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EXISTENCE RESULTS OF IMPULSIVE HYBRID FRACTIONAL
DIFFERENTIAL EQUATIONS WITH INITIAL AND BOUNDARY

HYBRID CONDITIONS

MOHAMED HANNABOU1, MOHAMED BOUAOUID1, AND KHALID HILAL1

Abstract. In this paper, we establish sufficient conditions for the existence and
uniqueness of solution of impulsive hybrid fractional differential equations with
initial and boundary hybrid conditions. The proof of the main result is based on
the classical fixed point theorems such as Banach fixed point theorem and Leray-
Schauder alternative fixed point theorem. Two examples are included to show the
applicability of our results.

1. Introduction

Fractional calculus refers to integration or differentiation of any order. The field
has a history as old as calculus itself, which did not attract enough attention for a
long time. In the past decades, the theory of fractional differential equations has
become an important area of investigation because of its wide applicability in many
branches of physics, economics and technical sciences. For a nice introduction, we
refer the reader to [9, 10] and references cited therein.

Impulsive effects are common phenomena due to short-term perturbations whose
duration is negligible in comparison with the total duration of the original process
[8]. Such perturbations can be reasonably well approximated as being instantaneous
changes of state, or in the form of impulses. The governing equations of such phe-
nomena may be modeled as impulsive differential equations. In recent years, there
has been a growing interest in the study of impulsive differential equations as these
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equations provide a natural frame work for mathematical modelling of many real world
phenomena, namely in the control theory, physics, chemistry, population dynamics,
biotechnology, economics and medical fields.

In [11], Surang Sitho, Sotiris K. Ntouyas and Jessada Tariboon, discussed the
existence results for the following hybrid fractional integro-differential equation:Dα

(
x(t)−

∑m

i=1 Iβi hi(t,x(t))
f(t,x(t))

)
= g(t, x(t)), t ∈ J = [0, T ],

x(0) = 0,

where Dα denotes the Riemann-Liouville fractional derivative of order α, 0 < α ≤ 1,
Iϕ is the Riemann-Liouville fractional integral of order ϕ > 0, ϕ ∈ {β1, β2, . . . , βm},
f ∈ C(J × R,R \ {0}), g ∈ C(J × R,R), with hi ∈ C(J × R,R) and hi(0, 0) = 0,
i = 1, 2, . . . , m.

In [4], K. Hilal and A. Kajouni, considered boundary value problems for hybrid
differential equations with fractional order (BVPHDEF of short) involving Caputo
differential operator of order 0 < α < 1:Dα

(
x(t)

f(t,x(t))

)
= g(t, x(t)), t ∈ J = [0, T ],

a x(0)
f(0,x(0)) + b x(T )

f(T,x(T )) = c,

where f ∈ C(J × R,R\{0}), g ∈ C(J × R,R) and a, b, c are real constants with
a + b ̸= 0.

Dhage and Lakshmikantham [2], discussed the following first order hybrid differen-
tial equation: 

d
dt

[
x(t)

f(t,x(t))

]
= g(t, x(t)), t ∈ J = [0, T ],

x(t0) = x0 ∈ R,

where f ∈ C(J × R,R\{0}) and g ∈ C(J × R,R). They established the existence,
uniqueness results and some fundamental differential inequalities for hybrid differential
equations initiating the study of theory of such systems and proved utilizing the theory
of inequalities, its existence of extremal solutions and comparison results.

Zhao, Sun, Han and Li [13], are discussed the following fractional hybrid differential
equations involving Riemann-Liouville differential operator:Dq

[
x(t)

f(t,x(t))

]
= g(t, x(t)), t ∈ J = [0, T ],

x(0) = 0,

where f ∈ C(J × R,R\{0}) and g ∈ C(J × R,R). They established the existence
theorem for fractional hybrid differential equation, some fundamental differential
inequalities are also established and the existence of extremal solutions.
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Benchohra et al. [1] discussed the following boundary value problems for differential
equations with fractional order:cDαy(t) = f(t, y(t)), t ∈ J = [0, T ], 0 < α < 1,

ay(0) + by(T ) = c,

where cDα is the Caputo fractional derivative, f : [0, T ] × R → R is a continuous
function, a, b, c are real constants with a + b ̸= 0.

