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MULTIPLICITY OF SOLUTIONS FOR A FRACTIONAL
DOUBLE-PHASE PROBLEM WITH p(t)-LAPLACE OPERATOR

INVOLVING THE ϕ-HILFER FRACTIONAL DERIVATIVE

SAMEH TURKI

Abstract. In this work, we investigate a class of ϕ-Hilfer fractional double-phase
problem involving a p(t)-Laplacian operator with Dirichlet boundary conditions.
More precisely, we will use a variational method with the critical theorem of Bonanno
and Marano, to prove the existence of at least three nontrivial solutions for such
a problem. An illustrative example is provided at the conclusion of this work to
strengthen the validity of our main findings.

1. Introduction

Nowadays, there is a great interest in the theory of fractional differential equations
due to its applications in various fields such as science, engineering, finance and
quantum mechanics. For further reading, we recommend the references [16, 19–21,
24, 26, 28, 29, 40]. Given their importance, many authors have focused on the study
of fractional problems involving Riemann-Liouville, Caputo and Grunwald-Letnikov
derivatives. For more details, we refer the reader to [1,7,9,14,35,37] and the references
therein. Notable contributions include the work of Padhi et al. [27], who study various
fixed point theorems; Ghanmi and Horrigue [13], who apply the Schauder fixed point
theorem; and Ghanmi et al. [14, 15], who apply the Nehari manifold method and
variational approaches. In addition, Nouf et al. [25] use the Mountain Pass theorem
in their analysis. Specifically, Ghanmi and Zhang [14] applied the Nehari manifold
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method to prove the multiplicity of solutions for the following problem{
−t D

α
T (Kp(ψ(t))) = ∇W (t, ψ(t)) + λg(t)|ψ(t)|q−2ψ(t), t ∈ (0, T ),

ψ(0) = ψ(T ) = 0,

where Kp(ψ(t)) = |0Dα
t (ψ(t))|p−2

0D
α
t ψ(t), λ > 0, 2 < q < p, 1

2 < α ≤ 1, g ∈ C([0, 1])
and W ∈ C([0, 1] × Rn,R), tDα

T and 0D
α
t are the left and right fractional derivatives

in the sense of Riemann-Liouville.
Kefi et al. [18] applied the critical theorem developed by Bonanno and Marano,

originally introduced in their seminal work [8], to study the following double-phase
biharmonic problem:∆2

p(x)v(x) + ∆2
q(x)v(x) + ς(x) |v(x)|s−2v(x)

|x|2s
= λg(x)|v(x)|r−2v(x), in Ω,

v = ∆v = 0, in ∂Ω.
(1.1)

Under suitable conditions for the functions p, q, s, r, ς and g, the authors proved that
Problem (1.1) admits three nontrivial solutions in Ω a bounded domain in Rn, n > 2,
with a boundary of class C1.

Recently, many studies have focused on problems involving the ϕ-Hilfer fractional
derivative, first introduced by Hilfer [17]. Hilfer proposed a fractional computa-
tional model that integrates concepts of Riemann-Liouville and Caputo fractional
derivatives and includes parameters that enhance flexibility in modeling real-world
phenomena. We find that the ϕ-Hilfer derivative provides a flexible fractional frame-
work for two-phase problems. It captures heterogeneous behavior, connects different
types of derivatives, and accounts for memory effects, making it particularly useful for
models with nonlocal and variable growth. Many authors have studied the existence
and multiplicity of solutions to fractional differential equations involving the Hilfer
fractional derivative; see e.g. [2–6,11,23,30,34,38].

In this study, we extend the concepts introduced in [18] and, inspired by [14], we
prove the existence of multiple nontrivial weak solutions to a double-phase problem
involving the ϕ-Hilfer fractional derivatives tD

α,β,ϕ
T and 0D

α,β,ϕ
t , as defined in Section

2. Specifically, we investigate the following problem:tD
α,β,ϕ
T

(
Kp(·)(u) + LKq(·)(u)

)
(t) = λf(t, u(t)) + µg(t, u(t)), t ∈ (0, T ),

u(0) = u(T ) = 0,
(1.2)

where

(1.3) Ka(u) =
∣∣∣0Dα,β,ϕ

t u
∣∣∣a−2

0D
α,β,ϕ
t u,

functions p, q and L are in C ([0, T ],R), λ > 0 and the functions f and g are in
C ([0, T ] × R,R) such that f + µ

