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GENERALIZED DERIVATIONS ASSOCIATE WITH HOCHSCHILD
2-COCYCLES ON A CLASS OF BANACH ALGEBRAS

ABBAS ZIVARI-KAZEMPOUR

ABSTRACT. We study a new type of generalized derivations associated with Hochs-
child 2-cocycles which was introduced by Nakajima (Turk. J. Math. 30 (2006),
403-411). We investigate generalized derivable maps at (commutative) zero product
associated with Hochschild 2-cocycles on a class of Banach algebras. We also prove
that every generalized Jordan derivation of this type from C*-algebra A into a
Banach A-bimodule M is a generalized derivation.

1. INTRODUCTION AND PRELIMINARIES

Let A be an algebra and M be an A-bimodule. A linear map 6 : A — M is said
to be a derivation if 0(zy) = 6(x)y + xd(y) for all z,y € A, and is called a Jordan
derivation if §(x*) = §(x)x + 26(x), for all z € A. By the usual polarization the
Jordan derivation identity is equivalent to assuming that

d(zoy) =d(z)y +yd(x) + z6(y) +d(y)x, =,y € A,

where ’o’ denotes the Jordan product x oy = zy + yx on A.

Obviously, each derivation is a Jordan derivation, but the converse is fails in general,
see [6,12]. Herstein [11] showed that each Jordan derivation from a 2-torsion free
prime ring into itself is a derivation. Johnson in [12] proved that every continuous
Jordan derivation from a C*-algebra A into a Banach A-bimodule M is a derivation.
It is shown that every Jordan derivation on nest algebras is an inner derivation [17].
Recall that a ring A is called prime if aAb = 0 implies that a =0 or b = 0.
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446 A. ZIVARI-KAZEMPOUR

Recently, Nakajima [16] introduced a new type of generalized derivations as follows.
A bilinear map ¢ : A x A — M is said to be a Hochschild 2-cocycle if

z(y, 2) — ¢(zy, 2) + O(z,y2) — d(z,y)2 =0, w,y,2 € A.
A linear map 6 : A — M is said to be a generalized derivation if there is a 2-cocycle

¢ such that
(1.1) o(zy) = 6(x)y +2d(y) + ¢(z,y), .,y € A,
and it is called a generalized Jordan derivation if

§(z%) = 6(x)x + 28(z) + d(z,7), x € A

We denote it by (d,¢). If ¢ = 0, then they are the usual derivations and Jordan
derivations, respectively. If we set ¢(z,y) = —xfy for some £ € M, then we obtain

(1.2) 6(zy) = d(x)y +2o(y) — 28y, =,y € A,

which was introduced in [15]. Note that if A is unital and M is a unital A-bimodule,
then (1.2) can be written as

(1.3) d(zy) =6(x)y +xé(y) —z6(l)y, =,y € A.

It is shown in [16] that the usual generalized derivations defined in [3, 15], left
centralizers and (o, 7)-derivations are also generalized derivations in above sense.

Clearly, generalized derivations are generalized Jordan derivations, however, there
exist generalized Jordan derivations that are not generalized derivations. Nakajima
in [16] showed, under suitable conditions, that every generalized Jordan derivation
(0,¢) from a 2-torsion free ring into itself is a generalized derivation. In [14], the
authors proved that every generalized Jordan derivation (6, ¢) on triangular algebra
is a generalized derivation. The analogous result was obtained for von Neumann
algebras as follows.

Theorem 1.1 ([13, Theorem 2.4]). Let A be a von Neumann algebra and let M
be a Banach A-bimodule. If (8, ¢) is a generalized Jordan derivation such that o0 is
continuous and ¢ is continuous in the first component, then (J,¢) is a generalized
derivation.