Motivated by some recent studies related to the boundary value problem of a class
of impulsive hybrid fractional differential equations and by the nice works [12,14], we
consider the following Cauchy problem of hybrid fractional differential equations:

(1.1)


Dα

(
u(t)

f(t,u(t))

)
= g(t, u(t)), t ∈ [0, 1], t ̸= ti, i = 1, 2, . . . , n, 0 < α < 1,

u(t+
i ) = u(t−

i ) + Ii(u(t−
i )), ti ∈ (0, 1), i = 1, 2, . . . , n,

u(0)
f(0,u(0)) = ϕ(u),

Dα stands for Caputo fractional derivative of order α, f ∈ C([0, 1] × R,R \ {0}) and
ϕ : C([0, 1],R) → R are continuous functions such that ϕ(u) = ∑n

i=1 λiu(ξi), where
ξi ∈ (0, 1) for i = 1, 2, . . . , n, and Ik : R → R with u(t+

k ) = limϵ→0+ u(tk + ε) and
u(t−

k ) = limϵ→0− u(tk + ε) represent the right and left limits of u(t) at t = tk, k = i.
In the sequel of this work, we assume that ∑n

i=1 λiu(ξi)α−1 < 1.
This paper is arranged as follows. In Section 2, we recall some tools related to the

fractional calculus as well as some needed results. In Section 3, we present the main
results. Section 4 is devoted to examples of application of the main results.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are
used throughout this paper.

Throughout this paper, let J0 = [0, t1], J1 = (t1, t2], . . . , Jn−1 = (tn−1, tn], Jn =
(tn, 1], n ∈ N, n > 1.

For ti ∈ (0, 1) such that t1 < t2 < · · · < tn we define the following spaces:

I ′ =I \ {t1, t2, . . . , tn},

X ={u ∈ C([0, 1],R) : u ∈ C(I ′) and left u(t+
i ) and right limit u(t−

i )
exist and u(t−

i ) = u(ti), 1 ≤ i ≤ n}.

Then, clearly (X, ∥ · ∥) is a Banach space under the norm ∥u∥ = maxt∈[0,1]|u(t)|.

Definition 2.1 ([6]). The fractional integral of the function h ∈ L1([a, b],R+) of order
α ∈ R+ is defined by

Iα
a h(t) =

∫ t

a

(t − s)α−1

Γ(α) h(s)ds,

where Γ is the gamma function.



558 M. HANNABOU, M. BOUAOUID, AND K. HILAL

Definition 2.2 ([6]). For a function h defined on the interval [a, b], the Riemann-
Liouville fractional-order derivative of h, is defined by

(cDα
a+h)(t) = 1

Γ(n − α)

(
d

dt

)n ∫ t

a

(t − s)n−α−1

Γ(α) h(s)ds,

where n = [α] + 1 and [α] denotes the integer part of α.

Definition 2.3 ([6]). For a function h defined on the interval [a, b], the Caputo
fractional-order derivative of h, is defined by

(cDα
a+h)(t) = 1

Γ(n − α)

∫ t

a

(t − s)n−α−1

Γ(α) h(n)(s)ds,

where n = [α] + 1 and [α] denotes the integer part of α.

Lemma 2.1 ([10]). Let α, β ≥ 0, then the following relations hold:

1. Iαtβ = Γ(β + 1)
Γ(α + β + 1)tα+β;

2. cDαtβ = Γ(β + 1)
Γ(β − α + 1)tβ−α.

Lemma 2.2 ([10]). Let n ∈ N and n − 1 < α < n. If f is a continuous function,
then we have

Iα cDαf(t) = f(t) + a0 + a1t + a2t
2 + · · · + an−1t

n−1.

