) ∩ ([0, 1] − h(x)) =
[0, 1] − (h(x · y) ∪ h(x)). Then, h(y) ⊃ h(x · y) ∪ h(x). Choose π = h(y) ∈ P([0, 1]).
Then, h(x · y) ⊂ π and h(x) ⊂ π. Thus, x · y, x ∈ L−(h, π) ̸= ∅. By assumption,
L−(h, π) is a deductive system of X and thus, y ∈ L−(h, π). So, h(y) ⊃ π = h(y), a
contradiction. Hence, h(y) ⊇ h(x · y) ∩ h(x) for all x, y ∈ X. Therefore, h is an HF
deductive system of X. □
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