KRAGUJEVAC JOURNAL OF MATHEMATICS
VOLUME 42(4) (2018), PAGES 619-630.

PSEUDO CONHARMONICALLY SYMMETRIC SPACETIMES
F. OZEN ZENGIN! AND A. YAVUZ TASCI?

ABSTRACT. In the present paper, firstly, the definition of pseudo conharmonically
symmetric Riemannian manifold is given. In the second section, some theorems
about these manifolds are proved. In the third section, pseudo conharmonically
symmetric spacetime is investigated. Under some special conditions, we examine
the properties of this spacetime.

1. INTRODUCTION

Because of the important role in differential geometry of symmetric spaces, in the
beginning of the last century, Cartan [4] initiated Riemannian symmetric spaces and
obtained a classification of these spaces. Let (M, g) be an n-dimensional Riemannian
manifold with the Riemannian metric g and the Levi-Civita connection V. If the
condition VR = 0, where R is the Riemannian curvature of a Riemannian manifold,
then this manifold is called locally symmetric, [4]. In every point P of this manifold,
this symmetry condition is equivalent to the fact that the local geodesic symmetry
F(P) is an isometry [12]. The class of Riemannian symmetric manifolds is very nat-
ural generalization of the class of manifolds of constant curvature. The notion of
locally symmetric manifolds have been studied by many authors by extending sev-
eral manifolds such as conformally symmetric manifolds [6], recurrent manifolds [26],
conformally recurrent manifolds [2], conformally symmetric Ricci-recurrent spaces
[15], pseudo-Riemannian manifold with recurrent concircular curvature tensor [11],
semi-symmetric manifolds [22], pseudo symmetric manifolds [5,24,25], weakly symmet-
ric manifolds [23], projective symmetric manifolds [21], almost pseudo concircularly
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symmetric manifolds [9], decomposable almost pseudo conharmonically symmetric
manifolds [3], etc.

A non-flat Riemannian or a semi-Riemannian manifold (M, g) (n > 2) is said to be
a pseudo symmetric manifold [5] if its curvature tensor R satisfies the condition

(VxR)(Y, Z)W =2A(X)R(Y, Z)W + A(Y)R(X, Z)W + A(Z)R(Y, X)W
(1.1) + AW)R(Y, 2)X + g(R(Y, Z)W, X)p,

where A is a non-zero 1-form, p is a vector field defined by
(1.2) 9(X, p) = A(X),

for all X and V denotes the operator of the covariant differentiation with respect to
the metric tensor g. The 1-form A is called the associated 1-form of the manifold. If
A =0, then the manifold reduces to a symmetric manifold in the sense of E.Cartan.
An n-dimensional pseudo symmetric manifold is denoted by (PS),. This is to be
noted that the notion of pseudo symmetric manifold studied in particular by Deszcz
[10] is different from that Chaki [5]. The notion of weakly symmetric manifolds was
introduced by Tamassy and Binh [23]. If the curvature tensor of type (1,3) of a
non-flat n-dimensional Riemannian manifold (n > 2) satisfies the condition

(VxR)(Y, Z)W =A(X)R(Y, Z)W + B(Y)R(X, Z)W + D(Z)R(Y, X)W
(1.3) + E(W)R(Y, Z)X + g(R(Y, Z)W, X)p,

where V denotes the Levi-Civita connection on (M, g) and A, B, D, E and p are
1-forms and a vector field respectively, which are non-zero simultaneously, then this
manifold is denoted by (W.S),,. Many authors have been studied weakly symmetric
manifolds [7,8, 13,14, 16], etc.

Conformal transformation of a Riemannian structure is an important object of
study in differential geometry. The conharmonic transformation which is a special
type of conformal transformations preserves the harmonicity of smooth functions.
Such transformation has an invariant tensor which is called the conharmonic curvature
tensor. It is easy to verify that this tensor is an algebraic curvature tensor, that is, it
possesses the classical symmetry properties of the Riemannian curvature tensor.