3. Main Results

In this section, we prove the existence of a solution for Cauchy problem (1.1).
To do so, we will need the following assumptions.

(H1) The function u 7→ u
f(t,u) is increasing in R for every t ∈ [0, 1].

(H2) The function f is continuous and bounded, that is, there exists a positive
number L > 0 such that |f(t, u)| ≤ L for all (t, u) ∈ [0, 1] × R.

(H3) There exists a positive number Mg > 0, such that
|g(t, u) − g(t, ū)| ≤ Mg|u − ū|, for all u, ū ∈ R and t ∈ [0, 1].

(H4) There exists a constant A > 0, such that
|Ii(u) − Ii(ū)| ≤ A|u − ū|, i = 1, 2, . . . , n, for all u, ū, ∈ R.

(H5) There exists a constant Kϕ > 0, such that
|ϕ(u) − ϕ(v)| ≤ Kϕ∥u − v∥, for all u, v ∈ C([0, 1],R).

(H6) There exist constants Mϕ > 0 and NI > 0, such that
|ϕ(u)| ≤ Mϕ∥u∥, |Ii(v)| ≤ NI |v|, i = 1, 2, . . . , n,

for all u ∈ C([0, 1],R) and v ∈ R.
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(H7) There exists a constant C > 0, such that
|Ii(u)| ≤ C, i = 1, 2, . . . , n, for all u ∈ R.

(H8) There exists a constant ρ > 0, such that
|ϕ(u)| ≤ ρ, for all u ∈ X.

(H9) There exist constants ρ0, ρ1 > 0, such that
|g(t, u(t))| ≤ ρ0 + ρ1∥u∥, for all u ∈ X and t ∈ [0, 1].

For brevity, let us set

(3.1) ∆ = L

(
Kϕ + nA + Mg

Γ(α + 1)

)
.

Lemma 3.1. Let α ∈ (0, 1) and h : [0, T ] → R be continuous. A function u ∈
C([0, T ],R) is a solution of the fractional integral equation

u(t) = u0 −
∫ a

0

(t − s)α−1

Γ(α) h(s)ds +
∫ t

0

(t − s)α−1

Γ(α) h(s)ds

if and only if u is a solution of the following fractional Cauchy problem:Dαu(t) = h(t), t ∈ [0, T ],
u(a) = u0, a > 0.

Lemma 3.2. Assume that hypotheses (H1) and (H2) hold. Let α ∈ (0, 1) and h :
[0, 1] → R be continuous. A function u is a solution of the fractional integral equation
(3.2)

u(t) = f(t, u(t))
[
ϕ(u) + θ(t)

n∑
i=1

Ii(u(t−
i ))

f(t, u(ti))
+
∫ t

0

(t − s)α−1

Γ(α) h(s)ds

]
, t ∈ [ti, ti+1],

where

θ(t) =

0, t ∈ [t0, t1],
1, t /∈ [t0, t1[,

if and only if u is a solution of the following impulsive problem:

(3.3)


Dα

(
u(t)

f(t,u(t))

)
= h(t), t ∈ [0, 1], t ̸= ti, i = 1, 2, . . . , n, 0 < α < 1,

u(t+
i ) = u(t−

i ) + Ii(u(t−
i )), ti ∈ (0, 1), i = 1, 2, . . . , n,

u(0)
f(0,u(0)) = ϕ(u).

Proof. Assume that u satisfies (3.3). If t ∈ [t0, t1[, then

Dα
(

u(t)
f(t, u(t))

)
=h(t), t ∈ [t0, t1[,(3.4)

u(0)
f(0, u(0)) =ϕ(u).(3.5)
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Applying Iα on both sides of (3.4), we obtain
u(t)

f(t, u(t)) = u(0)
f(0, u(0)) +

∫ t

0

(t − s)α−1

Γ(α) h(s)ds = ϕ(u) +
∫ t

0

(t − s)α−1

Γ(α) h(s)ds.

