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ON GENERALIZED MADDOX SPACES VIA DIFFERENCE
OPERATOR

SUBHASMITA MAHARANA1 AND PINAKADHAR BALIARSINGH2,∗

Abstract. In the present work, we begin our investigation with some dynamic
properties of new generalized difference operator ∆α,β,γ

h , defined in Baliarsingh
[5]. Combining this operator with the well known Cesàro operator, we also in-
troduce new classes of generalized Cesàro summable difference sequence spaces
w(∆α,β,γ

h , p), w0(∆α,β,γ
h , p) and w∞(∆α,β,γ

h , p), which are the natural extension of
the spaces wp, wp

0 and wp
∞ defined in [12] and w0(p), w(p), and w∞(p) defined

by Maddox [21]. We establish various topological properties on these spaces along
with some inclusion relations with other basic sequence spaces. Further, our in-
vestigation is carried out to determine α∗- and β∗- duals and characterize matrix
transformations on these spaces.

1. Introduction, Definitions and Preliminaries

One of the potential fields of sequence spaces as well as the growing achievements
of summability theory is the difference sequence spaces, which enriched with the
existence of sequence spaces via various difference operators providing wide range of
applications in both pure and applied area of mathematics. Moreover, ideal concepts of
difference operators and the related spaces are stimulating diverse fields of research like
approximation theory [11,19], spectral theory and linear algebra [1, 7, 15], numerical
analysis [8], compact operator theory [25, 31], fractional calculus [5, 6] and matrix
theory [13,26,29], etc.

A sequence space is a subspace of linear space w (the space of all real or complex
valued sequences), for instance, c, c0 and ℓ∞ are the spaces of all convergent, null,
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and bounded sequences, respectively, normed by ∥x∥∞ = supk |xk|. As the initial
development of this theory, in 1981, the idea of difference sequence spaces X(∆) =
{x = (xk) ∈ w : ∆x ∈ X}, where X ∈ {c0, c, ℓ∞} had been considered by Kızmaz [20],
by using the forward difference operator
(1.1) ∆xk = xk − xk+1, k ∈ N0 (the set of all non negative integers).
Recently, the difference space bvp consisting of the sequences x = (xk) such that
(xk − xk−1) ∈ ℓp have been studied in the case 0 < p < 1 by Altay and Başar [2], and
in the case 1 ≤ p ≤ +∞ by Başar and Altay [13]. The reader also refer to the recent
monograph [29], and references therein, devoted to the matrix transformations and
related topics.

In 1995, these spaces had been extended to the case of integer order ’m’ by Et and
Çolak [17], using the difference operator ∆m, defined by

(1.2) ∆mxk =
m∑

i=0
(−1)i

(
m

i

)
xk+i, k ∈ N0.

Latter, Baliarsingh [4] (see, also [8]) extended these spaces by using fractional order
difference operator, ∆α for a positive proper fraction α, i.e.,

(1.3) ∆αxk =
∞∑

i=0
(−1)i Γ(α + 1)

i!Γ(α + 1 − i)xk+i, k ∈ N0,

where Γ(α) denotes the Euler gamma function. Quite recently, the idea has been
extended to the case of arbitrary order α, β, γ by Baliarsingh [5] by defining

(1.4) ∆α,β,γ
h xk =

∞∑
i=0

(−α)i(−β)i

(−γ)i i! hα+β−γ
xk±i,

where (σ)k is the Pochhamer symbol or shifted factorial for σ ∈ R, defined by

(σ)k =

1, σ = 0 or k = 0,

σ(σ + 1) · · · (σ − k + 1), k ∈ N.

In particular, if h = 1 the above operators include the cases, such as the operator
∆1 ([20]) for α = 1, β = γ, the operator ∆(m) ([17]) for α = m ∈ N, γ = β and
the operator ∆α ([4]) for β = γ. Note that matrix representation of the operators
∆ = (δnk), ∆m = (δm

nk), ∆α = (δα
nk) and ∆α,β,γ

h = (δa,b,c
h,nk) (defined in (1.1), (1.2), (1.3)

and (1.4)), respectively, are as follows:

δnk =


1, k = n,

−1, k = n − 1,

0, k > n,

δm
nk =


1, k = n,

(−1)n−k
(

m
n−k

)
, 0 ≤ k < n,

0, k > n,

δα
nk =


1, k = n,
(−α)n−k

(n−k)! , 0 ≤ k < n,

0, k > n,

and δa,b,c
h,nk =


1, k = n,
(−α)n−k(−β)n−k

(−γ)n−k (n−k)! , 0 ≤ k < n,

0, k > n.



