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MULTIPLE SOLUTIONS FOR A NONLOCAL KIRCHHOFF
PROBLEM IN FRACTIONAL ORLICZ-SOBOLEV SPACES

ELHOUSSINE AZROUL1, ABDELMOUJIB BENKIRANE1, MOHAMMED SRATI1,
AND MINGQI XIANG2

Abstract. In this paper, using the three critical points theorem we obtain the
existence of three weak solutions for a Kirchhoff type problem driven by a nonlocal
operator of the elliptic type in a fractional Orlicz-Sobolev space, with homogeneous
Dirichlet boundary conditions.

1. Introduction

In the last decade, great attention has been devoted to the study of nonlinear
problems involving non-local operators. These types of operator come up in a quite
natural way in several applications such as phase transition phenomena, crystal dis-
location, soft thin films, minimal surfaces and finance; see for instance [2, 18] and
references therein. We also refer the interested reader to [33], where a more extensive
bibliography and an introduction to the subject are given.

In this paper, we are concerned with a class of nonlocal problems in fractional
Orlicz-Sobolev spaces of the form

(Pa)


M

(∫
Ω

∫
Ω

A

(
|u(x) − u(y)|

|x − y|s

)
dxdy

|x − y|N

)
(−∆)s

a(·)u

= λf(x, u) + βg(x, u), in Ω,
u = 0, in RN \ Ω,
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where Ω is an open bounded subset in RN , N ≥ 1, with Lipschitz boundary ∂Ω,
0 < s < 1, A is an N -function, M : [0, ∞) → (0, ∞) is a nondecreasing continuous
function, f, g : Ω × R → R are two Carathéodory functions, λ and β are two real
parameters and (−∆)s

a(·) is a nonlocal integro-differential operator of elliptic type
defined as follows

(−∆)s
a(·)u(x) = 2 lim

ε↘0

∫
RN \Bε(x)

a

(
|u(x) − u(y)|

|x − y|s

)
u(x) − u(y)

|x − y|s
· dy

|x − y|N+s
,

for all x ∈ RN , where a : R → R which will be specified later.
This problem (Pa) is related to the stationary version of the Kirchhoff equation

(1.1) ρ
∂2u

∂t2 −

P0

h
+ E

2L

∫ L

0

∣∣∣∣∣∣∂u

∂x

∣∣∣∣∣∣
2

dx

 ∂2u

∂x2 = h(u, x),

presented by Kirchhoff [29] in 1883 which is an extension of the classical d’Alembert’s
wave equation by considering the changes in the length of the string during vibrations.
In (1.1), L is the length of string, h is the area of the cross section, E is the Young
modulus of the material, ρ is the mass density, and P0 is the initial tension. Kirchhoff’s
model takes into account the length changes of the string produced by transverse
vibrations. Some interesting results can be found, for example in [23]. On the other
hand, Kirchhoff-type boundary value problems model several physical and biological
systems where u describes a process which depend on the average of itself, as for
example, the population density. We refer the reader to [35] for some related works.
In [7], the authors obtained the existence of three weak solutions for a Kirchhoff
type elliptic system involving nonlocal fractional p-Laplacian by using the three
point critique theorem. In [10], by means of mountain pass theorem of Ambrosetti
and Rabinowitz, direct variational approach and Ekeland’s variational principle, the
authors showed the existence of nontrivial weak solutions to a class of p(x)-Kirchhoff
type problem. For the problems involving fractional Kirchhoff type, we refer the
reader to the works [11,13]. They use different methods to establish the existence of
solutions.

Problems of this type have been intensively studied in the last few years, due to
numerous and relevant applications in many fields of mathematics, such as approxi-
mation theory, mathematical physics (electrorheological fluids), calculus of variations,
nonlinear potential theory, the theory of quasiconformalmappings, differential geom-
etry, geometric function theory, probability theory and image processing (see, for
instance [22]).

The problem (Pa) involves the fractional a(·)-Laplacian operator, the most appro-
priate functional framework for dealing with this problem is the fractional Orlicz
Sobolev space [8, 16], namely a fractional Sobolev space constructed from an Orlicz
space at the place of Lp(Ω). As we know, the Orlicz spaces represent a generalization
of classical Lebesgue spaces in which the role usually played by the convex function tp

is assumed by a more general convex function A(t); they have been extensively studied
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in the monograph of Krasnoselśkii and Rutickii [28] as well as in Luxemburg’s doctoral
thesis [31]. If the role played by Lp(Ω) in the definition of fractional Sobolev spaces
W s,p(Ω) is assigned to an Orlicz LA(Ω) space, the resulting space W sLA(Ω) is exactly
a fractional Orlicz-Sobolev space . Many properties of fractional Sobolev spaces have
been extended to fractional Orlicz-Sobolev spaces (see [4, 5, 8, 9, 12,16,17]). For this,
many researchers have studied the existence of solutions for the eigenvalue problems
involving nonhomogeneous operators in the divergence form through Orlicz-Sobolev
spaces by using variational methods and critical point theory, monotone operator
methods, fixed point theory and degree theory (see for instance [14,15,20,32]).