λ
g is positively homogeneous of a variable degree

s(x) − 1. That is (
f + µ

λ
g
)

(x, tu) = ts(x)−1
(
f + µ

λ
g
)

(x, u)
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holds for all t > 0 and (x, u) ∈ [0, T ] × R.
tD

α,β,ϕ
T and 0D

α,β,ϕ
t are, respectively, the left and right-sided ϕ-Hilfer fractional

derivatives of order 0 < α ≤ 1 and type 0 ≤ β ≤ 1. The function ϕ is positive
and increasing on [0, T ] with a continuously differentiable derivative ϕ′(s) ̸= 0 for all
s ∈ [0, T ].

While the methods employed in this paper are standard, their configuration within
problem (1.2) is novel. To the best of our knowledge, this work presents the first
application of Bonanno-Marano’s theorem to a problem involving the ϕ-Hilfer frac-
tional derivative. Moreover, the double-phase problem-a central concept in variational
calculus-concerns functionals exhibiting two distinct growth behaviors, typically gov-
erned by different power terms. Such problems are characterized by terms whose
growth rates vary across different regions of the domain, thereby rendering the anal-
ysis of minimizers and solutions substantially more challenging. The double-phase
problem has significant applications in various fields of mathematics and science.

Before stating our main hypotheses, we introduce some notations and fundamental
results.

Let C∞
0 ([0, T ],R) be the set of all smooth functions u ∈ C∞([0, T ],R) that satisfy

u(0) = u(T ) = 0. For η ∈ C([0, T ],R), we set

η− := inf
x∈[0,T ]

η(x), η+ := sup
x∈[0,T ]

η(x).

We define the Lebesgue space with variable exponents as follows:

La(·)([0, T ]) :=
{
u | u : [0, T ] → R is measurable,

∫ T

0
|u(t)|a(t)dt < +∞

}
,

which is equipped with the so-called Luxemburg norm

∥u∥a(·) := inf

ν > 0 |
∫ T

0

∣∣∣∣∣u(t)
ν

∣∣∣∣∣
a(t)

dt ≤ 1

 .
The inclusion between Lebesgue spaces is generalized as follows.

If s1 and s2 are such that s1(x) ≤ s2(x), a.e. x ∈ [0, T ], then there exists a continuous
embedding

Ls2(·)([0, T ]) ↪→ Ls1(·)([0, T ]).
We denote Ls′(·)([0, T ]) as the conjugate space of Ls(·)([0, T ]), where 1

s(x) + 1
s′(x) = 1.

For any u ∈ Ls(·)([0, T ]) and v ∈ Ls
′(·)([0, T ]), the following Hölder-type inequality

holds: ∣∣∣∣∣
∫ T

0
u(x)v(x)dx

∣∣∣∣∣ ≤
( 1
s− + 1

s′−

)
∥u∥s(·)∥v∥s′(·).

To establish the variational structure for our problem (1.2), we introduce the fractional
derivative space Eα,β,ϕ

p(.) with variable exponents as follows:

Eα,β,ϕ
p(.) :=

{
u ∈ Lp(·)([0, T ]) | 0D

α,β,ϕ
t u ∈ Lp(·)([0, T ])

}
,
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endowed with the norm

∥u∥α,β,ϕ,p(·) = ∥u∥p(·) + ∥0D
α,β,ϕ
t u∥p(·).

Remark 1.1 ([22, 33]). (i) Consider E := Eα,β,ϕ
p(·),0 as the closure of C∞

0 ([0, T ],R) in
Eα,β,ϕ
p(·) , which can be renormed by the equivalent norm

∥u∥ := ∥0D
α,β,ϕ
t u∥p(·).

(ii) The fractional space E is a separable and reflexive Banach space.
(iii) If s ∈ C([0, T ],R) such that s(x) > 1, for all x ∈ [0, T ], then the embedding

E ↪→ Ls(·)([0, T ]) is compact and continuous and there exists a positive constant
C > 0 such that

∥u∥s(·) ≤ C ∥u∥, for all u ∈ E.

Throughout this paper, we put h = f + µ
λ
g and H = F + µ

λ
G, where

F (t, τ) :=
∫ τ

0
f(t, ξ)dξ and G(t, τ) :=

∫ τ

0
g(t, ξ)dξ,

for all (t, τ) ∈ [0, T ] × R.
In order to study problem (1.2), we shall need the following hypotheses.