Then we get

u(t) = f(t, u(t))
(

ϕ(u) +
∫ t

0

(t − s)α−1

Γ(α) h(s)ds

)
.

If t ∈ [t1, t2[, then

Dα
(

u(t)
f(t, u(t))

)
= h(t), t ∈ [t1, t2[,(3.6)

u(t+
1 ) = u(t−

1 ) + I1(u(t−
1 )).(3.7)

According to Lemma 3.1 and the continuity of t 7→ f(t, u(t)), we have
u(t)

f(t, u(t)) = u(t+
1 )

f(t1, u(t1))
−
∫ t1

0

(t1 − s)α−1

Γ(α) h(s)ds +
∫ t

0

(t − s)α−1

Γ(α) h(s)ds

= (u(t−
1 ) + I1(u(t−

1 )))
f(t1, u(t1))

−
∫ t1

0

(t1 − s)α−1

Γ(α) h(s)ds +
∫ t

0

(t − s)α−1

Γ(α) h(s)ds.

Since
u(t−

1 ) = f(t1, u(t1))
(

ϕ(u) +
∫ t1

0

(t1 − s)α−1

Γ(α) h(s)ds

)
,

then we get
u(t)

f(t, u(t))) =
(

ϕ(u) +
∫ t1

0

(t1 − s)α−1

Γ(α) h(s)ds

)
+ I1(u(t−

1 ))
f(t1, u(t1))

−
∫ t1

0

(t1 − s)α−1

Γ(α) h(s)ds +
∫ t

0

(t − s)α−1

Γ(α) h(s)ds

=ϕ(u) + I1(u(t−
1 ))

f(t1, u(t1))
+
∫ t

0

(t − s)α−1

Γ(α) h(s)ds.

So, one has

u(t) = f(t, u(t))
(

ϕ(u) + I1(u(t−
1 ))

f(t1, u(t1))
+
∫ t

0

(t − s)α−1

Γ(α) h(s)ds

)
.

For t ∈ [t2, t3[, we have
u(t)

f(t, u(t)) = u(t+
2 )

f(t2, u(t2))
−
∫ t2

0

(t2 − s)α−1

Γ(α) h(s)ds +
∫ t

0

(t − s)α−1

Γ(α) h(s)ds

= (u(t−
2 ) + I2(u(t−

2 )))
f(t2, u(t2))

−
∫ t2

0

(t2 − s)α−1

Γ(α) h(s)ds +
∫ t

0

(t − s)α−1

Γ(α) h(s)ds

and

u(t−
2 ) = f(t2, u(t2))

(
ϕ(u) + (u(t−

1 ) + I1(u(t−
1 )))

f(t1, u(t1))
+
∫ t2

0

(t2 − s)α−1

Γ(α) h(s)ds

)
.
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Therefore, we obtain
u(t)

f(t, u(t)) =ϕ(u) + (u(t−
1 ) + I1(u(t−

1 )))
f(t1, u(t1))

+
∫ t2

0

(t2 − s)α−1

Γ(α) h(s)ds

+ I2(u(t−
2 ))

f(t2, u(t2))
−
∫ t2

0

(t2 − s)α−1

Γ(α) h(s)ds +
∫ t

0

(t − s)α−1

Γ(α) h(s)ds

=ϕ(u) + I1(u(t−
1 ))

f(t1, u(t1))
+ I2(u(t−

2 ))
f(t2, u(t2))

+
∫ t

0

(t − s)α−1

Γ(α) h(s)ds.

Consequently, we get

u(t) = f(t, u(t))
(

ϕ(u) +
2∑

i=1

Ii(u(t−
i ))

f(ti, u(ti))
+
∫ t

0

(t − s)α−1

Γ(α) h(s)ds

)
.

By using the same method, for t ∈ [ti, ti+1[, i = 3, 4, . . . , n, one has

u(t) = f(t, u(t))
(

ϕ(u) +
k∑

i=1

Ii(u(t−
i ))

f(ti, u(ti))
+
∫ t

0

(t − s)α−1

Γ(α) h(s)ds

)
.