The problem (Pa) is motivated by the class of problems on the form

(P )
{

Au = λf(x, u) + βg(x, u), in Ω,
u = 0, in ∂Ω,

where Ω is an open subset of RN , f, g : RN × R → R are two Carathéodory
functions and λ, β are two real parameters. For Au = −∆p = −div (|∇u|p−2∇u),
the problem (P ) has been studied in many papers, we refer to [35, 36], in which
the authors have used different methods to get the existence of solutions for (P ).
In the case when Au = −∆p(·) = −div

(
|∇u|p(·)−2∇u

)
, where p(·) is a continu-

ous function, problem (P ) has also been studied by many authors, see for exam-
ples [19, 24, 25]. On the other hand, Chung in [26], studied the problem (P ) with
Au = −M

(∫
Ω

ϕ(|∇u|)dx
)

div(a(|∇u|∇u)). That is, the following problem in Orlicz-
Soblev spaces:

(Pϕ)

 −M
(∫

Ω
ϕ(|∇u|)dx

)
div(a(|∇u|)∇u) = λf(x, u) + βg(x, u), in Ω,

u = 0, in ∂Ω,

where ϕ is an N -function, defend as

ϕ(t) =
∫ t

0
a(τ)τdτ,

and M : [0, ∞) → (0, ∞) is a nondecreasing continuous Kirchhoff function. Under
some suitable conditions, the author obtained the existence of three weak solutions
of (PΦ), by using the three critical point theorem. For M ≡ 1 in the problem (PΦ),
Cammaroto and Vilasti in [20], by the same theorem, they showed the existence of
three weak solutions.

In the fractional case, i.e., when we take Au = M
(
[u]ps,p

)
(−∆)s

pu. That is, we
consider the following problem

(Ps)

 M

(∫
Ω

∫
Ω

|u(x) − u(y)|p
|x − y|sp+N

dxdy

)
(−∆)s

pu = λf(x, u) + βg(x, u), in Ω,

u = 0, in RN \ Ω,
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where Ω is an open bounded subset in RN and (−∆)s
p is the fractional p-Laplace

operator. In [6], by using the three critical point theorem, the authors obtained the
existence of three weak solutions of (Ps).

To our knowledge, this is the first contribution to studying of non-local problems
in this class of functional spaces. More precisely, using the ideas first presented in
articles [6, 20, 26]. Our result in this article generalizes special cases, in which we will
consider the problem (Pa) with M(t) = 1 or M(t) ̸= 1 and A(t) = 1

p
tp (the problem

(Ps)).
This paper is organized as follows. In the second section, we recall some properties

of fractional Sobolev spaces. In the third section, using the three critical points
theorem which introduced by Ricceri [34], we obtain the existence of a three weak
solutions of problem (Pa). Finally, the fourth section is devoted to giving an example
which illustrates the mains abstracts results.

2. Some Preliminaries Results

To deal with this situation we introduce the fractional Orlicz-Sobolev space to
investigate problem (Pa). Let us recall the definitions and some elementary properties
of this spaces. We refer the reader to [1,3,8,16,33] for further reference and for some
of the proofs of the results in this section.

Let Ω be an open subset of RN , N ≥ 1. We assume that a : R → R in (Pa) is such
that : φ : R → R defined by:

φ(t) =
{

a(|t|)t, for t ̸= 0,
0, for t = 0,

is increasing homeomorphism from R onto itself. Let

A(t) =
∫ t

0
φ(τ)dτ.

Then, A, is N -function, see [1], i.e., A : R+ → R+ is continuous, convex, increasing
function, with A(t)

t
→ 0 as t → 0 and A(t)

t
→ ∞ as t → ∞.

For the function A introduced above we define the Orlicz space:

LA(Ω) =
{

u : Ω → R mesurable
∫

Ω
A(λ|u(x)|)dx < ∞ for some λ > 0

}
.

The space LΦ(Ω) is a Banach space endowed with the Luxemburg norm

∥u∥A = inf
{

λ > 0 :
∫

Ω
A

(
|u(x)|

λ

)
dx ≤ 1

}
.