Recall that a von Neumann algebra is a weakly closed, self-adjoint algebra of
operators on a complex Hilbert space J containing the identity operator.
The linear map 0 is called derivable map at w € A if

o(zy) = d(z)y + 2 (y),

for all z,y € A with zy = w, and it is called derivable map at commutative w-product
if the derivation identity holds true for all x,y € A with xy = yxr = w.
Characterizing derivable maps on rings and algebras at a point w € A is maybe one
of the most studied linear preserver problems. For example, [1,2,4,5,9] considered the
case when w = 0. The derivable maps at commutative zero products have also been
studied in several papers, for instance, see [2,10,19,20], and the references therein.
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A linear map 0 is called generalized derivable map at w € A if the equality (1.1)
holds true for all z,y € A with zy = w.

Zhou in [18], showed that if ¢ is a generalized derivable map at w € A, where w
is a left or right separating point of M, then ¢ is a generalized Jordan derivation
associated with a Hochschild 2-cocycle ¢. Generalized derivable maps at zero point
associated with Hochschild 2-cocycles on CSL algebras are discussed in [13].

A complex Banach algebra A is said to have property (B) if for every continuous
bilinear map ¢ : A x A — X, where X is an arbitrary Banach space, the condition

z,y € A, zy =0 implies ¥ (z,y) =0,

implies that

U(xy, z) =Y(x,yz), x,y,z€ A
This concept was introduced in [1] and has since turned out to be applicable and
powerful for characterizing linear maps through the action on zero products.

It is worth noting that C*-algebras, group algebras L*(G) of locally compact group
G and Banach algebras that are generated by idempotents have this property, [1].

Recall that the Banach algebra A is generated by idempotents if J(A), the subalge-
bra of A generated algebraically by all idempotents in A, is dense in A.

Motivated by the above studies, in this paper, we consider the subsequent conditions
on a linear map ¢ : A — M associated with Hochschild 2-cocycle map ¢;

(D1) z,y € A, xy = 0 implies 6(x)y + xzd(y) + ¢(x,y) =0,
(D2) z,y € A, xy = yx = 0 implies §(x)y + xd(y) + ¢(z,y) = 0.

Our purpose is to characterize the maps (9, ¢) satisfying (D1) or (D2) in terms of
generalized derivations. We also prove, under mild conditions, that every generalized
Jordan derivation from a C*-algebra A into a Banach A-bimodule M is a generalized
derivation. This result generalizes Theorem 1.1, and implies Johnson’s result.

Throughout this paper, A is a unital Banach algebra with unit 1, and M is a unital
Banach A-bimodule.

2. GENERALIZED DERIVABLE MAPS AT ZERO PrRODUCTS

Let A be a Banach algebra with property (B). In this section, we characterize maps
(0,¢) from A into M that satisfy condition (ID1).

It is clear that if (0, ¢) is a generalized derivation, then conditions (D1) and (D2)
hold true, but in general, the converse fails. The following example illustrates this
fact.

FExample 2.1. Let

A= {[%1 iz] 1 X1,T2,23 E(C}

We make M = C an A-bimodule by defining

rA=mx\, A =Ar;, MANeC, z= [xl xQ] e A
0 T3
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Let ¢ : A x A — M be a continuous bilinear map defined by

(s 3655

Then, ¢ is Hochschild 2-cocycle. Define 6 : A — M via d(x) = z; for all z = [xl :1:2]

0 I3
in A. Clearly,
S(zy) = d(x)y + xo(y) + d(z,y),
for all x,y € A with zy = 0, or zy = yx = 0. Therefore, (§, ¢) satisties (D1) and (D2),
however, (0, ¢) is not a generalized derivation.

Recall that the centre of A-bimodule M is defined as
Za(M)={¢ € M:&x=xforall z € A}
If A= M, then Z4(M) will be denoted by Z(A) as a centre of A.