ON GENERALIZED MADDOX SPACES VIA DIFFERENCE OPERATOR 1223

Several authors including Mursaleen, Altay and Başar [27], Mursaleen and Başar [29],
Dutta and Baliarsingh [6], Tripathy and Sarma [30], Aydin and Polat [26], Vardwaj
and Gupta [14], Et [16], etc., have given their valuable attempts to construct new
sequence spaces by combining the notion of difference operators with some functions
(like Modulus function, Orlicz function, ϕ function, etc.), and certain means (Cesàro
mean, Nörlund mean, Riesz mean, Euler mean, etc.). In this regard, various authors
studied the topological properties on defined sequence spaces along with their matrix
transformations, inclusion relations and also determined their dual spaces. It has
been remarked that the above works will be more convenient if the used difference
operators defined by (1.1), (1.2), (1.3) and (1.4) are well defined and the related
difference sequences are convergent. In fact, the behavior of the operators mentioned
earlier on any arbitrary sequences is completely dynamic in nature. At this stage, we
want to emphasize this dynamic nature by following examples.

Example 1.1. Let α > γ > 0, β = 0, h = 1 and define a sequence x = (xk) = ( 1
5k ), k ∈

N0. Then, we have

∆α,β,γ
h xk =

+∞∑
i=0

(−α)i

(−γ)i i!xk+i = 1
5k

+∞∑
i=0

(−α)i

(−γ)i i! · 1
5i

= 1
5k

+∞∑
i=0

α(α − 1)(α − 2) · · · (α − i + 1)
γ(γ − 1)(γ − 2) · · · (γ − i + 1)i! · 1

5i

= 1
5k

+∞∑
i=0

ti.

By applying D’Almbert’s ratio test, we obtain the right hand side of above series

lim
i→+∞

∣∣∣∣ti+1

ti

∣∣∣∣ = lim
i→+∞

∣∣∣∣ (α − i)
(γ − i)(i + 1)5

∣∣∣∣ = 0.

This ultimately makes the sequence ∆α,β,γ
h x converges. So, the above series is conver-

gent.

Example 1.2. Let x = e = (1, 1, 1, . . . ) and α > γ > 0 and β = 0, h = 1. Then,
clearly, the sequence ∆α,β,γ

1 x converges. But, for β = γ, h = 1, it can be observed
that

∆−αxk = α + α(α + 1)
2 + · · · → +∞, as k → +∞,

which is divergent.

Example 1.3. Let the sequence x = (xk) be defined by xk = k
5
2 , k ∈ N0. Then, it can

be easily observed that

∆xk = k
5
2 − (k + 1) 5

2 = −5
2 − O(k 1

2 ) → −∞, as k → +∞,

which is divergent. But, for α = 3, β = γ, h = 1 we obtain
∆3xk =k

5
2 − 3(k + 1) 5

2 + 3(k + 2) 5
2 − (k + 3) 5

2
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=k
5
2 − 3

{
k

5
2 + 5

2k
3
2 + 15

8 k
1
2 + O(k− 1

2 )
}

+ 3
{

k
5
2 + 5k

3
2 + 15

2 k
1
2 + O(k− 1

2 )
}

−
{

k
5
2 + 15

2 k
3
2 + 135

2 k
1
2 + O(k− 1

2 )
}

→ 0,

as k → +∞.

As a result, we conclude that the sequence ∆3x is convergent.

Example 1.4. Let x = (xk) be the oscillating sequence defined by xk = 1
3 + (−1)k

6 ,
k ∈ N0. Now, after applying the operator ∆α on x we have,

∆αxk =


2α−1

3 , k is even,

−2α−1

3 , k is odd,

which is a divergent sequence.

Furthermore, the study on convergence of difference sequences up to the case of
fractional order, is found in the work of Baliarsingh [6]. But, convergence analysis
in general case is quite challenging, which to be discussed in this sections. Moreover,
our aim is to construct some new class of difference sequence spaces by combining the
generalized difference operator with Cesàro operator of order one and also investigate
their topological properties with some inclusion relations. Usually, the Cesàro operator
C1 of order one, and its inverse (C1)−1, respectively, in matrix form are given by
C1 = (cnk), and C−1

1 = (snk), where

cnk =


1

n+1 , 0 ≤ k ≤ n,

0, elsewhere,
and snk =


n + 1, k = n,

−(k + 1), k = n − 1,

0, elsewhere.

Now, combining the generalized difference operator ∆α,β,γ
1,− and Cesàro operator C1,

we have the generalized Cesàro difference operator (C1∆α,β,γ
1,− ) as

(C1∆α,β,γ
1,− )nk =


1

n+1
∑n−k

j=0
(−α)j(−β)j

(−γ)jj! , if 0 ≤ k < n,
1

n+1 , k = n,

0, k > n.

Using Theorem 2 and Remark 1 of [9], we determine the inverse of C1∆α,β,γ
1,− explicitly

as

(C1∆a,b,c
1,− )−1

nk =


(−1)n−k ∏n

l=k(l + 1)D̄k
n−k(C1∆α,β,γ

1,− ), if 0 ≤ k < n,

n + 1, k = n,

0, k > n,
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where
(1.5)

D̄k
n(C1∆α,β,γ

1,− ) =

∣∣∣∣∣∣∣∣∣∣∣∣

1
k+2

∑k+1
j=k

(−α)j(−β)j

(−γ)jj!
1

k+2 0 · · ·
1

k+3
∑k+2

j=k
(−α)j(−β)j

(−γ)jj!
1

k+3
∑k+1

j=k
(−α)j(−β)j

(−γ)jj!
1

k+3 · · ·
...