The conjugate N -function of A is defined by A(t) =
∫ t

0 φ(τ)dτ , where φ : R → R is
given by φ(t) = sup {s : φ(s) ≤ t} . Furthermore, it is possible to prove a Hölder type
inequality, that is∣∣∣∣∫

Ω
uvdx

∣∣∣∣ ≤ 2∥u∥A∥v∥A, for all u ∈ LA(Ω) and v ∈ LA(Ω).
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Throughout this paper, we assume that

(2.1) 1 < p− := inf
t≥0

tφ(t)
A(t) ≤ p+ := sup

t≥0

tφ(t)
A(t) < +∞.

The above relation implies that A ∈ ∆2, i.e., A satisfies the global ∆2-condition (see
[32]):

A(2t) ≤ KA(t), for all t ≥ 0,

where K is a positive constant.
Furthermore, we assume that A satisfies the following condition

(2.2) the function [0, ∞) ∋ t 7→ A(
√

t) is convex.
The above relation assures that LA(Ω) is an uniformly convex space (see [32]).

Lemma 2.1 ([16]). Assume that A ∈ ∆2. Then we have
A(φ(t)) ≤ cA(t), for all t ≥ 0,

where c > 0.

Now, we defined the fractional Orlicz-Sobolev space W sLA(Ω) as follows

W sLA(Ω)=
{

u ∈ LA(Ω) :
∫

Ω

∫
Ω

A

(
λ|u(x) − u(y)|

|x − y|s

)
dxdy

|x − y|N
< ∞ for some λ > 0

}
.

This space is equipped with the norm
∥u∥s,A = ∥u∥A + [u]s,A,

where [·]s,A is the Gagliardo seminorm, defined by

[u]s,A = inf

λ > 0 :
∫

Ω

∫
Ω

A

(
|u(x) − u(y)|

λ|x − y|s

)
dxdy

|x − y|N
≤ 1

.

We work in the closed linear subspace
W s

0 LA(Ω) =
{
u ∈ W sLA(RN) : u = 0 a.e. RN \ Ω

}
,

which can be equivalently renormed by setting ∥ · ∥ := [·]s,A. By [16], W sLA(Ω) and
is Banach space, also separable (resp. reflexive) space if and only if A ∈ ∆2 (resp.
A ∈ ∆2 and A ∈ ∆2). Furthermore, if A ∈ ∆2 and A(

√
t) is convex, then the space

W sLA(Ω) is uniformly convex.
To simplify the notation, we set

Φ(u) =
∫

Ω

∫
Ω

A

(
|u(x) − u(y)|

|x − y|s

)
dxdy

|x − y|N
, Dsu = u(x) − u(y)

|x − y|s
, dµ = dxdy

|x − y|s
,

and the dual space of (W sLA(Ω), ∥ · ∥) is denoted by ((W sLA(Ω))∗, ∥ · ∥∗) . Note that
dµ is a regular Borel measure on the set Ω × Ω.

Theorem 2.1 ([8]). Let Ω be a bounded open subset of RN . Then
C2

0(Ω) ⊂ W sLA(Ω).
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Remark 2.1. A trivial consequence of Theorem 2.1, C∞
0 (Ω) ⊂ W sLA(Ω) and W sLA(Ω)

is non-empty.

Proposition 2.1 ([8]). Let Ω be an open subset of RN and let A be an N-function.
Assume condition (2.1) is satisfied, then the following relations hold true

[u]p
−

s,A ≤ Φ(u) ≤ [u]p
+

s,A, for all u ∈ W sLA(Ω), with [u]s,A > 1,

[u]p
+

s,A ≤ Φ(u) ≤ [u]p
−

s,A, for all u ∈ W sLA(Ω), with [u]s,A < 1.

Theorem 2.2 ([8]). Let Ω be a bounded open subset of RN , with C0,1-regularity and
bounded boundary, let 0 < s′ < s < 1. Let A be an N -function, assume condition (2.1)
is satisfied and we define

p∗
s′ =

{
Np−

N−s′p− , if N > s′p−,

∞, if N ≤ s′p−.

• If s′p− < N , then W sLA(Ω) ↪→ Lq(Ω), for all q ∈ [1, p∗
s′ ] and the embedding

W sLA(Ω) ↪→ Lq(Ω), is compact for all q ∈ [1, p∗
s′).

• If s′p− = N , then W sLA(Ω) ↪→ Lq(Ω), for all q ∈ [1, ∞] and the embedding
W sLA(Ω) ↪→ Lq(Ω), is compact for all q ∈ [1, ∞).

• If sp− > N , then the embedding W sLA(Ω) ↪→ L∞(Ω), is compact.

Definition 2.1. Let X be a real Banach space. We denote by WA the class of all
functionals A : X → R possessing the following propositionerty: if {un} is a sequence
in X weakly converging to u ∈ X and lim infn→∞ A(un) ≤ A(u), then {un} has a
subsequence strongly converging to u.