Let M and N be two Riemannian manifolds with the metrics g and g, respectively
related by

(1.4) g=¢"g,

where o is a real function. Then M and N are called conformally related manifolds,
and the correspondence between M and N is known as conformal transformation
[20]. It is known that a harmonic function is defined as a function whose Laplacian
vanishes. In generally, the harmonic function is not invariant. In 1957, Ishii obtained
the conditions which a harmonic function remains invariant and he introduced the
conharmonic transformations as a subgroup of the conformal transformation (1.4)
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satisfying the condition
(1.5) Uf}l + Uf}laf‘ =0,

where comma denotes the covariant differentiation with respect to the metric g. A
rank-four tensor H that remains invariant under conharmonic transformation of a
Riemannian manifold (M, g) is given by

H(X,Y,Z,U) =R(X,Y, Z,U) — n12[g(y, 2)8(X,U) — g(X, 2)S(Y,U)

(16) +g(X7U)S(}/7Z)_g<Y7U)S(sz>]7

where R and S denote the Riemannian curvature tensor of type (0,4) defined by
R(X,Y,Z,U) =g(R(X,Y)Z,U) and the Ricci tensor of type (0,2), respectively. The
curvature tensor defined by (1.6) is known as conharmonic curvature tensor. A
manifold whose conharmonic curvature tensor vanishes at every point of the manifold
is called conharmonically flat. Thus, this tensor represents the deviation of the
manifold from conharmonic flatness. Many authors have been studied the conharmonic
curvature tensor, [1,20]. The present paper deals with an n-dimensional pseudo
conharmonically symmetric Riemannian manifold (M, g) (non-conharmonically flat)
whose conharmonic curvature tensor H satisfies the condition

(VxH)(Y, Z,U, V) =2A(X)H(Y, Z,U,V) + AY)H(X, Z,U,V)
+ AZ)H(Y, X, U, V) + AUH(Y, Z,X,V)
+ A(

)
(1.7) VVH(Y, Z,U, X),

where A has the meaning already mentioned in (1.2). Such a manifold is called a
pseudo conharmonically symmetric manifold [5] and denoted by (PCHS),. Since
the conformal curvature tensor vanishes identically for n = 3, we assume that n > 3
throughout the paper.

L denotes the symmetric endomorphism of the tangent space at each point of the
manifold corresponding to the Ricci tensor S of type (0,2), that is

(1.8) g(LX,Y) = S(X,Y).

Let e; (1 <1i < mn) be an orthonormal basis of the tangent space at any point of the
manifold. From (1.6), we have

(L9 HXY) =Y H(X.eeY) =3 Hien X, Yie) = ———g(X.Y)

and

(110) ZH(eiaei:Xay):ZH(Xayaeivei) =0,
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where 7 is the scalar curvature of the manifold. Also, from (1.6) it follows that [18]
H(X,Y,Z,U) = —H(Y, X, Z,U),
H(X,Y,Z,U) = —H(X,Y,U, Z),
H(X,Y,Z,U) = H(Z,U,X,Y),
(1.11) H(X,Y,Z,U)+ HX,Z,U,Y) + HX,U,Y, Z) = 0.
We assume that our manifold is (PCHS),,. Thus, the relation (1.7) holds.
This paper is organized as follows. Section 2 deals with some properties of (PCH S),,.
In this section, we find the conditions for the scalar curvature if the Ricci tensor of
(PCHS), is recurrent. In the third section, we give an example for (PCHS),. In

the fourth section, we investigate (PC'HS), spacetime. In a perfect fluid (PCHS)4
spacetime, some theorems are proved.

2. PSEUDO CONHARMONICALLY SYMMETRIC MANIFOLDS
In this section, firstly, we give some properties of (PCH.S),, to use the other section.

Theorem 2.1. The scalar curvature r of a (PCHS), satisfies the condition
2 4
Ty = ( n )Aﬂ“,
n

where A is the associated vector field and r is the scalar curvature of (PCHS),.

Proof. We assume that our manifold is (PCHS),. In local coordinates, from (1.7),
we have

(2.1) Hijpim =2Am Hijig + AiHpjig + Aj Hipgg + A Hijpn + AiHjim,
where A is the associated vector field of (PCHS),,.

Multiplying (2.1) by g%g’*, we get
(2.2) H,, =2A,,H +4A'H,,,

where H,,; = g% Hipyj and H = g™ H,,.
Contracting (1.9) over X and Y and then taking the covariant derivative, we find

H:—nﬁzr and H7m:—ni2r7m.
By putting these equations in (2.2), we finally obtain
2 4
(2.3) T = < nx > Apr.
n
Thus, the proof is completed. 0

Corollary 2.1. In a (PCHS),, if the scalar curvature r is constant then r must be
zero.