... . . . ...
1

n+1
∑n

j=k
(−α)j(−β)j

(−γ)jj!
1

n+1
∑n−1

j=k
(−α)j(−β)j

(−γ)jj! · · · 1
n+1

∑k+1
j=k

(−α)j(−β)j

(−γ)jj!

∣∣∣∣∣∣∣∣∣∣∣∣
.

This follows from the fact that (C1∆α,β,γ
1,− )−1 = (∆α,β,γ

1,− )−1C−1
1 . Note that C−1

1 is as
stated above and

(∆α,β,γ
1,− )−1

nk =


1, k = n,

(−1)n−kD̃k
n−k(∆α,β,γ

1,− ), 0 ≤ k ≤ n − 1,

0, k > n,

where

D̃k
n(∆α,β,γ

1,− ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

d̃10 d̃11 · · · d̃1,n−1
d̃20 d̃21 · · · d̃2,n−1
d̃30 d̃31 · · · d̃3,n−1
... ... . . . ...

dn0 dn1 · · · d̃n,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where d̃10 = −αβ
γ

, d̃11 = 1, d̃1,n−1 = 0, d̃20 = α(α−1)β(β−1)
2!γ(γ−1) , d̃21 = −αβ

γ
, d̃2,n−1 = 0,

d̃30 =−α(α − 1)(α − 2)β(β − 1)(β − 2)
3!γ(γ − 1)(γ − 2) ,

d̃31 =α(α − 1)β(β − 1)
2!γ(γ − 1) , d̃3,n−1 = 0,

d̃n0 =(−1)n α(α − 1)(α − 2) · · · (α − n + 1)β(β − 1)(β − 2) · · · (β − n + 1)
γ(γ − 1)(γ − 2) · · · (γ − n + 1)n! ,

d̃n,1 =(−1)n−1 α(α − 1)(α − 2) · · · (α − n + 2)β(β − 1)(β − 2) · · · (β − n + 2)
γ(γ − 1)(γ − 2) · · · (γ − n + 2)(n − 1)! ,

d̃n,n−1 =−αβ

γ
.

Let p = (pk) be bounded sequence of positive real numbers and M = supk{1, pk} and
0 < inf pk. Then, the spaces w0(p), w(p) and w∞(p) of all sequences that are strongly
summable to zero, summable and bounded sequences, respectively defined in [21,22]
as follows:

w0(p) =
{

x = (xk) ∈ w : lim
n→+∞

1
n + 1

n∑
k=0

|xk|pk = 0
}

,

w(p) =
{

x = (xk) ∈ w : lim
n→+∞

1
n + 1

n∑
k=0

|xk − l|pk = 0, for some l ∈ C
}

,
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w∞(p) =
{

x = (xk) ∈ w : sup
n

( 1
n + 1

n∑
k=0

|xk|pk

)
< +∞

}
,

which are complete paranormed space with respect to the paranorm [12]

g(x) = sup
n

( 1
n + 1

n∑
k=0

|xk|pk

) 1
M

.

Motivated by the idea above, we define following new spaces by combining the gener-
alized difference operator ∆α,β,γ

h with Cesàro operator of order one C1 as

w0(∆α,β,γ
h,− , p) =

{
x = (xk) ∈ w : lim

n→+∞

1
n + 1

n∑
k=0

|∆α,β,γ
h,− xk|pk = 0

}
,

w(∆α,β,γ
h,− , p) =

{
x = (xk) ∈ w : lim

n→+∞

1
n + 1

n∑
k=0

|∆α,β,γ
h,− xk − l|pk = 0,

for some l ∈ C
}

,

w∞(∆α,β,γ
h,− , p) =

{
x = (xk) ∈ w : sup

n

( 1
n + 1

n∑
k=0

|∆α,β,γ
h,− xk|pk

)
< +∞

}
,

where ∆α,β,γ
h,− xk = ∑+∞

i=0
(−α)i(−β)i

(−γ)i i! hα+β−γ xk−i. In particular, these spaces includes the
following spaces.

(a) For α = 0, β = γ, h = 1, the above spaces are reduced to the basic spaces
defined by [21].

(b) For (pk) = (p), where 1 ≤ p < +∞, α = 0, β = γ, h = 1, the above spaces
are reduce to the basic spaces wp

∞, wp
0 and wp defined by [12].

Now, we provide certain definitions which are used in the sequel.

• Let g be a function from a linear space to R, is said to be a paranorm if it
satisfies the following axioms
(a) g(x) = 0 if x = 0;
(b) g(−x) = g(x);
(c) g(x + y) ≤ g(x) + g(y);
(d) If (µn) be a sequence of scalars with µn → µ as n → +∞, and (xn)n∈N, x ∈

X. Then, g(µnxn − µx) → 0 as n → +∞.
Moreover, (X, g) is called the paranormed space (cf. [12])

• A sequence space E is said to be solid, if (λkxk) ∈ E, for all sequence of scalar
|λk| ≤ 1, for (xk) ∈ E.