Conversely, assume that u satisfies (3.2). Then for t ∈ [t0, t1[, we have

(3.8) u(t) = f(t, u(t))
(

ϕ(u) +
∫ t

0

(t − s)α−1

Γ(α) h(s)ds

)
.

Then, dividing by f(t, u(t)) and applying Dα on both sides of (3.8), we get equation
(3.4).

Again, substituting t = 0 in (3.8), we obtain u(0)
f(0,u(0)) = ϕ(u). Since u 7→ u

f(t,u) is
increasing in R for t ∈ [t0, t1[, the map u 7→ u

f(t,u) is injective in R. Then we get (3.5).
If t ∈ [t1, t2[, then we have

(3.9) u(t) = f(t, u(t))
(

ϕ(u) + I1(u(t−
1 ))

f(t1, u(t1))
+
∫ t

0

(t − s)α−1

Γ(α) h(s)ds

)
.

Then, dividing by f(t, u(t)) and applying Dα on both sides of (3.9), we get equation
(3.6). Again by (H3), substituting t = t1 in (3.8) and taking the limit in (3.9), then
(3.9) minus (3.8) gives (3.7).

Similarly, for t ∈ [ti, ti+1[, i = 2, 3, . . . , n, we getDα

(
u(t)

f(t,u(t))

)
= h(t), t ∈ [tk, tk+1[,

u(t+
i ) = u(t−

i ) + Ii(u(t−
i )).

(3.10)

This completes the proof. □

Lemma 3.3. Let g be continuous, then u ∈ X is a solution of Cauchy problem (1.1)
if and only if u is a solution of the integral equation
(3.11)

u(t) = f(t, u(t))
(

ϕ(u) + θ(t)
n∑

i=1

Ii(u(t−
i ))

f(t, u(ti))
+
∫ t

0

(t − s)α−1

Γ(α) g(t, u(t))ds

)
, t ∈ [ti, ti+1

]
,
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where

θ(t) =

0, t ∈ [t0, t1],
1, t /∈ [t0, t1[.

Now we are in a position to present our first result which deals with the existence
and uniqueness of solution for Cauchy problem (1.1). This result is based on Banach’s
fixed point theorem. To do so, we define the operator Ψ : X → X by

(3.12) Ψ(u)(t) = f(t, u(t))
(

ϕ(u) + θ(t)
n∑

i=1

Ii(u(t−
i ))

f(t, u(ti))
+
∫ t

0

(t − s)α−1

Γ(α) g(s, u(s))ds

)
.

Theorem 3.1. Assume that conditions (H1)-(H6) hold and the function g : [0, 1]×R →
R is continuous. Then Cauchy problem (1.1) has an unique solution provided that
∆ < 1, where ∆ is the constant given in equation (3.1).

Proof. Let us set supt∈[0,1] g(t, 0) = κ < ∞, and define a closed ball B̄ as follows

B̄ = {u ∈ X : ∥u∥ ≤ r},

where

(3.13) r ≥ Lκ

1 − L
(
Mϕ + nNI + 1

Γ(α+1)Mg

) .

We show that Ψ(B̄) ⊂ B̄. For u ∈ B̄, we obtain

|Ψ(u)(t)| ≤ L

∣∣∣∣ϕ(u) + θ(t)
n∑

i=1

Ii(u(t−
i ))

f(t, u(ti))
+
∫ t

0

(t − s)α−1

Γ(α) g(s, u(s))ds

∣∣∣∣
≤ L

[
Mϕ∥u∥ + nNI∥u∥ +

∫ t

0

(t − s)α−1

Γ(α) (|g(s, u(s)) − g(s, 0)| + |g(s, 0)|)ds
]

≤ L
[
Mϕ∥u∥ + nNI∥u∥ + 1

Γ(α + 1)
(
Mg∥u∥ + κ

)]
≤ L

[
(Mϕ + nNI)r + 1

Γ(α + 1)(Mgr + κ)
]
.