We commence with the following lemma which plays a key role in this sequel.
Lemma 2.1. Let ¢ be a Hochschild 2-cocycle map. If ¢(1,1) € Z4(M), then
o(x, 1) =¢(l,x) and o¢(zy,1)z =zp(yz,1), =z,y,z € A.
Proof. By assumption
(2.1) rd(y, z) — ¢(xy, 2) + ¢(x,y2) — d(x,y)2 =0, z,y,2 € A
Setting + =y = 1 in (2.1), we obtain
o(1,2) =¢(1,1)z, z€ A
Taking y = z =1 in (2.1), we arrive at
zo(1,1) = o(z,1), z€ A.
Since ¢(1,1) € Z4(M), it follows from the above equalities that

2.2 o, 1) = d(L,a), weA
By taking z =1 and z = 1 in (2.1), respectively, we obtain
(2.3) o(1,yz) = o(1,y)z and o(zy, 1) = zd(y, 1).

From (2.2) and (2.3) we conclude that
¢(xy, 1)z = 2d(y, 1)z = 26(1,y)z = 26(1, y2) = xd(yz, 1),
for all z,y, 2 € A. O

Our first main theorem is the following.

Theorem 2.1. Let (8, 9) be a generalized derivable map at zero product. If

(1> ¢(17 1) € ZA(M)?
(ii) 0 and ¢ are continuous,
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then § is a generalized derivation associated with Hochschild 2-cocycle 6, where
9(1’,3/) = ¢(:C7 y) - ¢(xy7 1) - .1'(5(1)3/, T,y € A.

Proof. Define a continuous bilinear mapping ¢ : A x A — M by

U(z,y) =0(x)y + x6(y) + ¢(z,y), z,y € A.
Then, ¢ (x,y) = 0 whenever zy = 0, and so property (B) gives

’l/](xy7 Z) = ,l/}(x7 yz)7 x? y72 e A7
that is,
(2.4) o(zy)z + 2yd(z) + ¢(zy, 2) = 6(x)yz + 26(yz) + ¢(z,yz).
Taking z =1 in (2.4), we arrive at
(2.5)  d(zy) =d(z)y +x6(y) + d(z,y) — d(zy, 1) —ayd(l), z,y €A
By setting x = 1 in (2.5), since it follows from Lemma 2.1 that ¢(1,y) = ¢(y, 1), we
get 0(1)y = yo(1) for all y € A. Thus, (2.5) can be written as d(zy) = é(x)y + xd(y) +
O(z,y) for all x,y € A, where
0(x,y) = o(x,y) — ¢(xy, 1) — z0(1)y.
Clearly, 6 is a continuous bilinear map. Using Lemma 2.1, we see that
20(y,z) — 0(xy, 2) + 0(x,yz) — 0(z,y)z = —xd(yz, 1) + ¢(zy, 1)z = 0.

Therefore, 0 is a Hochschild 2-cocycle. This finishes the proof. O

By taking ¢ = 0 in Theorem 2.1, we obtain the next result.

Corollary 2.1. If 6 : A — M 1is a continuous linear derivable map at zero product,
then 0 is a generalized derivation of type (1.3).

Next we show that with extra condition that ¢(1,1) = —4(1), the map 6 in Theo-
rem 2.1 is nothing other than ¢.

Corollary 2.2. Let (9, ¢) be a generalized derivable map at zero product. Suppose
that

(i) o(1,1) € Za(M),
(i) o(1,1) = =4(1),

(iii) § and ¢ are continuous.

Then, (6,¢) is a generalized derivation.

Proof. By Lemma 2.1, we have
(2.6) ¢(zy, 1)z = xd(yz,1), x,y,2 € A.

Setting z = 1, and x = y = 1 in (2.6), respectively, we arrive at

¢(zy,1) = zé(y,1) and ¢(1,1)z = ¢(z,1),
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for all z,y, 2z € A. Therefore,

oy, 1) = 2¢(y, 1) = 2¢(1, 1)y = —xd()y, x,y € A.
Thus,
0(x,y) = o(x,y) — ¢xy, 1) — 26(1)y = ¢(x,y),
and hence (6, ¢) is a generalized derivation by Theorem 2.1. O

We pointed out that Corollary 2.2 applied for unital C*-algebras. Furthermore, it
covers all unital Banach algebra that are generated by idempotent such as topologically
simple Banach algebras containing a non-trivial idempotent and matrix algebra M, (B)
of n x n matrices over a unital Banach algebra B.