(H1) The function L ∈ C([0, T ],R) is such that

0 < L− := L0 ≤ L+ := L∞.

(H2) The functions p, q, s ∈ C([0, T ],R) satisfying 1 < q− ≤ q(x) ≤ q+ < s− <
s(x) < s+ < p− ≤ p(x) ≤ p+ < +∞.

(H3) H : [0, T ] × R → R is homogeneous of degree s(x) that is

H(x, ξu) = ξs(x)H(x, u), ξ > 0, for all x ∈ [0, T ] andu ∈ R.

(H4) There exits s0 > 0 and u0 ∈ E such that∫ T

0
H(t, u0(t))dt ≥ s0.

Remark 1.2. Note that, from (H3), h leads to the so-called Euler identity

vh(x, v) = s(x)H(x, v).

Moreover, there exists C0 > 0, such that

|H(x, v)| ≤ C0|v|s(x).(1.4)

Let ∥u0∥ = b and

(1.5) σ =
(

1
p− + L+

q−

)
max

{
bp

+
, bq

−}
.

Our main result is the following.
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Theorem 1.1. Assume that (H1)-(H4) are fulfilled and there exists r > 0 such that

r <
1
p+ min

{
bp

−
, bp

+}(1.6)

and
1
r

max
{
νs

+
, νs

−}
<

s0

σC0 max {Cs+ , Cs−}
,(1.7)

where ν = max
{

(rp+)
1
p− , (rp+)

1
p+

}
and C is given in Remark 1.1.

Then, Problem (1.2) admits at least three weak solutions.

2. Preliminaries

In this section, we provide an overview of key concepts in fractional calculus, focusing
on fundamental results related to the ϕ-Hilfer fractional derivative. For further details,
we refer the reader to [19,31,33,36].

Let [a, b] be a finite or infinite interval on the real line, and let ϕ be an increasing
positive function on [a, b], with a continuously differentiable derivative satisfying
ϕ′(y) ̸= 0 for all y ∈ [a, b].

We begin by introducing the definition of the ϕ-Hilfer fractional integral.
Definition 2.1 ([19, 31]). Let α > 0 and h : (a, b) → R be a measurable function
defined a.e. on (a, b). The right (resp. left) fractional integral with respect to ϕ with
superior limit b (resp. inferior limit a) of order α of h is given by

tI
α,ϕ
b h(t) = 1

Γ(α)

∫ b

t
ϕ′(s)(ϕ(s) − ϕ(t))α−1h(s)ds

and
aI

α,ϕ
t h(t) = 1

Γ(α)

∫ t

a
ϕ′(s)(ϕ(t) − ϕ(s))α−1h(s)ds,

respectively. Here Γ is the well-known Euler’s Gamma function.
Definition 2.2 ([33, 36]). Let m ∈ N, α ∈ (m − 1,m], β ∈ [0, 1] and consider h an
integrable function over the interval [a, b]. The right (resp. left) ϕ-Hilfer fractional
derivative of order α of h and of type β, is given by

tD
α,β,ϕ
b h(t) = tI

β(m−α),ϕ
b

(
− 1
ϕ′(t) · d

dt

)m
tI

(1−β)(m−α),ϕ
b h(t), for all t ∈ [a, b),

and

aD
α,β,ϕ
t h(t) = aI

β(m−α),ϕ
t

(
1

ϕ′(t) · d
dt

)m
aI

(1−β)(m−α),ϕ
t h(t), for all t ∈ (a, b],

respectively.
It is essential to emphasize that the ϕ-Hilfer fractional derivatives extend previous

concepts, including the ϕ-Riemann-Liouville and ϕ-Caputo fractional derivatives. In
particular, the following remark holds.
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Remark 2.1. (i) From the ϕ-Hilfer fractional derivatives, as β tends to zero, we obtain
the ϕ-Riemann-Liouville fractional derivatives:

tD
α,ϕ
b h(t) =

(
− 1
ϕ′(t) · d

dt

)m
tI
m−α,ϕ
b h(t)

and

aD
α,ϕ
t h(t) =

(
1

ϕ′(t) · d
dt

)m
aI

m−α,ϕ
t h(t).