Hence, we get

(3.14) ∥Ψ(u)∥ ≤ L

(
(Mϕ + nNI)r + 1

Γ(α + 1)
(
Mgr + κ1

))
.

From (3.14), it follows that ∥Ψ(u)∥ ≤ r.
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Next, for (u, ū) ∈ X2 and for any t ∈ [0, 1], we have

|Ψ(u)(t) − Ψ(ū)(t)| =
∣∣∣∣f(t, u(t))

[
ϕ(u) + θ(t)

n∑
i=1

Ii(u(t−
i ))

f(t, u(ti))
+
∫ t

0

(t − s)α−1

Γ(α) g(s, u(s))ds

]

− f(t, ū(t))
[
ϕ(ū) + θ(t)

n∑
i=1

Ii(ū(t−
i ))

f(t, ū(ti))

+
∫ t

0

(t − s)α−1

Γ(α) g(s, ū(s))ds
]∣∣∣∣

≤L

(
Kϕ|u − ū| + nA|u − ū| + Mg

Γ(α + 1) |u − ū|
)

,

which implies that

∥Ψ(u) − Ψ(ū)∥ ≤ L
(

Kϕ + nA + Mg

Γ(α + 1)

)
∥u − ū∥ = ∆∥u − ū∥.(3.15)

In view of condition ∆ < 1, it follows that Ψ is a contraction operator. So Banach’s
fixed point theorem applies and hence the operator Ψ has an unique fixed point, which
is an unique solution of Cauchy problem (1.1). This completes the proof. □

In our second result, we discuss the existence of solutions for Cauchy problem (1.1)
by means of Leray-Schauder alternative.

For brevity, let us set

µ1 = L

Γ(α + 1) ,(3.16)

µ0 = 1 − µ1ρ1.(3.17)

Lemma 3.4 (Leray-Schauder alternative see [3]). Let F : G → G be a completely
continuous operator (i.e., a map that is restricted to any bounded set in G is compact).
Let P (F) = {u ∈ G : u = λFu for some 0 < λ < 1}. Then either the set P (F) is
unbounded or F has at least one fixed point.

Theorem 3.2. Assume that conditions (H1)-(H3) and (H7)-(H9) hold. Furthermore,
it is assumed that µ1ρ1 < 1, where µ1 is given by (3.16). Then Cauchy problem (1.1)
has at least one solution.

Proof. We will show that the operator Ψ : X → X satisfies all the assumptions of
Lemma 3.4.

Step 1. We prove that the operator Ψ is completely continuous.
Clearly, it follows from the continuity of functions f and g that the operator Ψ is

continuous.
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Let S ⊂ X be bounded. Then we can find a positive constant H such that
|g(t, u(t))| ≤ H, u ∈ S. Thus, for any u ∈ S, we can get

|Ψ(u)(t)| ≤ L

(
ρ +

n∑
i=1

C +
∫ t

0

(t − s)α−1

Γ(α) Hds

)

≤ L

(
ρ + nC + H

Γ(α + 1)

)
,

which yields

(3.18) ∥Ψ(u)∥ ≤ L

(
ρ + nC + H

Γ(α + 1)

)
.

From the inequality (3.18), we deduce that the operator Ψ is uniformly bounded.
Step 2. Now we show that the operator Ψ is equicontinuous.
For τ1, τ2 ∈ [0, 1] with τ1 < τ2, we obtain

|Ψ(u(τ2)) − Ψ(u(τ1))|

≤L
∣∣∣∣(ϕ(u) + θ(τ2)

n∑
i=1

Ii(u(t−
i ))

f(t, u(ti))
+ H

∫ τ2

0

(τ2 − s)α−1

Γ(α) ds
)