The next example shows that the condition ¢(1,1) = —§(1) in the preceding
corollary cannot be removed.

Ezxample 2.2. Let C(X) denote the space of all continuous functions defined on compact
Hausdorff space X, and take A = C'(X).
Defined: A — Aand ¢p: A x A— A by

(5(N)z = f@) (¢(f.9))x = f(x)g(z), fgeAweX

(
Then, for every f,g € A with fg =0 we have 0(fg) = d(f)g+ fo(9)+&(f,g), however,
(0, ¢) is not a generalized derivation. Note that ¢(1,1) # —4d(1).

An A-bimodule M is called symmetric if Zo(M) = M. For example, if A is
commutative Banach algebra, then A* is a symmetric Banach A-bimodule with the
following module structures:

(f-2)y= flzy), (z-fly=flyx), x,ycA fecA.

Similarly, A™, the n-th dual module of A is symmetric. Thus, we get the following
result.

Corollary 2.3. Let § : A — A" be a generalized derivable map at zero product
associated with a Hochschild 2-cocycle map ¢. If A is commutative and

(i) ¢(1,1) = =6(1),

(ii) 6 and ¢ are continuous,

then (0, @) is a generalized derivation.

Let B(X) be the operator algebra of all bounded linear operators on Banach space
X. A standard operator algebra is any subalgebra of B(X) which contains the identity,
and the ideal F'(X) of all finite rank operators. It is well known that F'(X) is dense
in B(X) with respect to the strong operator topology (denoted by "SOT*, for short).

Note that standard operator algebras does not have property (B), in general. How-
ever, the next lemma can be useful to characterize derivable maps at zero products
on such algebras.
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Lemma 2.2 ([7, Theorem 4.1]). Let V' be a unital algebra. If ¢ is a bilinear map
from V x V into a vector space X such that

x,y €V, xy =0 implies Y(x,y) =0,
then
Y(z,u) =Y(xu, 1) and P(u,z) =1, ux),
for allxz € V and u € J(V).
Theorem 2.2. Let V be a standard operator algebra and 6 : V — B(X) be a gen-

eralized derivable map at zero product associated with Hochschild 2-cocycle ¢. If
o(1,1) = =5(1), then (8, 9) is a generalized derivation.

Proof. Define a bilinear mapping ¢ : V' x V' — B(X) by
U(x,y) = 0(x)y + 26(y) + ¢(z,y), zyeV
Then zy = 0 implies that ¢(x,y) = 0. Applying Lemma 2.2, we obtain
0(z)p + x6(p) + ¢(z,p) = ¥(z,p) = ¢(xp,1)
= 0(ap) + zpd(1) + P(zp, 1),

for all z € V and every rank-one idempotent p € V.
Since each element u € F(X) is a linear combination of rank-one idempotents, we
get

(2.7) d(zu) = 0(z)u + xzdé(u) + ¢(z,u) — ¢(xu, 1) — zud(l),
forallz € V and v € F(X). As ¢(zu, 1) = zup(l,1) = —zud(1), so (2.7) gives
(2.8) d(zu) = 0(z)u+ xé(u) + ¢(z,u), ze€V,ue F(X).