(ii) As β tends to 1, the ϕ-Hilfer fractional derivatives become equivalent to the
ϕ-Caputo fractional derivatives, given by:

c
tD

α,ϕ
b h(t) =t I

m−α,ϕ
b

(
− 1
ϕ′(t) · d

dt

)m
h(t)

and
c
aD

α,ϕ
t h(t) =a I

m−α,ϕ
t

(
1

ϕ′(t) · d
dt

)m
h(t).

(iii) The ϕ-Hilfer fractional derivatives are directly related to the ϕ-Riemann-
Liouville fractional derivatives via the following relations:

tD
α,β,ϕ
b h(t) =t I

ξ−α,ϕ
b tD

ξ,ϕ
b h(t)

and

aD
α,β,ϕ
t h(t) =a I

ξ−α,ϕ
t aD

ξ,ϕ
t h(t),

where ξ = α + β(m− α).

3. A Variational Setting and Proof of the Main Result

In this section, we begin by introducing fundamental findings that will be instru-
mental in proving our main result stated in Theorem 1.1.

Recall that for u ∈ E, the norm is given by
∥u∥ := ∥0D

α,β,ϕ
t u∥p(·).

The following key properties will play a crucial role in our analysis.
The next lemma is fundamental to our approach and follows similarly from [10,

Proposition 3.2].

Lemma 3.1. For all u ∈ Lp(·)([0, T ]), we have the following.
(i) If ∥u∥ > 1, then

∥u∥p− ≤
∫ T

0

∣∣∣0Dα,β,ϕ
t u(t)

∣∣∣p(t)
dt ≤ ∥u∥p+

.

(ii) If ∥u∥ < 1, then

∥u∥p+ ≤
∫ T

0

∣∣∣0Dα,β,ϕ
t u(t)

∣∣∣p(t)
dt ≤ ∥u∥p−

.
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By simple calculus, the following lemma is proved in [32].

Lemma 3.2. For a > 1, there exits a positive constant Ca, such that〈
|x|a−2x− |y|a−2y, x− y

〉
≥ Ca |x− y|a, for a ≥ 2,

and 〈
|x|a−2x− |y|a−2y, x− y

〉
≥ Ca

|x− y|2

(|x| + |y|)2−a , for 1 < a < 2,

where ⟨·, ·⟩ denotes the usual inner product in RN .

We present the following proposition (see [12]), which will be essential in Section 4.

Proposition 3.1 ([12]). If X is a reflexive Banach space, Y is a Banach space, Z ⊂ X
is nonempty, closed and convex subset, and J : Z → Y is completely continuous, then
J is compact.

Our main tool will be the following theorem from [8], which we restate in more
convenient form.

Theorem 3.1 (Bonanno-Marano theorem, Theorem 3.6 in [8]). Let X be a reflexive
real Banach space and ψ : X → R a coercive, continuously Gâteaux differentiable and
sequentially weakly lower semi-continuous functional whose Gâteaux derivative admits
a continuous inverse on X. Let θ : X → R be a continuously Gâteaux differentiable
functional whose Gâteaux derivative is compact such that the following hold.

(A0)
inf
x∈X

ψ(x) = ψ(0) = θ(0) = 0.

(A1) Assume that there exist r > 0 and x̄ ∈ X, with r < ψ(x̄), such that:
supψ(x)≤r θ(x)

r
<
θ(x̄)
ψ(x̄) .

(A2) For each λ ∈ Λr :=
(
ψ(x̄)
θ(x̄) ,

r
supψ(x)≤r θ(x)

)
, the functional ψ − λθ is coercive.

Then, for each λ ∈ Λr, the functional ψ − λθ has at least three distinct critical points
in X.

Now we are ready to prove the main result of this paper, stated in Theorem 1.1. To
this end, we begin by introducing the variational setting for problem (1.2). To do this,
we define the functional Iλ associated with problem (1.2) by Iλ(u) = ψ(u) − λθ(u),
where

ψ(u) =
∫ T

0

(
1
p(t)

∣∣∣0Dα,β,ϕ
t u(t)

∣∣∣p(t)
+ L(t)
q(t)

∣∣∣0Dα,β,ϕ
t u(t)

∣∣∣q(t)) dt(3.1)

and

θ(u) =
∫ T

0
F (t, u(t))dt+ µ

λ

∫ T

0
G(t, u(t))dt.
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Note that, a function φ ∈ E is said to be a weak solution of Problem (1.2), if it
satisfies the associated weak formulation of the differential equation and boundary
conditions. That is for any v ∈ E, we have:∫ T

0

(
Kp(t)(φ(t)) 0D

α,β,ϕ
t v(t) + L(t)Kq(t)(φ(t)) 0D

α,β,ϕ
t v(t)

)
dt

=λ
∫ T

0
f(t, φ(t))v(t)dt+ µ

∫ T

0
g(t, φ(t))v(t)dt,

where Kp(·) is given by (1.3).
We observe that, in order to prove that problem (1.2) admits at least three weak

solutions, it is necessary to verify that the functional Iλ satisfies all the conditions
(A0)-(A2) of Theorem 3.1.