Definition 2.2. Let 0 < s′ < s < 1, if N > s′p−, we denote by A the class of all
Carathéodory functions f : Ω × R → R such that

sup
(x,t)∈Ω×R

|f(x, t)|
1 + |t|q−1 < ∞,

where q ∈ [1, p∗
s′).

While when N < s′p−, we denote by A the class of all Carathéodory functions
f : Ω × R → R such that for each C > 0, the function x 7→ sup|t|≤C |f(x, t)| belongs
to L1(Ω).

Theorem 2.3 ([34]). Let X be a separable and reflexive real Banach space with
norm ∥ · ∥, let Ψ : X → R be a coercive, sequentially weakly lower semicontinuous
C1 functional, belonging to WA, bounded on each bounded subset of X and whose
derivative admits a continuous inverse on X∗, and let J : X → R be a C1 functional
with compact derivative. Assume that Ψ has a strict local minimum x0, with Ψ(x0) =
J(x0) = 0. Finally, assume that

max
{

lim sup
∥x∥→+∞

J(x)
Ψ(x) , lim sup

x→x0

J(x)
Ψ(x)

}
≤ 0
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and that
sup
x∈X

min {Ψ(x), J(x)} > 0.

Let
θ∗ := inf

{
Ψ(x)
J(x) : x ∈ X, min {Ψ(x), J(x)} > 0

}
.

Then, for each compact interval Λ ⊂ (θ∗, +∞), there exists a number δ > 0 with the
following propositionerty: for every λ ∈ Λ and every C1 functional Γ : X → R with
compact derivative, there exists β∗ > 0 such that for each β ∈ [0, β∗], the equation

Ψ′(x) = λJ ′(x) + βΓ′(x),
has at least three solutions whose norms are less than δ.

3. Mains Results

In this section, we prove the existence of three weak solutions in fractional Orlicz-
Sobolev spaces applying Theorem 2.3. For this, we suppose that the Kirchhoff function
M : [0, ∞) → (0, ∞) is a continuous and nondecreasing function satisfying the
following condition:
(M0) there exists m0 > 0 such that M(t) ≥ m0, for all t ≥ 0.

For f ∈ A, we assume that

sup
u∈W s

0 LA(Ω)

∫
Ω

F (x, u)dx >0,(F1)

lim sup
t→0

supx∈Ω F (x, t)
|t|p+ ≤0,(F2)

lim sup
|t|→∞

supx∈Ω F (x, t)
|t|p− ≤0,(F3)

where F (x, t) =
∫ t

0 f(x, τ)dτ .
Under such hypothesis, we set

θ∗ = inf


M̂(Φ(u))∫

Ω
F (x, u)dx

: u ∈ W s
0 LA(Ω),

∫
Ω

F (x, u)dx > 0

 .

Definition 3.1. We say that u ∈ W s
0 LA(Ω) is a weak solution of problem (Pa) if

M(Φ(u))
∫
RN ×RN

a(|Dsu|)DsuDsvdµ = λ
∫

Ω
f(x, u)vdx + β

∫
Ω

g(x, u)vdx,

for all v ∈ W s
0 LA(Ω).

Theorem 3.1. Let A be an N -function. Suppose that M satisfy (M1) and for f ∈ A,
we suppose that (F1), (F2) and (F3) hold true. If p+ < p∗

s′, then for each compact
interval Λ ⊂ (θ∗, ∞), there exists a number δ > 0 with the following propositionerty:
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for every λ ∈ Λ and every g ∈ A there exists β∗ > 0 such that, for each β ∈ [0, β∗],
problem (Pa) has at least three weak solutions whose norms are less than δ.

We first prove the following useful result, which helps us to apply Theorem 2.3. For
this, we define the functionals Ψ, J : W s

0 LA(Ω) → R by

J(u) =
∫

Ω
F (x, u)dx, Ψ(u) = M̂

(∫
Ω

∫
Ω

A

(
|u(x) − u(y)|

|x − y|s

)
dxdy

|x − y|N

)
,

where M̂(t) =
∫ t

0 M(τ)dτ.

Lemma 3.1. Let f ∈ A. Then the functional J ∈ C1(W s
0 LA(Ω),R) with derivative

given by
⟨J ′(u), v⟩ =

∫
Ω

f(x, u)vdx,

for all u, v ∈ W s
0 LA(Ω). Moreover J ′ : W s

0 LA(Ω) → (W s
0 LA(Ω))∗ is compact.

By using Theorem 2.2, the proof of this Lemma is seminary to Lemma 3.3 in [6].