Proof. In a (PCHS),,, we have (2.3). If we assume that r is constant, from (2.3), we
get A;r = 0. Since A; # 0 in a (PCHS),, thus, r must be zero. O



(PCHS),, SPACETIME 623

Theorem 2.2. If a (PCHS), with non-zero scalar curvature is Ricci-recurrent then
the recurrence vector field and the associated vector field of (PCHS),, are related by

2 4
>\l=<n+ )Az,
n

where N\; is the recurrence vector field and A is the associated vector field of this
manifold.

Theorem 2.3. In (PCHS), if the conharmonic curvature tensor of a (PCHS),, is
Codazzi type, then this manifold must be of zero scalar curvature.

3. AN EXAMPLE FOR (PCHS),

In this section we give an example for (PCHYS),, satisfying the conditions (1.6)
and (1.7).
We define a Riemannian metric on R* by the formula [15]

(3.1) ds® = o(dz)? + (dz*)? + (d2®)* + 2dx'da?,

where ¢ is a function of x!, 22, 3.

In the metric considered, the only non-vanishing components of Christoffel symbols,
the curvature tensor and the Ricci tensor are

1 1
F%l = _5(90,2 + 90,3)7 F?l = _5(90,2 + 80,3)7
1 1 1
lell = 590,17 lelQ = 590,27 IV113 = 590,&
Rign = - Ry = R = - Rism = -
1221 = 290,22, 1231 = 2@,23, 1331 = 230,33, 1321 = 290,32,
1
(3.2) S = 5(90,22 + ¢.33),

where “)” denotes the partial differentiation with respect to the coordinates.
We consider ¢ as,

(3.3) o = [(Mas + 1)(22)2 + (Mg + 1) () )=,
where Msy and M3z are non-zero constants and satisfy the relation
(3.4) Moy + M3z = 0.
In this case, we have the following relations
a2 = 2(Mp + el
(3.5) ¢33 = 2(Mzz + 1)l
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By using (3.2), we find the only non-zero components for Ry;j; and S;; as

1 1
Rigo = 590,22 - (1+M22)€(I1)27 Rizs1 = 590,33 =(1+ Mgs)e(xl)Qa
1y2

1
(3.6) S = 5(90,22 +@a3) = 2e(®)”,

Hence, the only non-zero components of the conharmonic curvature tensor Hp;jp,
are
1\2
Higo1 = M22€($ ) )
(3.7) Hyz31 = Myze™ ),
which never vanish. From (3.7), the only non-zero components of the derivative of
Hypji, are found as

H1221,1 = 2$1]\/[22€(361)2 = 2$1H12217
(38) H133171 = 2$1M336($1)2 = 2£L‘1H1331.

Let us consider the associated 1-form as

ZEl

(3.9) Ai(z) =4 2~
0, otherwise,

for i=1,

at any point z € V,.
To verify the relation (1.7) it is sufficient to prove that the equation

H1221,1 - 4A1 H12217

(3.10) Hizz11 = 4A1 Hyzz1.

By the aid of (3.8) and (3.9), we can easily see that (3.10) is satisfied. The other
components of each term of (1.7) vanish identically and the relation (1.7) holds
trivially.

Under our assumptions (3.1), (3.3) and (3.4), this manifold is a (PCHS),,.

4. PSEUDO CONHARMONICALLY SYMMETRIC SPACETIMES

This section deals with certain investigations in general relativity by the coordinate
free method of differential geometry. In this method of study, the spacetime of general
relativity is a connected four-dimensional semi-Riemannian manifold (M*, g) with
Lorentz metric g with signature (—,+,+, +). The geometry of the Lorentz metric
begins with the study of the casual character of vectors of the manifold. It is due to
this casuality that the Lorentz manifold becomes a convenient choice for the study of
general relativity.

Here, we consider a special type of spacetime which is called pseudo conharmonically
symmetric spacetime. A semi-Riemannian four-dimensional pseudo conharmonically
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symmetric manifold may similarly be defined by taking a Lorentz metric g with
signature (—, +,+, +).