Let z,y € V. By applying (2.8), we obtain
d(zxyu) = 0(zy)u + 2yd(u) + ¢(xy,u), uwe F(X).
Replacing u by yu in (2.8), we have
0(zyu) = d(x)yu + x6(yu) + ¢(z, yu)
= d(x)yu + z(8(y)u + yd(u) + 6y, v)) + é(x, yu).
By comparing the two expressions for §(zyu), we arrive at
() = 8(x)yu + w8(y)u + w6(y, u) — Py, u) + o, yu),
for all z,y € V and v € F(X). Noticing that
z¢(y, u) — o(xy,u) + ¢(z,yu) = ¢(z,y)u,

therefore,
o(zy)u = o(x)yu + é(y)u + ¢(z, y)u, z,yeV.
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Since F'(X) is dense in B(X) with respect to SOT, there is a net u; in F(X) such
that u; — 1. Thus,

S(zy)u; = 8(x)yu; + 23 (y)u; + o, y)us,
for every x,y € V. From the separate continuity of product in B(X), we get
O(zy) = 6(x)y + zo(y) + o(x,y), =zyeV.
Consequently, (0, ¢) is a generalized derivation. O
As a consequence of Theorem 2.2 the next result follows.
Corollary 2.4. Let V' be a standard operator algebra and § : V- — B(X) be a linear
derivable map at zero product. If 6(1) =0, then § is a derivation.
3. GENERALIZED DERIVABLE MAPS AT COMMUTATIVE ZERO PRODUCTS

This section is devoted to characterizing generalized derivable maps at commutative
zero products, i.e., maps (4, ¢) that satisfy condition (ID2).
We start with the following lemma that vanish at commutative zero products.

Lemma 3.1 ([4, Lemma 2.2]). Let V' be a unital algebra. If ¢ is a bilinear mapping
from V' x V into a vector space X such that

r,y €V, xy=yxr =0 implies Y(x,y) =0,
then

V(@ u) + 9 (u, ) = (wu, 1) + (1, ur),
forallz € V and u € J(V).

Our main theorem in this section is indicated as follows.

Theorem 3.1. Let A be a unital Banach algebra with property A = J(A) and let
(0,¢) be a generalized derivable map at commutative zero product. Suppose that

(1> ¢(17 1) € ZA<M)?
(ii) 0 and ¢ are continuous.

Then, (9,0) is a generalized Jordan derivation, where

0(z,y) = ¢(x,y) — ¢(zy, 1) — x6(1)y.
Additionally, if p(1,1) = —0(1), then 6 = ¢.
Proof. Define a continuous bilinear mapping ¢ : A x A — M by

Uz, y) =0(@)y +26(y) + o(z,y), =z,y€ A
Then, ¢ (z,y) = 0 whenever zy = yz = 0. Applying Lemma 3.1, we get

Yz, y) + Uy, x) = (ry, 1) + (1, yx),
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for all x,y € A. This means that
0(zoy) =d(x)y +20(y) + 6(y)x + yo(z) + ¢(z,y) + ¢y, )
—ayd(1) = 6(V)zy — d(xy, 1) — ¢(1, yx).
Interchanging y by z, yields that
(3.1) 2(0(x)x + 20(2)) + 26(x, ) = 6(1)a” + 225(1) + 20(2?) + 2¢(a”, 1)
Let p be an idempotent in A. Replacing = by p in (3.1), we get

(32)  2(6()p+pd(p)) + 26(p,p) = 6(1)p+ pd(1) + 20(p) + 26(p, 1).
We multiply (3.2) on the left by p to obtain

(3.3) 2pd(p)p + 2pé(p, p) = pd(1)p + pé(1) + 2pe(p, 1).
Similarly, by multiplying (3.2) on the right by p, we arrive at

(3.4) 2pd(p)p + 26(p, p)p = pd(1)p + 6(1)p + 2¢(p, 1)p.

From (3.3) and (3.4) it follows that

(3.5) 2pd(p,p) — 26(p, p)p = pd(1) — 6(1)p + 2po(p, 1) — 26(p, 1)p,

for every idempotent p € A.
Since ¢ is 2-cocycle, we obtain pp(p,p) = ¢(p,p)p. On the other hand, by
Lemma 2.1,

¢(p, 1)p = po(p, 1).