• A sequence space E is said to be separable if there exists a countable dense
subspace for this space.
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2. Main Results

This section includes some results associated with convergence of generalized dif-
ference sequence ∆α,β,γ

h,− x, and topological properties of newly defined spaces. Before
proceeding further, we required the following definition (cf. [6]),

A sequence x = (xk) ∈ w is said to be of order ν > 0, i.e., x = O(kν) if there exits
a positive constant C such that

|xk| ≤ Ckν , k = 0, 1, 2, . . .

Motivated by the work in [6], we generalize the following theorem.

Theorem 2.1. Let α, β, γ ∈ R+ (the set of positive real numbers) and x = (xk), be a
sequence of order ν such that α + β − γ > ν. Then, the difference sequence (∆α,β,γ

h,− xk)
is absolutely convergent.

Proof. Suppose x = (xk) is a sequence of order ν. Then there exists a positive constant
M, such that,

|xk| ≤ Mkν , k ∈ N0.

Now, the series defined in equation (1.4) becomes

|∆α,β,γ
h,− xk| =

∣∣∣∣ +∞∑
i=0

(−α)i(−β)i

i!(−γ)ihα+β−γ
xk−i

∣∣∣∣
≤

+∞∑
i=0

∣∣∣∣ (−α)i(−β)i

i!(−γ)ihα+β−γ
xk−i

∣∣∣∣
≤M

+∞∑
i=0

∣∣∣∣ (−α)i(−β)i

i!(−γ)ihα+β−γ

∣∣∣∣ · |k − i|ν

=M
+∞∑
i=0

∣∣∣∣α(α − 1) · · · (α − (i − 1))β(β − 1) · · · (β − (i − 1))
i!hα+β−γγ(γ − 1) · · · (γ − (i − 1))

∣∣∣∣ · |k − i|ν

= M

ha+b−c

+∞∑
i=0

∣∣∣∣(i − (α + 1))(i − (α + 2)) · · · (i − (α + i))
i!

∣∣∣∣
×
∣∣∣∣(i − (β + 1))(i − (β + 2)) · · · (i − (β + i)))
(i − (γ + 1))(i − (γ + 2)) · · · (i − (γ + i)))

∣∣∣∣ · |k − i|ν

≤ M

hα+β−γ

+∞∑
i=0

∣∣∣∣O(ii−(α+1))O(ii−(β+1))
i!O(ii−(γ+1))

∣∣∣∣ · |k − i|ν

= M

hα+β−γ

+∞∑
i=0

∣∣∣∣O(i2i−(α+β)−2)
O(i2i−(γ+1))

∣∣∣∣iν

∣∣∣∣ki − 1
∣∣∣∣ν

= M

hα+β−γ

+∞∑
i=0

∣∣∣∣O(iν−(α+β)+γ−1)
∣∣∣∣ · ∣∣∣∣ki − 1

∣∣∣∣ν .

Note that for i → +∞, |k
i

− 1|α → 1, and the right hand side converges if ν − (α +
β) + γ − 1 < −1 which implies ν < α + β − γ.
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For more clarity, we mention the plots of ∆α,β,γ
h,− xk, for the set of sequences xk =

k1.05, k1.75, k1.25, k1.15, k1.95, k2, with α = 1.58, β = 3.11, γ = 3.12, h = 1 as
below. □

1500 2000 2500 3000 3500 4000 4500

k

-14

-12

-10

-8

-6

-4

-2

0

2

4

,
,

h
,-

 x
k

10
4

x
k
=k

1.05

x
k
=k

1.75

x
k
=k

1.25

x
k
=k

2

x
k
=k

1.15

x
k
=k

1.95

Figure 1. Convergence of (∆α,β,γ
h,− xk), using the condition as in Theo-

rem 1

Theorem 2.2. For every convergent sequence x = (xk), the difference sequence
(∆α,β,γ

h,− xk) converges if α + β > γ.

Proof. Suppose x = (xk) is a convergent sequence. Then, for each ϵ > 0, there exist
l ∈ C and K ∈ N0 such that

|xk − l| < ϵ, for all k ≥ K.

So, the series,

|∆α,β,γ
h,− xk| =

∣∣∣∣ +∞∑
i=0

(−α)i(−β)i

i!(−γ)ihα+β−γ
xk−i

∣∣∣∣
=
∣∣∣∣ +∞∑

i=0

(−α)i(−β)i

i!(−cγ)ihα+β−γ
xk−i − l + l

∣∣∣∣
≤

+∞∑
i=0

∣∣∣∣ (−α)i(−β)i

i!(−c)ihα+β−γ

∣∣∣∣ · |xk−i − l| + |l|
+∞∑
i=0

∣∣∣∣ (−α)i(−β)i

i!(−γ)ihα+β−γ

∣∣∣∣
=(|l| + ϵ)

+∞∑
i=0

∣∣∣∣ (−α)i(−β)i

i!(−c)ihα+β−γ

∣∣∣∣.