In this section, we consider a perfect fluid pseudo conharmonically symmetric
spacetime having the basic vector field as the timelike velocity vector field U of the
fluid, that is

(4.1) g(U,U) = —1.

For a perfect fluid spacetime with the generator U as the flow vector field of the
flow and k as the gravitational constant, we have the Einstein’s equation without
cosmological constant as

(4.2) S(XY) = Sg(X,Y) = KT(X,Y),

where k is the gravitational constant, 7" is the energy momentum tensor of type (0,2)
given by

(4.3) T(X,Y) = (0 +p)AX)AY) + pg(X,Y),

with o and p as the energy density and the isotropic pressure of the fluid, respectively,
and A as the associated 1-form; U as the generator vector field.

H is to be noted that the basic geometric features of (PCHS),, manifolds, n > 3,
are also being maintained in the Lorentzian manifold which is necessarily a semi-
Riemannian manifold. Thus, Theorem 2.1, 2.2, 2.3 are also true for a (PCHS),
spacetime (n > 3).

By the aid of (4.2) and (4.3), we can write

(4.4) S(X,Y) = (; + kp) 9(X,Y) + k(o + p)AX)AY).
Taking a frame field and contracting (4.4) over X and Y, we obtain
(4.5) r=k(oc —3p).
In this case, we can state the following theorems.

Theorem 4.1. If the Ricci tensor of a perfect fluid of (PCHS)4 spacetime is recurrent
then the energy density and the isotropic pressure of this spacetime are proportional.

Proof. Let us assume that our manifold be a perfect fluid of (PC'HS), spacetime. By
taking the covariant derivative of (4.4), we get

(Vx)(0.2) = (5 4 k(X)) (0. 2) 0o (X) + X)) AN A(2)

(4.6) + k(e +p)[(VxA)(Y)A(Z) + A(Y)(VxA)(Z)].
If our spacetime is Ricci-recurrent then, from Theorem 2.2, we get

(4.7) (VxS)(Y, Z) = 3A(X)S(Y, Z).
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Comparing (4.7) with (4.6), we can find that

(dp(X) = 3A(X)p)g(Y, Z) + (do(X) + dp(X) = 3A(X)(0 + p)) A(Y)A(Z)
(4.8)  +(0+p)(VxA)(V)AZ) + A(Y)(VxA)(Z)) = 0.
Setting Y = Z = U in (4.8), we get

(4.9) do(X) =3A(X)o.

From Theorem 2.1, for a (PCHS), spacetime, we have

(4.10) dr(X) = 3A(X)r.

By taking the covariant derivative of (4.5) and using (4.9) and (4.10), we obtain
(4.11) dp(X) = 3A(X)p.

Comparing (4.9) and (4.11), we finally get

(4.12) o =cp.

Thus, this completes the proof. O

Theorem 4.2. A perfect fluid of (PCHS),4 spacetime which is Ricci-recurrent reduces
to n-Finstein spacetime with the condition n = 2kp.

Proof. If our manifold which is a perfect fluid (PCHS), spacetime is Ricci-recurrent
then the condition (4.12) holds. If we assume that ¢ =1 in (4.12), we find

(4.13) o=np,

which yields, by virtue of (4.5) and (4.13), to

(4.14) r = —2kp.
Comparing (4.4), (4.13) and (4.14), we find

(4.15) S(X,Y) = 2kpA(X)A(Y).

Thus, the equation (4.15) shows that this spacetime reduces to n-Einstein spacetime
with the condition 1 = 2kp. This completes the proof. 0

Theorem 4.3. In a perfect fluid of (PCHS), spacetime, if the energy momentum
tensor obeying FEinstein’s equation without cosmological constant is recurrent then
either the associated vector field of this manifold is divergence-free or this manifold
reduces to an Einstein spacetime.