Therefore, by (3.5) we get pd(1) = §(1)p for every idempotent p € A. As A is
generated by idempotent, we have §(1) € Z4(M). Thus, (3.1) implies that
(3.6) §(z%) = 0(x)r + 26(z) + 0(z,7), =€ A,
where 0(z,x) = ¢(x, ) — (22, 1) —26(1)z. Consequently, (4, 6) is a generalized Jordan
derivation associated with 2-cocycle map 6, defined by

0(x,y) = ¢z, y) — d(zy, 1) —xd(l)y, wz,y € A
If ¢(1,1) = —4(1), then
as is done in Corollary 2.2, therefore we get 0(x,y) = ¢(r,y). This completes the
proof. 0

Corollary 3.1. Let A be a von Neumann algebra and let (0,¢) be a generalized
derivable map at commutative zero product. If

() o(1,1) € Za(M),
(i) o(1,1) = —4(1),

)
(iii) 0 and ¢ are continuous,
(

then (0, @) is a generalized derivation.
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Proof. Since the linear span of projections is norm dense in a von Neumann algebra
A, by Theorem 3.1, (4, ¢) is a generalized Jordan derivation. On account of Theorem
1.1, (6, ¢) is a generalized derivation. O

Combining Theorem 3.1 and [16, Theorem 6], we obtain the next result.

Corollary 3.2. Let A be a unital prime Banach algebra with property A = J(A).
Suppose that 0 : A — A is a generalized derivable map at commutative zero product
associated with Hochschild 2-cocycle ¢. If

(i) o(1,1) € Z(A),
(iii) 0 and ¢ are continuous,
then (8, ¢) is a generalized derivation.

It is well-known that on the second dual space A** of a Banach algebra A there are
two multiplications, called the first and second Arens products which make A** into
a Banach algebra [8]. These products, which we denote by [J and <, are defined by

o0V = limlima; - b;, YOO =limlima;-b;, @, ¥ e A™,
7 ki j 7

where {a;}icr and {b;};c; are nets in A that converge in the w*-topology, to ® and
U, respectively. If these products coincide on A**, then A is said to be Arens regular.
We regard A as a closed subalgebra of both (A**, ) and (A**, ), and A is w*-dense
in A**.

More precisely, according to [8], for each Banach A-bimodule M, M** turns into a
Banach A**-bimodule where A** equipped with the first Arens product. The module
actions are defined by

O-u=w"— lilmli]mai ‘i, u-P=w"— lijrnlizxnxj ca;, e AT ue M,
where a; — ® and z; — u, in w*-topologies.

We shall use the following basic facts about the w*-continuity of the above defined
products which the reader can find in [8, Proposition A.3.52].

(i) For all ® € A** and = € A, the maps v +— u- P and u — z - u from M** into
itself are w*-continuous.

(i) For all u € M** and £ € M, the maps ® — & -u and & — & - P from A™
into M** are w*-w*-continuous.

Note that by [8, Corollary 3.2.43], every continuous linear map from a C*-algebra
A into its dual A* is weakly compact. This property entails that every continuous
bilinear map ¢ from A x A into some Banach space M is Arens regular, which means
that the two ways of extending to the second dual give the same result, that is

w* — lim lim ¢(a;, b;) = w* — lim lim ¢(a;, b;),
% J J i

for all w*-convergent nets {a;}ic;r and {b,};e; in A. One may refer to the monograph
of Dales [8] for a full account of Arens product.
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By [8, Corollary 3.2.37], every C*-algebra A is Arens regular and A* is a von
Neumann algebra, thus by extending the continuous linear map 6 : A — M and con-
tinuous bilinear map ¢ : Ax A — M to the second adjoints and applying Theorem 1.1,
we get the next result.

Theorem 3.2. Let A be a C*-algebra and let M be a Banach A-bimodule. If (6, ¢) is
a generalized Jordan derivation such that § is continuous and ¢ is continuous in the
first component, then (0, @) is a generalized derivation.