ON GENERALIZED MADDOX SPACES VIA DIFFERENCE OPERATOR 1229

Note that the convergence of the difference sequence depends on the convergence of
series in right hand side, above. For simplicity we take h = 1. Then, applying Raabe’s
test in the above series, we obtain

lim
i→+∞

∣∣∣i( ai

ai+1
− 1

)∣∣∣ = lim
i→+∞

∣∣∣(−α)i(−β)i

(−γ)i i! · (−γ)i+1 (i + 1)!
(−α)i+1(−β)i+1

∣∣∣
= lim

i→+∞

∣∣∣ −α(−α + 1) · · · (−α + i − 1)
α(−α + 1)(−α + 2) · · · (−α + i)

∣∣∣
×
∣∣∣−β(−β + 1) · · · (−β + i − 1)(i + 1) − γ(−γ + 1) · · · (−γ + i)

−β(−β + 1) · · · (−β + i) − γ(−γ + 1) · · · (−γ + i − 1)

∣∣∣
= lim

i→+∞

∣∣∣i( (i + 1)(−γ + i)
(−α + i)(−β + i) − 1

)∣∣∣
= lim

i→+∞

∣∣∣i−iγ + i2 − γ + i − αβ + iα + iβ − i2

i(−α
i + 1)(−β

i + 1)

∣∣∣
= lim

i→+∞

∣∣∣∣∣(α + β − γ + 1) − αβ+γ
i

(−α
i + 1)(−β

i + 1)

∣∣∣∣∣ = α + β − γ + 1.

This implies that the difference sequence converges while α + β − γ + 1 > 1, i.e.,
α + β > γ, which concludes the proof. □

Remark 2.1. It is pertinent to note here that,
(∆α1,β1,γ1

1,− (∆α2,β2,γ2
1,− (xk)) ̸= (∆α1+α2+β1+β2,γ1+γ2

1,− (xk)),
which can be countered by following example.

Example 2.1. Suppose the sequence x = (xk) is defined by xk = 1, k ∈ N0. Then it
can be easily observed that

∆1,2,2
1,− xk = ∆0+1,−1+3,5−3

1,− xk = ∆(xk) = 0, as k → +∞.

But, for α1 = 0, α2 = 1, β1 = −1, β2 = 3, γ1 = −3, γ2 = 5 and h = 1 and we
obtain,

∆1,3,5
1,− xk =

+∞∑
i=0

(−1)i(−3)i

(−5)i i! ,

which is a divergent sequence as k → +∞, from Rabee’s test of a series. Consequently,
the sequence (∆0,−1,−3

1,− (∆1,3,5
1,− xk)) is divergent.

Remark 2.2. The spaces X(∆α,β, γ
h,− , p), X ∈ {w, w0, w∞}, respectively, form linear

spaces, provided ∆α,β,γ
h,− xk exists for all k ∈ N0.

Proof. The proof is trivial, hence omitted. □

Theorem 2.3. The spaces X(∆α,β, γ
h,− , p), X ∈ {w, w0} form complete paranormed

spaces with respect to the paranorm

g(x) = sup
n

( 1
n + 1

n∑
k=0

∣∣∣∣∆α, β, γ
h,− xk

∣∣∣∣pk
) 1

M

,
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where M = max{1, H} and H = supk pk. However, the space w∞(∆α,β,γ
h,− , p) is a

paranormed space if and only if inf pk > 0.

Proof. Clearly, if x = θ = (0, 0, . . . ), then g(x) = 0. Now, we prove the theorem for
X = w.

Again,

g(x) = sup
n

( 1
n + 1

n∑
k=0

∣∣∣∣(−1)∆α, β, γ
h,− (−xk)

∣∣∣pk
) 1

M

= sup
n

( 1
n + 1

n∑
k=0

∣∣∣∣∆α, β, γ
h,− xk

∣∣∣∣pk
) 1

M

= g(−x).

Also,

g(x + y) = sup
n

( 1
n + 1

n∑
k=0

∣∣∣∆α,β,γ
h,− (xk + yk)

∣∣∣pk
) 1

M

≤ sup
n

( 1
n + 1

n∑
k=0

∣∣∣∆α, β, γ
h,− xk

∣∣∣) 1
M

+ sup
n

( 1
n + 1

n∑
k=0

∆α, β, γ
h,− yk

∣∣∣) 1
M

=g(x) + g(y).

Now, let (qn) be a sequence of scalar with qn → q as n → +∞ and xn ∈ w(∆α, β,γ
h,− , p).

Then,

g(qnxn − qx) = sup
n

( 1
n + 1

n∑
k=0

∣∣∣∣∆α, β, γ
h,− (qnxn

k − qxk)
∣∣∣pk
) 1

M

≤ sup
n

( 1
n + 1

n∑
k=0

∣∣∣∣∆α,β,γ
h,− (qnxn

k − qnxk + qnxk − qxk)
∣∣∣∣pk
) 1

M

= sup
n

( 1
n + 1

n∑
k=0

∣∣∣∆α, β, γ
h,− (qn(xn

k − xk) + xk(qn − q)
∣∣∣pk
)M

→ 0,

as n → +∞. As (qn) and (xn) converge to q and x respectively, the right hand side
tends to zero.