Lemma 3.2. Let (M1) and (2.1) hold true. Then Ψ ∈ C1(W s
0 LA(Ω),R) and

⟨Ψ′(u), v⟩ = M(Φ(u))
∫

Ω×Ω
a(|Dsu|)DsuDsvdµ,

for all u, v ∈ W s
0 LA(Ω). Moreover, for each u ∈ W s

0 LA(Ω), Ψ′(u) ∈ (W s
0 LA(Ω))∗.

Proof. First, it is easy to see that

(3.1) ⟨Ψ′(u), v⟩ = M(Φ(u))
∫

Ω×Ω
a(|Dsu|)DsuDsvdµ,

for all u, v ∈ W s
0 LA(Ω). It follows from (3.1) that Ψ′(u) ∈ (W s

0 LA(Ω))∗ for each
u ∈ W s

0 LA(Ω).
Next, we prove that Ψ ∈ C1(W s

0 LA(Ω),R). Let {un} ⊂ W s
0 LA(Ω) with un →

u strongly in W s
0 LA(Ω), then Dsun → Dsu in LA(Ω × Ω, dµ). So by dominated

convergence theorem, there exist a subsequence {Dsunk
} and a function h in LA(Ω ×

Ω, dµ) such that
a(|Dsunk

|)Dsunk
→ a(|Dsu|)Dsu

and
|a(|Dsunk

|)Dsunk
| ≤ |a(|h|)h|,

for almost every (x, y) in Ω × Ω, by Lemma 2.1, we have |a(|h|)h| ∈ LA(Ω × Ω, dµ).
So, for v ∈ W s

0 LA(Ω), Dsv ∈ LA(Ω × Ω, dµ) and by Hölder’s inequality∣∣∣∣∫
Ω×Ω

[a(|Dsunk
|)Dsunk

− a(|Dsu|)Dsu] Dsvdµ

∣∣∣∣
≤2 ∥a(|Dsunk

|)Dsunk
− a(|Dsu|)Dsu∥L

A
∥Dsv∥LA

≤2 ∥a(|Dsunk
|)Dsunk

− a(|Dsu|)Dsu∥L
A

∥v∥ .
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Then by dominated convergence theorem we obtain that

(3.2) sup
∥v∥≤1

∣∣∣∣∣∣
∫

Ω×Ω
[a(|Dsunk

|)Dsunk
− a(|Dsu|)Dsu] Dsvdµ

∣∣∣∣∣∣ → 0.

On the other hand, the continuity of M and Proposition 2.1, we have
(3.3) M (Φ(un)) → M (Φ(u)) .

Combining (3.2)–(3.3) with the Hölder inequality, we have
∥Ψ′(un) − Ψ′(u)∥∗ = sup

v∈W s
0 LA(Ω),∥v∥≤1

| ⟨Ψ′(un) − Ψ′(u), v⟩ | → 0. □

Lemma 3.3. The following properties hold true:
(i) the functional Ψ is sequentially weakly lower semi continuous;
(ii) the functional Ψ belongs to the class WW s

0 LA(Ω).

Proof. (i) First, note that the map

u 7→
∫

Ω

∫
Ω

A

(
|u(x) − u(y)|

|x − y|s

)
dxdy

|x − y|N
,

is lower semi-continuous in the weak topology of W s
0 LA(Ω). Indeed, similar to Lemma

3.1, we obtain Φ ∈ C1(W s
0 LA(Ω),R) and

⟨Φ′(u), v⟩ =
∫

Ω

∫
Ω

a(|Dsu|)DsuDsvdµ,

for all u, v ∈ W s
0 LA(Ω). On the other hand, since A is a convex function so Φ is also

convex.
Now, let {un} ⊂ W s

0 LA(Ω) with un ⇀ u weakly in W s
0 LA(Ω), then by convexity of

Φ we have
Φ(un) − Φ(u) ≥ ⟨Φ′(u), un − u⟩ ,

and hence, we obtain Φ(u) ≤ lim inf Φ(un), that is, the map

u 7→
∫

Ω

∫
Ω

A

(
|u(x) − u(y)|

|x − y|s

)
dxdy

|x − y|N

is lower semi-continuous. On the other hand by the continuity and monotonicity of
the function t 7→ M̂(t), we get

lim inf
n→∞

Ψ(un) = lim inf
n→∞

M̂(Φ(un)) ≥ M̂(lim inf
n→∞

Φ(un)) ≥ M̂(Φ(u)).