First, based on hypotheses (H1)-(H2) and Remark 1.2, it is easy to see that condition
(A0) in Theorem 3.1 is fulfilled. Additionally, θ(u) is well defined for all u ∈ E. Indeed,
for all u ∈ E, we have

θ(u) =
∫ T

0
H(t, u(t))dt.

By using (1.4), it follows from Remark 1.2 that

|θ(u)| ≤ C0

∫ T

0
|u(t)|s(t)dt < +∞.

In order to ensure that all conditions of Theorem 3.1 are met, we start by satisfying
the assertions in the following proposition.

Proposition 3.2. (i) The functional ψ is a coercive, continuously Gâteaux differen-
tiable and sequentially weakly lower semi-continuous functional whose Gâteaux deriv-
ative admits a continuous inverse on E.

(ii) The functional θ is a continuously Gâteaux differentiable functional whose
Gâteaux derivative is compact.

Proof. The proof consists of two main parts: the first establishes (i), and the second
proves (ii).

(i) First, we show that ψ is coercive. Specifically, we need to demonstrate that
lim∥u∥→+∞ ψ(u) = +∞. Let φ ∈ E be such that ∥φ∥ > 1.

From (3.1), we have

ψ(φ) ≥
∫ T

0

1
p(t)

∣∣∣0Dα,β,ϕ
t φ(t)

∣∣∣p(t)
dt ≥ 1

p+

∫ T

0

∣∣∣0Dα,β,ϕ
t φ(t)

∣∣∣p(t)
dt.

So, it follows from Lemma 3.1 that

ψ(φ) ≥ 1
p+ min

{
∥φ∥p−

, ∥φ∥p+}
.

Since p− ≤ p+ and ∥φ∥ > 1, we get

ψ(φ) ≥ 1
p+ ∥φ∥p−

.
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Hence, ψ is coercive.
Next, we show that ψ is a weakly lower semi continuous functional on E.
Let {uk} be a weakly convergent sequence in E and let u be the weak limit. Set

M = lim infk→+∞ ψ(uk). Now, we have

M ≥
∫ T

0

(
1
p(t)

∣∣∣0Dα,β,ϕ
t u(t)

∣∣∣p(t)
dt+

∫ T

0

L(t)
q(t)

∣∣∣0Dα,β,ϕ
t u(t)

∣∣∣q(t)) dt.
Thus, lim infk→+∞ ψ(uk) ≥ ψ(u) for every {uk} weakly convergent to u in E. So, ψ
is lower semi continuous on E.

Due to hypotheses (H1)-(H2), ψ is well defined and continuously Gâteaux differen-
tiable. Moreover, for any u, v ∈ E, we have from (1.3),

⟨ψ′(u), v⟩ =
∫ T

0

(
Kp(t)(u(t)) 0D

α,β,ϕ
t v(t) + L(t)Kq(t)u(t) 0D

α,β,ϕ
t v(t)

)
dt.

Now, we claim that ψ′ is strictly monotone in E. For any u, v ∈ E, we have from
(1.3),

⟨ψ′(u) − ψ′(v), u− v⟩ =
∫ T

0

(
Kp(t)(u(t)) −Kp(t)(v(t))

)
×
(

0D
α,β,ϕ
t u(t) −0 D

α,β,ϕ
t v(t)

)
dt

+
∫ T

0
L(t)

(
Kq(t)(u(t)) −Kq(t)(v(t))

)
×
(

0D
α,β,ϕ
t u(t) −0 D

α,β,ϕ
t v(t)

)
dt.

For q− ≥ 2, and by using Lemma 3.2, there exists a positive constant Cp such that

⟨ψ′(u) − ψ′(v), u− v⟩ ≥
∫ T

0
Cp
∣∣∣0Dα,β,ϕ

t u(t) − 0D
α,β,ϕ
t v(t)

∣∣∣p(t)
dt.