For the case of w∞(∆α,β,γ
h,− , p) the proofs of condition 1, 2 and 3 of the paranorm

are similar, hence we omit these. For last condition, we require the followings.
Let λ = (λn) be the sequence of scalar with λn → 0 and x be fixed (implies λx → θ

(null sequence)). We need to prove inf pk > 0 to form a paranormed space.
On contrary, suppose inf pk < 0 (Theorem 2 in [23]). Then, there exist k1, k2, . . . , ki,

. . . such that
pk <

1
i2 ,

where 21 < k1 < 22, 22 < k2 < 23, . . . , 2r < k < 2r+1. Again consider,

h(x) = sup
r

{ 1
2r

∑
r

∣∣∣∆α,β,γ
h,− xk

∣∣∣pk
} 1

M

.
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Let (xk) be the sequence such that, ∆α,β,γ
h,− xk → 1 as k → +∞. Now, let us define the

sequence x̄ = (x̄k) by

x̄k =

∆α,β,γ
h,− xk, k = ki,

0, elsewhere.

Clearly, x̄ = (x̄k) ∈ w∞(∆α,β,γ
h,− , p). Again,

h(λx̄) = 1
2ri

∑
ri

|∆α,β,γ
h,− λxki

|pki = |λ|pki ≤ |λ|
1
i2 → 1, as i → +∞

Moreover,

(2.1) g(x)
2 < h(x) < 2g(x),

provided, the series for the operator ∆α,β,γ
h,− exists. This implies g(λx̄) ≥ 1

2 , which is a
contradiction. So, this proves the condition.

Secondly, our claim is now reduced to show the completeness property. So, let (xi)
be any arbitrary Cauchy sequence in w(∆α,β,γ

h , p).
By definition, for each ϵ > 0, there exists I ∈ N0 such that

g(xi − xj) < ϵ, for all i, j ≥ I

implies supn

(
1

n+1
∑n

k=0

∣∣∣∆α,β,γ
h,− (xi

k − xj
k)
∣∣∣pk
) 1

M < ϵ, for all i, j > I. This implies that
for each sufficiently large k ∈ N0 the sequence (xi

k), forming a Cauchy sequence in
C, which is complete and so convergent to li (say), i.e., |xi

k − li
k|pk < ϵ

F
, where let∣∣∣∣∆α,β,γ

h,− xk

∣∣∣∣ = F .
Now,

g(xi − li) = sup
n

( 1
n + 1

n∑
k=0

∣∣∣∣∆α,β,γ
h,− (xi

k − li
k)
∣∣∣∣pk
) 1

M

≤ ϵ

F

n∑
k=0

∣∣∣∣∆α,β,γ
h,−

∣∣∣∣ <
(

ϵ F

F

) 1
M

< ϵ,

for all i > I, for all k. Now (xi) is the Cauchy sequence with strong limit li ultimately
gives li ∈ w(∆α,β,γ

h,− , p) ([24], page 320). □

Theorem 2.4. The space w(∆α,β,γ
h,− , p) is not separable in general.

Proof. The proof follows from [14, Theorem 3.7]. Let us take the sequence x = (xk),
such that for each φ > 0 ∈ R

xk = kφ + r, where r ∈ R.

Obviously, for each p ∈ R , (xk) ∈ w(∆α,β,β
1,− , p), (for α > φ, β = γ).

Now consider p = (pk) = (e) and the set, A = {kφ + r, kφ + s, kφ + t, . . . } =
{xr, xs, xt, . . . }, where |r − s| > 1

3 .
Now, g(xr − xs) = supn

1
n+1

∑n
k=0 |∆α,β,β

1,− (xr
k − xs

k)| = |r − s| > 1
3 .

Clearly, A is uncountable. Again, consider D be any arbitrary dense subset of
w(∆α,β,β

1,− , p).
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Moreover, for each xr = (xr
k)k∈N0 ∈ w(∆α,β,β

1,− , p), we can find yr = (yr
k)k∈N0 ∈ D

such that g(xr − yr) < 1
6 .

Now, let us define the transformation f as f : A → D, xr = (xr
k) 7→ f(xr) = (yr

k).
Again g(xr − ys) = g(xr − xs + xs − ys) ≥ g(xr − ys) − g(ys − xs) > 1

3 − 1
6 = 1

6 .
This inequality represents for xr ̸= xs implies that yr ̸= ys with respect to the

paranorm. This shows that f is one-to-one. Furthermore, f(A) ⊂ D and f(A) is
hence uncountable. Since, D is any arbitrary dense set so, the space w(∆α,β,β

1,− , p) is
not dense in general. □

Theorem 2.5. The space w∞(∆α,β,γ
1,− , p) forms a solid space. But, w(∆α,β,γ

h,− , p) does
not form solid in general.