Thus, the functional Ψ is sequentially weakly lower semicontinuous.
(ii) Since M̂ is continuous and strictly increasing, it suffices to show that Φ ∈

WW s
0 LA(Ω). Then, let {un} be a sequence weakly converging to in W s

0 LA(Ω) and let
lim inf

n→∞
Φ(un) ≤ Φ(u). Since the functional Φ is sequentially weakly lower semicontinu-

ous, there exists a subsequence of {un} , still denoted by {un} such that
lim

n→∞
Φ(un) = Φ(u).
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On the other hand, since
{

un+u
2

}
converges weakly to u in W s

0 LA(Ω), from (i), we
have

(3.4) lim inf
n→∞

Φ
(

un + u

2

)
≥ Φ(u).

We assume by contradiction that {un} does not converge to u in W s
0 LA(Ω). Hence,

there exists a subsequence of {un}, still denoted by {un} and there exits ε0 > 0 such
that ∥∥∥∥un − u

2

∥∥∥∥ ≥ ε0

2 ,

by Proposition 2.1, we have

Φ
(

un − u

2

)
≥ max

{
εp−

0 , εp+

0

}
.

On the other hand, by the conditions (2.1) and (2.2), we can apply [30, Lemma 2.1]
in order to obtain

(3.5) 1
2Φ(un) + 1

2Φ(u) − Φ
(

un + u

2

)
≥ Φ

(
un − u

2

)
≥ max

{
εp−

0 , εp+

0

}
.

It follows from (3.5) that

(3.6) Φ(u) − max
{
εp−

0 , εp+

0

}
≥ lim sup

n→∞
Φ
(

un + u

2

)
,

from (3.4) and (3.6) we obtain a contradiction. This shows that {un} converges
strongly to u and the functional Ψ belongs to the class WW s

0 LA(Ω). □

Lemma 3.4. Assume that the sequence {un} converges weakly to u in W s
0 LA(Ω) and

(3.7) lim sup
n→∞

∫
Ω

∫
Ω

a(|Dsun|)Dsun (Dsun − Dsu) dµ ≤ 0.

Then the sequence {un} converges strongly to u in W s
0 LA(Ω).

Proof. Since un converges weakly to u in W s
0 LA(Ω), then {∥un∥} is a bounded sequence

of real numbers, that fact and Proposition 2.1, implies that the {Φ(un)} is bounded,
then for a subsequence, we deduce that Φ(un) → c. Or since Φ is weak lower semi
continuous, we get Φ(u) ≤ lim infn→∞ Φ(un) = c. On the other hand, by the convexity
of Φ, we have

Φ(u) ≥ Φ(un) + ⟨Φ′(un), un − u⟩ .

Next, by the hypothesis (3.7), we conclude that Φ(u) = c. Since
{

un+u
2

}
converges

weakly to u in W s
0 LA(Ω), so since Φ is sequentially weakly lower semicontinuous:

c = Φ(u) ≤ lim inf
n→∞

Φ
(

un + u

2

)
.

Seminary to proof of Lemma 3.3, we assume by contradiction that un converges
strongly to u in W s

0 LA(Ω). □

Lemma 3.5. Let (M1) hold, then the operator Ψ′ : W s
0 LA(Ω) → (W s

0 LA(Ω))∗ is
invertible and Ψ′−1 is continuous.
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Proof. First, we assume that the operator Ψ′ : W s
0 LA(Ω) → (W s

0 LA(Ω))∗ is invertible
on W s

0 LA(Ω). By the Minty-Browder theorem (see [37]), it suffices to prove that Ψ′ is
strictly monotone, hemicontinuous and coercive in the sense of monotone operators.

So, let u, v ∈ W s
0 LA(Ω), with u ̸= v and let λ, µ ∈ [0, 1] with λ + µ = 1. Since

a(|t|)t is increasing, then〈
Φ′(u) − Φ′(v), u − v

〉
=
∫

Ω

∫
Ω

(a(|Dsu|)Dsu − a(|Dsu|)Dsv) (Dsu − Dsv) dµ > 0.

So, Ψ′ : W s
0 LA(Ω) → (W s

0 LA(Ω))∗ is strictly monotone, so by [37, Proposition 25.10],
Φ is strictly convex. Moreover, since M is nondecreasing the function M̂ is convex in
R+. Thus,

M̂(Φ(λu + µv)) < M̂(λΦ(u) + µΦ(v)) ≤ λM̂(Φ(u)) + µM̂(Φ(v)).
This shows that Ψ is strictly convex and already said, that Ψ′ is strictly monotone.

Let u ∈ W s
0 LA(Ω), with ∥u∥ > 1, by (M1) and Proposition 2.1, we have

⟨Ψ′(u), u⟩
∥u∥

= M(Φ(u)) ⟨Φ′(u), u⟩
∥u∥

≥ m0p
−Φ(u)

∥u∥
≥ m0p

−∥u∥p−−1.