−
(

ϕ(u) + θ(τ1)
n∑

i=1

Ii(u(t−
i ))

f(t, u(ti))
+ H

∫ τ1

0

(τ1 − s)α−1

Γ(α) ds
)∣∣∣∣

≤L
(∣∣∣(θ(τ2) − θ(τ1))

n∑
i=1

Ii(u(t−
i ))

f(t, u(ti))
∣∣∣+ H

∣∣∣∣ ∫ τ2

0

(τ2 − s)α−1

Γ(α) ds −
∫ τ1

0

(τ1 − s)α−1

Γ(α) ds
∣∣∣∣)

≤L
(∣∣∣(θ(τ2) − θ(τ1))

n∑
i=1

Ii(u(t−
i ))

f(t, u(ti))
∣∣∣+ H

∣∣∣∣ ∫ τ1

0

(τ2 − s)α−1 − (τ1 − s)α−1

Γ(α) ds

+
∫ τ2

τ1

(τ2 − s)α−1

Γ(α) ds

∣∣∣∣),

which tends to 0 independently of u. This implies that the operator Ψ(u) is equicon-
tinuous. Thus, by the above findings, the operator Ψ(u) is completely continuous.

In the next step, it will be established that the set P = {u ∈ X : u = λΨ(u), 0 <
λ < 1} is bounded.

For u ∈ P , we have u = λΨ(u). Thus, for any t ∈ [0, 1], we can write u(t) =
λΨ(u)(t). Then we obtain

∥u∥ ≤ L

(
ρ + nC + 1

Γ(α + 1)(ρ0 + ρ1∥u∥)
)

≤ L(ρ + nC) + µ1(ρ0 + ρ1∥u∥).

Hence, we get

∥u∥ ≤ L(ρ + nC) + µ1ρ0

µ0
.
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This shows that the set P is bounded. In consequence, all the conditions of Lemma 3.4
are satisfied. Finally, the operator Ψ has at least one fixed point, which is a solution
of Cauchy problem (1.1). This completes the proof. □

4. Examples

Example 4.1. Consider the hybrid fractional differential equation:

(4.1)



cD
1
2

 u(t)
e−1+t+

√
u(t)

40+t2

 = e−t+| sin u(t)|
20 , t ∈ [0, 1] \ {t1},

u(t+
1 ) = u(t−

1 ) + (−2u(t−
1 )), t1 ̸= 0, 1,

u(0)
f(0,u(0) =

n∑
i=1

λiu(ti).

Here, we have

f(t, u(t)) =
e−1 + t +

√
u(t)

40 + t2 ,

g(t, u(t)) = e−t + | sin u(t)|
20 ,

|g(t, u1) − g(t, u2)| ≤ 1
40 |u2 − u1|, t ∈ [0, 1] and u1, u2 ∈ R,

∆ = L

(
Kϕ + nA + Mg

Γ(α + 1)

)
≃ 0.0012345687 < 1.

Then all the assumptions of Theorem 3.2 are satisfied, thus our results can be applied
to Cauchy problem (4.1).

Example 4.2. Consider another example for hybrid fractional differential equations of
the following form

(4.2)



cD
1
2

 v(t)
e−1+t2+

√
v(t)

32+t

 = e−2t+cos2(v(t))
20 , t ∈ [0, 1] \ {t1},

v(t+
1 ) = v(t−

1 ) + (−2v(t−
1 )), t1 ̸= 0, 1,

v(0)
f(0,v(0)) =

n∑
j=1

λjv(tj)).

Here, we have

f(t, v(t)) =
e−1 + t2 +

√
v(t)

32 + t
,

g(t, v(t)) = e−2t + cos2(v(t))
20 ,
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|g(t, v1) − g(t, v2)| ≤ 1
20 |v2 − v1|, t ∈ [0, 1] and v1, v2 ∈ R,

∆ = L

(
Kϕ + nA + Mg

Γ(α + 1)

)
≃ 0.3354687 < 1.

Then all the assumptions of Theorem 3.2 are satisfied, thus our results can be
applied to Cauchy problem (4.2).
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