Proof. Suppose (λk) is any sequence of scalar such that |λk| ≤ 1, for all k ∈ N0.
Now, the sequence (λkxk), for (xk) ∈ w∞(∆α,β,γ

h,− , p). So,

sup
n

1
n + 1

n∑
k=0

|∆α,β,γ
h,− λkxk|pk = sup

n

1
n + 1

n∑
k=0

|λk|pk |∆α,β,γ
h,− xk|pk

≤ sup
n

1
n + 1

n∑
k=0

|∆α,β,γ
h,− xk|pk < +∞.

This implies that (λkxk) ∈ w∞(∆α,β,γ
h,− , p) and makes the space w∞(∆α,β,γ

h,− , p) as a solid
space. But the space w(∆α,β,γ

h,− , p) does not form solid in general, which can be proved
by following counter example.

Let (pk) = (1, 1, 1, . . . ), β = γ, h = 1 and the sequence of scalar λ = (λk) be

λk =


1
2 , k is even,

0, otherwise.

Clearly, |λk| < 1, for all k ∈ N0. Suppose that, xk = c is any constant sequence, which
gives us x ∈ w(∆α,β,β

1,− , p). But,

yk = λkxk =


c
2 , k is even,
0, k is odd,

and ∆α,β,β
1,− yk =

c 2α−2, k is even,

−c 2α−2, k is odd,

i.e., we can not get an unique l ∈ C such that (yk) ̸∈ w(∆α,β,β
1,− , p). □

Theorem 2.6. The space w∞(∆α,β,γ
h,− , p) does not form a sequence algebra, in general.

Proof. Let x = (xk) and y = (yk) be two sequences such that, xk = k and yk = k2,
for all k ∈ N0 with (pk) = e. Clearly, x = (xk), y = (yk) ∈ w∞(∆2,β,β

1,− , p). But, for
zk = xkyk = k3, for all k ∈ N0 and ∆2,β,β

1,− zk = 6k − 2 .
Again, supn

(
1

n+1
∑n

k=0(6k − 2)
)

= +∞, which consequently, gives us z = (zk) ̸∈
w∞(∆2,β,β

1,− , p) and completes the proof. □
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Theorem 2.7. (a) If α + β > γ, then c ⊂ w(∆α,β,γ
h,− , p).

(b) If ∆α,β,γ
h,− (e) exists, then ℓ∞ ⊂ w∞(∆α,β,γ

h , p).
(c) w0(∆α,β,γ

h,− , p) ⊂ w(∆α,β,γ
h,− , p) ⊂ w∞(∆α,β,γ

h,− , p).
(d) c(∆α,β,γ

h,− ) ⊂ w(∆α,β,γ
h,− , p), for pk < M, for all k ∈ N0, where c(∆α,β,γ

h,− ) = {x ∈
w : (∆α,β,γ

1,− xk) ∈ c}.

Proof. (a) Let x ∈ c be any convergent sequence, with α + β > γ. This implies,
(∆α,β,γ

h,− xk) is convergent. Ultimately, we obtain

lim
n→+∞

1
n + 1

n∑
k=0

|∆α,β,γ
h,− xk − l|pk = 0, for some l ∈ C,

i.e.,
x ∈ w(∆α,β,γ

h,− , p) =⇒ c ⊂ w(∆α,β,γ
h,− , p).

Furthermore, this inclusion is strict by the following example.
Let xk = ka, for all k ∈ N0, a > 1, being a fixed real number. If α + β − γ > a,

then x = (xk) ∈ w(∆α,β,γ
h,− , p). But, (xk) is a divergent sequence. The proofs of (b)

and (c) are similar as above.
(d) Let x ∈ c(∆α,β,γ

h,− ), which implies |∆α,β,γ
h,− xk − l| < ϵ

1
M < ϵ, for some l ∈ C.

Clearly,

lim
n→+∞

1
n + 1

n∑
k=0

|∆α,β,γ
h,− xk − l|pk < (ϵ 1

M )M = ϵ,

i.e., x ∈ w(∆α,β,γ
h , p).

This inclusion being strict by taking (xk) = (1, 3, 1, 3, 1, . . . ) (see [14, Theorem 3.3]),
such that w(∆1,β,β

1,− , e) ̸⊂ c(∆1,β,β
1,− ).

This completes the proof. □

We obtain our next results by following to Maddox [22]. Hence consider the set
w0(∆α,β,γ

h , p) denoting the set such that,

(2.2) 2−r
∣∣∣∑

r

∆α,β,γ
h,− xk

∣∣∣∣pk

→ 0,

where ∑r is the sum over the k for k ∈ [2r, 2r+1) and r being any integer.

Theorem 2.8. ([22, Theorem 7]) w0(∆α,β,γ
h,− , p) ⊂ w0(∆α,β,γ

h,− , e) if and only if
(a) there exists an integer N > 1 such that

Br = max
r

M
− 1

pk 2−r+ r
pk = O(1),

(b) inf
s>1

lim
r→∞

sup 2−rMr(s) = 0, where Mr(s) is the number of k in [2r, 2r+1), such
that pk ≥ s.