It should be pointed out that by setting ¢ = 0 in Theorem 3.2, we obtain a well-
known result due to Johnson [12, Theorem 6.3].

The following interesting result now follows from Theorem 3.1. Of course, it can
be obtained as a consequence of Theorem 3.2.

Theorem 3.3. Let A be a unital C*-algebra and (6, ¢) be a generalized derivable map
at commutative zero product. Suppose that

(i) (1,1) € Za(M),
(i) o(1,1) = —4(1),

(iii) 0 and ¢ are continuous.

Then, (6, ¢) is a generalized derivation.
From Theorem 3.3 we get the following result.

Corollary 3.3. Let A be a unital C*-algebra. If 6 : A — M is a continuous linear
derivable map at commutative zero product such that §(1) = 0, then § is a derivation.

In what follows, we prove a similar result of Theorem 2.2 for generalized derivable
maps at commutative zero products.

Theorem 3.4. Let V' be a standard operator algebra and 6 : V — B(X) be a general-
ized derivable map at commutative zero product associated with Hochschild 2-cocycle

¢. If

(i) ¢(1,1) = =4(1),
(ii) 0 and ¢ are SOT continuous,

then (0, ¢) is a generalized Jordan derivation.
Proof. Define a bilinear mapping ¢ : V' x V' — B(X) by
b(,y) = 0(x)y +26(y) + o(w,y), @y eV,
Then zy = yx = 0 implies that ¢(z,y) = 0. Applying Lemma 2.2, we get
Uz, u) +(u, z) = ¢(ru, 1) + ¢(1, ur),
for all x € V and u € J(V). That is,
d(rou)=0d(x)u+ zdé(u) + d(u)z + ud(z) + ¢(x,u) + ¢(u, x)
(3.7) —zud(l) — 6(Dux — ¢(zu, 1) — (1, ux).
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On the other hand,

d(zu, 1) = zup(l,1) = —zuo(l) and ¢(1,ur) = ¢(1,1)ur = —§(1)uz.
Therefore, by (3.7), we arrive at
(3.8) d(xou)=d(x)u+ x0(u)+ d(u)x + ud(z) + ¢(x,u) + ¢(u, ),

for all z € V and u € J(V).
For every y € V, there is a net u; in F(X) such that u; — y with respect to SOT.
Thus, by using (3.8) together condition (iii) we obtain

0(zoy) =d(x)y +xd(y) + 6(y)z + yd(z) + ¢(z,y) + d(y.z), z,yeV.
Taking y = z, we have
§(z%) = 6(x)x + 26(z) + d(z,x), T €V.
Consequently, (6, ¢) is a generalized Jordan derivation. 0

It should be pointed out that Theorem 3.4 remain valid if the algebra B(X) replaced
by V.

Corollary 3.4. Let V' be a standard operator algebra and 6 : V — V be a generalized
derivable map at commutative zero product associated with Hochschild 2-cocycle ¢. If

(i) ¢(1,1) = —4(1),
(ii) 0 and ¢ are SOT continuous,

then (0, @) is a generalized derivation.

Proof. It V' is commutative, then the result actually is Theorem 2.2. Note that in this
case condition (ii) is not necessary. If V' is not commutative, then, by Theorem 3.4,

§(2?) = §(x)x + 26(2) + ¢(z, 1),

for every x € V. Since V is prime, it follows from [16, Theorem 6] that (9, ¢) is a
generalized derivation. O

Obviously, if (0, ¢) is a generalized derivable map at Jordan zero product, that is,
z,y € A, xoy = 0 implies §(z)y +x0(y) + ¢(z,y) = 0, then J satisfies condition (D2).
In this regard, in all results of this section the term commutative zero products could
be replaced by Jordan zero products.

In view of Theorem 3.4, the question arises whether it is possible to remove the
SOT continuity of § and ¢ from the mention result.

Acknowledgements. The author would like to thank the referee for careful reading
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