Thus,

lim
∥u∥→∞

⟨Φ′(u), u⟩
∥u∥

= ∞,

that is, Ψ′ is coercive.
Now, by Lemma 3.1, we have Ψ ∈ C1(W s

0 LA(Ω),R), then Ψ is hemicontinuous.
Thus, in view of the Minty-Browder theorem, there exists Ψ′−1 : (W s

0 LA(Ω))∗ →
W s

0 LA(Ω) and it is bounded.
Let us prove that Ψ′−1 is continuous by showing that its is sequentially continuous.

Let {un} ⊂ (W s
0 LA(Ω))∗ be a sequence strongly is converging to u ∈ (W s

0 LA(Ω))∗

and let vn = Ψ′−1(un) and v = Ψ′−1(u). Then, {vn} bounded in W s
0 LA(Ω), then, we

can assume that it converges weakly to a certain v0 ∈ W s
0 LA(Ω). Since un converges

strongly to u, we have
lim

n→∞
⟨Ψ′(vn), vn − v0⟩ = lim

n→∞
⟨un, vn − v0⟩ = 0,

i.e.,

(3.8) lim
n→∞

M(Φ(vn))
∫

Ω

∫
Ω

a(|Dsvn|)Dsvn (Dsvn − Dsv0) dµ = 0.

Since {vn} is bounded in W s
0 LA(Ω), then by Proposition 2.1, Φ(vn) is also bounded,

then
Φ(vn) → t0 ≥ 0, as n → ∞.

If t0 = 0, then using Proposition 2.1, we get {vn} that strongly converges to v0 in
W s

0 LA(Ω), by the continuity and injectivity of Ψ′−1 we obtain the desired result.
If t0 > 0, it follows from the continuity of the function M that

M(Φ(vn)) → M(t0), as n → ∞.
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Thus, by (M1), for sufficiently large n, we get
(3.9) M(Φ(vn)) ≥ C0 > 0.

By (3.8) and (3.9), we have

(3.10)
∫

Ω

∫
Ω

a(|Dsvn|)Dsvn (Dsvn − Dsv0) dµ = 0.

From (3.10) and since vn converges weakly to v0 in W s
0 LA(Ω), we can apply Lemma

3.4, in order to deduce that vn converge strongly to v0 in W s
0 LA(Ω). □

Proof of Theorem 3.1. We wish to apply Theorem 2.3 taking X = W s
0 LA(Ω), Ψ and J

are as before, by Lemma 3.1 J is C1-functional with compact derivative. Moreover by
Lemma 3.3, Ψ is a sequentially weakly lower continuous and C1-functional belongs to
the class WW s

0 LA(Ω), also by Lemma 3.5, the operator Ψ′ admits a continuous inverse
on (W s

0 LA(Ω))∗.
On the other hand, we show that Φ is coercive. In fact, if ∥u∥ > 1, by (M1) and

Proposition 2.1, we have
Ψ(u) = M̂(Φ(u)) ≥ m0Φ(u) ≥ m0∥u∥p−

,

from which we have the coercivety of Ψ.
It is evident that u0 = 0 is the global minimum of Ψ and that Ψ(u0) = J(u0) = 0.

Moreover, Ψ is bounded on each bounded subset of W s
0 LA(Ω). Indeed, if ∥u∥ ≤ C,

then
Ψ(u) = M̂(Φ(u)) ≤

{
M̂(Cp−), if ∥u∥ > 1,

M̂(1), if ∥u∥ ≤ 1.

So, Ψ(u) ≤ max
{
M̂(1), M̂(Cp−)

}
.

Now, by the assumption (F2) for all ε > 0, there exits η1 > 0 such that

|F (x, t)| ≤ ε|t|p+
,

for each x ∈ Ω and |t| ≤ η1. Since p+ < p∗
s′ , so by Theorem 2.2, the embedding

W s
0 LA(Ω) in Lp+(Ω) is compact. Then for some positive constant C2, one has for all

u ∈ W s
0 LA(Ω) with |u| ≤ η1 and ∥u∥ < 1

J(u) ≤ ε∥u∥p+

Lp+ ≤ εC2∥u∥p+ ≤ εC2Φ(u).

Or by (M1), we have Φ(u) ≤ 1
m0

Ψ(u), then

J(u) ≤ εC2
1

m0
Ψ(u).

Consequently, we have

(3.11) lim sup
u→0

J(u)
Ψ(u) ≤ εC2

1
m0

.