Similarly, if 1 < q− < 2, then there exists a positive constant C ′
p such that

⟨ψ′(u) − ψ′(v), u− v⟩ ≥
∫
I
C

′

p

∣∣∣0Dα,β,ϕ
t u(t) − 0D

α,β,ϕ
t v(t)

∣∣∣2(∣∣∣0Dα,β,ϕ
t u(t)

∣∣∣+ ∣∣∣0Dα,β,ϕ
t v(t)

∣∣∣)2−p(t)dt ≥ 0,

where I = [0, T ] ∩ {x/1 < p(x) < 2}.
So ψ′ is strictly monotone. This yields ψ′ is an injection.
On the other hand, for any φ ∈ E with ∥φ∥ > 1, one has

⟨ψ′(φ), φ⟩ =
∫ T

0

(∣∣∣0Dα,β,ϕ
t φ(t)

∣∣∣p(t)
+ L(t)

∣∣∣0Dα,β,ϕ
t φ(t)

∣∣∣q(t)) dt
≥
∫ T

0

∣∣∣0Dα,β,ϕ
t φ(t)

∣∣∣p(t)
dt+ L0

∫ T

0

∣∣∣0Dα,β,ϕ
t φ(t)

∣∣∣q(t) dt.
Since ∥φ∥ > 1, it follows from Lemma 3.1 that

⟨ψ′(φ), φ⟩
∥φ∥

≥ ∥φ∥p−

∥φ∥
= ∥φ∥p−−1.
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Thus, ψ′ is coercive, and by the Minty-Browder Theorem [39] for reflexive Banach
spaces, it follows that ψ′ is surjective. So, the mapping ψ′ has a bounded inverse
(ψ′)−1 : E∗ → E.

Eventually, we prove the continuity of (ψ′)−1. Let φn → φ as n → +∞ in E∗ and
define un = (ψ′)−1(φn), u = (ψ′)−1(φ).

Since (ψ′)−1 is bounded and (φn) is also bounded, it follows that {un} is a bounded
sequence in E. Hence, without loss of generality, we may assume that there exists a
subsequence of un, (still denoted by un) and v such that {un} converges weakly to v
in E.

This implies that |⟨φn − φ, un − v⟩| ≤ |φn − φ|E∗∥un − v∥. Thus, we can deduce
that

lim
n→+∞

⟨ψ′(un) − ψ′(v), un − v⟩ = lim
n→+∞

⟨φn, un − v⟩

= lim
n→+∞

⟨φn − φ, un − v⟩ = 0,

which implies from [18, Lemma 3.2] that un → v strongly as n → +∞ in E.
Hence, (ψ′)−1(φn) → v as n → +∞, and consequently, ψ′(v) = φ. By the injectivity

of ψ′, it follows that u = v and thus (ψ′)−1(φn) → (ψ′)−1(φ) as n → +∞. So, the
proof of (i) is completed.

(ii) Now, we aim at proving that θ′ is compact.
Let u ∈ E and {ωn} be a sequence that converges weakly to w in the space E, that

is ωn ⇀ ω as n → +∞ in E. We have∣∣∣⟨θ′(u), ωn⟩ − ⟨θ′(u), ω⟩
∣∣∣ =

∣∣∣∣∣
∫ T

0

(
f(t, u(t)) + µ

λ
g(t, u(t))

)
(ωn − ω)(t)dt

∣∣∣∣∣
≤
∫ T

0
|h(t, u(t))| · |ωn(t) − ω(t)|dt.

Using Remark 1.2, inequality (1.4) and a Hölder-type inequality, we obtain∣∣∣⟨θ′(u), ωn⟩ − ⟨θ′(u), ω⟩
∣∣∣ ≤ C0s

+
∫ T

0
|u(t)|s(t)−1 |ωn(t) − ω(t)|dt

≤ C0s
+
∣∣∣|u|s(t)−1

∣∣∣ s(·)
s(·)−1

∥ωn − ω∥s(·).

Combined with Remark 1.1 (iii), this leads to

⟨θ′(u), ωn⟩ → ⟨θ′(u), ω⟩, as n → +∞.