Proof. In local coordinates, by taking the covariant derivative of (4.3), we find
(4.16) Tml = (U,l —i—p,l)AiAj + (O’ —|—p) (A“Aj + AiAj,l) + D.i9Gij-

We assume that our spacetime is Ricci-recurrent.
By taking the covariant derivative of (4.2) and using (4.7), we find

(4.17) Ty = 3AT;.
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Putting (4.17) in (4.16), changing the indices j,l and subtracting these two equations,
we obtain
(4.18)

3AI[(o + p)AiAj + pgij| — 34;[(0 + p)AiAi + pga) = Pagis — Piga + (01 + i) AiA;
—(O',j +p,j)AiAl + (O’ —l—p)[(Ai,lAj + AZ‘A]‘J) - (A,;’jAl + AiAlJ')].
Multiplying (4.18) by ¢¥ and multiplying the last equation by A, we find
(4.19) —9p=3A, + (o +p)Afl.

Since our spacetime is Ricci-recurrent, from Theorem 4.1 and equations (4.11) and
(4.19), we get

(4.20) (o +p)A, =0.
If we assume that o = —p then, from (4.5) and (4.4), it can be obtained that
(4.21) Sij = —kpgij.

The equation (4.21) gives us, this spacetime reduces to an Einstein’s spacetime. Thus,
we must say that ¢ # —p and then the vector field generated by the 1-form A is
divergence-free. This completes the proof. 0

Theorem 4.4. A perfect fluid (PCHS), spacetime whose conharmonic curvature
tensor is Codazzi type represents the equation of state in the radiation era in the
evoluation of our universe.

Proof. In a perfect fluid for (PCHS), spacetime, if the conharmonic curvature tensor
is Codazzi type then from Theorem 2.3, we can say that the scalar curvature must be
zero. In this case, the equation (4.5) reduces to

o = 3p.

This corresponds the equation of state in the radiation era in the evoluation of our
universe. The radiation is the era before the present matter dominated era. Thus,

the proof is completed.
O

5. CONCLUSION

General relativity takes the form of field equations, describing the curvature of
spacetime and the distribution of matter throughout spacetime. The effects of matter
and spacetime on each other are what we perceive as gravity.

The theory of the spacetime continuum already existed, but under general relativity
Einstein was able to describe gravity as bending of spacetime geometry. Einstein
defined a set of field equations, which represented the way that gravity behaved in
response to matter in spacetime. These field equations could be used to represent the
geometry of spacetime that was at the heart of the theory of general relativity. Because
spacetime curve, the objects moving through space would follow the “straightest” path
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along the curve, which explains the motion of the planets. “In general relativity the
matter content of the spacetime is described by the energy momentum tensor T which
is to be determined from physical considerations dealing with the distribution of matter
and energy. Since the matter content of the universe is assumed to behave like a
perfect fluid in the standard cosmological models, the physical motivation for studying
Lorentzian metric defined on a suitable four dimensional manifold M. Relativistic fluid
models of considerable interest in several areas of astrophysics, plasma physics and
nuclear physics, Theories of relativistic stars (which would be models for supermassive
stars) are also based on relativistic fluid models. The problem of accretion onto a
neutron stars or a black hole is usually set in the framework of relativistic fluid
models” [17].

“The physical motivation for studying various types of spacetime models in cosmol-
ogy is to obtain the information of different phases in the evolution of the universe,
which may be classified into three phases, namely, the initial phase, the intermediate
phase and the final phase. The initial phase is just after the Bing Bang when the
effects of both viscosity and heat flux were quite pronounce. The intermediate phase
is that when the effect of viscosity was no longer significant but the heat flux was till
not negligible. The final phase, which extends to the present state of the universe
when both the effects of viscosity and heat flux have become negligible and the matter
content of the universe may be assumed to be perfect fluid” [19]. As it is well known,
symmetric spaces play an important role in differential geometry. This paper deals
with pseudo conharmonically symmetric spaces. The conharmonic transformation
which is a special type of conformal transformations preserves the harmonicity of
smooth functions. Since the conharmonic curvature tensor which is an invariant un-
der the conharmonic transformation is an algebraic curvature tensor, it possesses the
classical symmetry properties of the Riemannian curvature. In this paper, we consider
the pseudo conharmonically symmetric curvature tensor in a spacetime and we prove
some theorems about the energy density and the isotropic pressure. In addition,
we prove that in a perfect fluid pseudo conharmonically symmetric spacetime if the
energy momentum tensor obeying Einstein’s equation without cosmological constant
is recurrent then either the associated vector field of this manifold is divergence-free
or this manifold reduces to Einstein.
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