By (F3), for all ε > 0, there exists η2 > 0 such that

(3.12) |F (x, t)| ≤ ε|t|p−
,
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for all x ∈ Ω and |t| > η2.
For ∥u∥ > 1 large enough, from (3.12), Proposition 2.1 and Theorem 2.2, we have

J(u)
Ψ(u) = J(u)

M̂(Φ(u))

≤

∫
{x∈Ω:|u|≤η2}

F (x, u)dx

m0∥u∥p− +

∫
{x∈Ω:|u|>η2}

F (x, u)dx

m0∥u∥p− ,

≤
|Ω| sup

Ω×[−η2,η2]
F

m0∥u∥p− +
ε∥u∥p−

Lp− (Ω)

m0∥u∥p− ,

≤
|Ω| sup

Ω×[−η2,η2]
F

m0∥u∥p− + C3ε.

So,

(3.13) lim sup
∥u∥→∞

J(u)
Ψ(u) ≤ εC3.

Since ε > 0 is arbitrary, relations (3.11) and (3.13) imply that

max
{

lim sup
∥x∥→+∞

J(x)
Ψ(x) , lim sup

x→x0

J(x)
Ψ(x)

}
≤ 0.

Hence, all assumptions of Theorem 2.3 are satisfied. So, for each compact interval
Λ ⊂ (θ∗, +∞), there exists a number δ > 0 with the propositionerty described in the
conclusion of Theorem 2.3. Fix λ ∈ Λ and g ∈ A. Put

Γ(u) =
∫

Ω
G(x, u)dx and G(x, t) =

∫ t

0
g(x, s)ds,

for all u ∈ W s
0 LA(Ω). Then Γ is a C1 functional on W s

0 LA(Ω) with compact derivative.
So, there exists β∗ > 0 such that, for each β ∈ [0, β∗], the equation

Ψ′(x) = λJ ′(x) + βΓ′(x),

has at least three solutions whose norms are less than δ. But the solutions in W s
0 LA(Ω)

of the above equation are exactly the weak solutions of problem (Pa) and thus, the
proof of Theorem 3.1 is completed. □

4. Example

We present in this section an example of functions that satisfies the conditions of
Theorem 3.1. Let

(4.1) φ(t) = log(1 + |t|)|t|p−2t,
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where p ∈ [2, N). Let b > max {2, p+}, a > 0, b ≥ 0 and α ≥ 1 we consider
f(t) =b cos(t) sin(t)| sin(t)|b−2, for all t ∈ R,(4.2)

M(t) =a + btα−1, for all t ≥ 0.(4.3)

So, from (4.1), (4.2) and (4.3), we have

A(t) =1
p

log(1 + |t|)|t|p − 1
p

∫ |t|

0

tp

1 + t
dt, M̂(t) = at + b

α
tα,(4.4)

F (x, t) =F (t) = | sin(t)|b.(4.5)
We will next show that all the hypotheses of Theorem 3.1 are satisfied.

By Example 2 in [21, page 243], it follows that
p+ = p + 1 and p− = p.

On the other hand, we point out that trivial computations imply that
d2A(

√
t)

dt2 = 1
4

[
1

1 + |
√

t|
+ (p − 2) log(1 + |

√
t|)
]

≥ 0,

for all t ∈ R and thus, relations (2.1)–(2.2) are satisfied.
• For each t ∈ R, we claim that f ∈ A. Actually, the inequality

sup
t∈R

|f(t)|
1 + |t|q−1 < b < ∞,

holds for any 1 < q < p∗
s and on the other hand, we have

lim
|t|→0

| sin(t)|b
|t|p+ = 0 and lim

|t|→∞

| sin(t)|b
|t|p− = 0.

Select a compact set V ⊂ Ω of positive measure and v ∈ W s
0 LA(Ω) such that v(x) = π

2
in V and 0 ≤ v(x) ≤ π

2 in Ω \ V . We obtain∫
Ω

| sin(v(x)|bdx = |V | +
∫

Ω\V
| sin(v(x)|bdx > 0,

which means that (F1), (F2) and (F3) are verified. Also, for m0 = a the condition
(M1) is satisfied, we set

θ∗ = inf


aΦ(u) + b

α
(Φ(u))α∫

Ω
| sin(u(x))|bdx

: u ∈ W s
0 LA(Ω),

∫
Ω

| sin(u(x))|bdx > 0

 .

Then, for a bounded domain Ω in RN of class C0,1, it follows from Theorem 3.1, that
for each compact interval Λ ⊂ (θ∗, +∞), there exist a number δ > 0 and β∗ > 0 such
that, for every λ ∈ Λ such that for all β ∈ [0, β∗], and all g ∈ A the following problem{

(a + b(Φ(u))α−1) (−∆)s
logu = λb cos(u) sin(u)| sin(u)|b−2 + βg(x, u), in Ω,

u = 0, in RN \ Ω,
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where
(−∆)s

logu = 2 p.v
∫
RN

log(1 + |Dsu|)|Dsu|p−2Dsudµ

has at least three weak solutions whose norms are less than δ.
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