This implies that θ′(u) is completely continuous. Therefore, by Proposition 3.1, we
deduce that θ′ is compact. □

Proof of Theorem 1.1. From hypothesis (H2) and Lemma 3.1, we have the following
estimates for ψ(u0):

ψ(u0) ≥ 1
p+ min

{
∥u0∥p

−
, ∥u0∥p

+}(3.2)
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and

ψ(u0) ≤
(

1
p− + L+

q−

)
max

{
∥u0∥p

+
, ∥u0∥q

−}
.

Thus, from hypothesis (H4) and (1.5), we obtain the following inequality
θ(u0)
ψ(u0)

≥ s0

σ
.(3.3)

Using (3.2), it follows from (1.6) that ψ(u0) > r. Next, consider u ∈ ψ−1((−∞, r]).
From Lemma 3.1, we have

1
p+ min

{
∥u∥p−

, ∥u∥p+} ≤ ψ(u) ≤ r.

Therefore, from (1.7), we deduce that
∥u∥ ≤ ν.(3.4)

Additionally, from Remark 1.2, we have the bound:

θ(u) ≤ C0

∫ T

0
|u(x)|s(x)dx.

Hence, it follows from Remark 1.1 that there exists C > 0 such that

θ(u) ≤ C0 max
{
Cs+

, Cs−}max
{
∥u∥s+

, ∥u∥s−}
.

This, together with (3.4) and (1.7), implies that
θ(u)
r

<
s0

σ
.

So, from (3.3), we conclude that
supψ(u)≤r θ(u)

r
<
θ(u0)
ψ(u0)

.

Now, we need to prove that for each λ ∈
(
ψ(u0)
θ(u0) ,

r
supψ(u)≤r θ(u)

)
, the functional Iλ =

ψ − λθ is coercive.
Let u ∈ E with ∥u∥ > 1. From Remarks 1.1 and 1.2, we have the estimate

θ(u) ≤ C0 max
{
Cs+

, Cs−} ∥u∥s+

and

ψ(u) ≥ 1
p+ ∥u∥p−

.

Thus,

ψ(u) − λθ(u) ≥ 1
p+ ∥u∥p− − λC0 max

{
Cs+

, Cs−} ∥u∥s+
.

Since, from (H2), we have 1 ≤ s+ < p−, and deduce that Iλ = ψ − λθ is coercive.
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Therefore, conditions (A1) and (A2) in Theorem 3.1 are satisfied. Hence, by Propo-
sition 3.2 and Theorem 3.1, the functional Iλ admits at least three distinct critical
points in E, which correspond to weak solutions of Problem (1.2).

This ends the proof. □

4. An Example

To illustrate the results obtained in this paper, we provide a relevant example.
Let s0 > 0 and let W ∈ C ([0, T ],R) be a function satisfying W (t) ≥ s0, for all

t ∈ [0, T ].
Consider γ > 1 and an interval (a, b) ⊂ (0, T ). Let u0 ∈ E be a nonnegative

function satisfying

u0(t) ≥
(
γ

T

) 1
γ

, if t ∈ (a, b) and u0(0) = u0(T ) = 0.

Let λ > 0, and suppose f and g are two continuous functions on [0, T ] satisfying

f(t, u) + µ

λ
g(t, u) = W (t)uγ−1, for all (t, u) ∈ [0, T ] × R.

Clearly, f + µ
λ
g is positively homogeneous of a degree γ − 1, and hypotheses (H3) and

(H4) hold. Therefore, by applying Theorem 1.1 and using (1.3), we establish that the
following problemtD

α,β,ϕ
T

(
Kp(t)(u(t)) + L(t)Kq(t)(u(t))

)
= λW (t)uγ−1(t), t ∈ (0, T ),

u(0) = u(T ) = 0,

admits at least three weak solutions.

5. Conclusions

In this paper, we consider a double-phase problem (1.2) involving the ϕ-Hilfer
fractional derivative and the p(t)-Laplacian operator. By combining a variational
framework with the critical point theorem of Bonanno and Marano, we establish
the existence of at least three distinct nontrivial solutions to Problem (1.2). To
the extent known to us, this represents the first application of the Bonanno-Marano
theorem to problems governed by the ϕ-Hilfer fractional derivative. Furthermore, the
proposed methodology is sufficiently flexible to be extended to analogous problems in
higher-dimensional settings.

Acknowledgements. We are deeply grateful to the referees for their careful reading
of our paper and for their thoughtful comments and detailed suggestions, which have
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