1234 S. MAHARANA AND P. BALIARSINGH

Proof. Let x ∈ w0(∆α,β,γ
h,− , p), i.e., there exists N ∈ N0 for sufficiently large r, such

that,
1
2r

∑
r

|∆α,β,γ
h,− xk|pk <

1
M

.

Now, we may subdivide the sum as
2−r

∑
r

|∆α,β,γ
h,− xk|pk = 2−r

∑
1

|∆α,β,γ
h,− xk|pk + 2−r

∑
2

|∆α,β,γ
h,− xk|pk ,

representing the sum ∑
1 and ∑2 over pk < 1 and pk ≥ 1. Let us consider pk < 1 and

qk = 1
pk

. We get the following inequalities

M q|∆α,β,γ
h,− xk|pk 2−rq ≤ M |∆α,β,γ

h,− xk|pk2−r ≤ M 2−r
∑

1
|∆α,β,γ

h,− xk|pk .

Again,
2−r

∑
1

|∆α,β,γ
h,− xk| ≤ 2−rM−qk

∑
1

2rqk M qk |∆α,β,γ
h,− xk|.

This implies,
|∆α,β,γ

h,− xk| ≤M1−qk |xk|pk 2−r+rq,

2−r
∑

1
|∆α,β,γ

h,− xk| ≤2−2r M
∑

1
|∆α,β,γ

h,− xk|pk 2rqk M−qk

≤2−rM Br

∑
r

|∆α,β,γ
h,− xk|pk = O(1) · o(1) = o(1),

where the notation O is defined earlier and o(f2(y)) = f1(y), for every positive constant
M and there exists a constant y0, such that 0 ≤ f1(y) < Mf2(y), for all y ≥ y0.

Our claim is now reduced to prove that, 2−r ∑
2 |∆α,β,γ

h,− xk| = o(1).
Let ϵ > 0 be arbitrary. Then, there exists s > 1 such that 2−rNr(s) < ϵ, for all

sufficiently large r. We may write the sum as∑
2

|∆α,β,γ
h,− xk| =

∑
3

|∆α,β,γ
h,− xk|pk +

∑
4

|∆α,β,γ
h,− xk|,

over the sum |∆α,β,γ
h,− | ≤ 1 and |∆α,β,γ

h,− xk| > 1, respectively. Again, pk ≥ 1, resulting

2−r
∑

4
|∆α,β,γ

h,− xk| = 2−r
∑

4
|∆α,β,γ

h,− xk|pk = o(1).

Let us subdivide the sum in two parts, i.e., 1 ≤ pk ≤ s and pk > 1, respectively, as∑
5,
∑

6.
Moreover, we found ∑

6
|∆α,β,γ

h,− xk| ≤
∑

6
1 = Mr(s).

This implies 2−r ∑
6 |∆α,β,γ

h,− xk| < ϵ, for sufficiently large r. Now, only we want to show
it for ∑5 .

Letting r so large that
2−r

∑
r

|∆α,β,γ
h,− xk|pk < min{ϵ, ϵs}.
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From [22] we get that for sufficiently large r that,

2−r
∑

r

|∆α,β,γ
h,− xk| ≤ 2−r

∑
r

|∆α,β,γ
h,− xk|pk +

(
2−r

∑
6

|∆α,β,γ
h,− xk|pk

) 1
s

< 2ϵ.

So, all the inequalities obtained above ultimately resulting our claim that
2−r

∑
r

|∆α,β,γ
h,− xk| → 0, as r → +∞,

i.e.,
x ∈ w0(∆α,β,γ

h,− , e) =⇒ w0(∆α,β,γ
h,− , p) ⊂ w0(∆α,β,γ

h,− , e).
This completes the proof. □

3. Dual Spaces

Suppose X and Y are two non-empty sequence spaces, then the set

S(X, Y ) =
{

z ∈ w : xz = (xkzk) ∈ Y, for every x ∈ X
}

,

is called the multiplier space of X and Y . The special multiplier space that are
S(X, l1), S(X, cs) and S(X, bs), respectively, called as α-, β- and γ-duals of X (cf.
[12]). In order to remove ambiguity, let us take Xα∗ = S(X, l1), Xβ∗ = S(X, cs),
Xγ∗ = S(X, bs).

Theorem 3.1. (a) {w∞(∆α,β,γ
1,− , p)}α∗ = D1, where

D1 =
⋂

M>1

{
a = (an) ∈ w : sup

k

∑
n

∣∣∣∣∑
k

(−1)n−k
n∏

l=k

(l+1)D̄k
n−k(C1∆α,β,γ

1,− )anM
1

pk

∣∣∣∣ < +∞
}

.

(b) {w0(∆α,β,γ
1,− , p)}α∗ = D2, where

D2=
⋃

M>1

{
a = (an) ∈ w : sup

k

∑
n

∣∣∣∑
k

(−1)n−k
n∏

l=k

(l+1)D̄k
n−k(C1∆α,β,γ

1,− )anM
− 1

pk

∣∣∣∣ < +∞
}

.

(c) {w(∆α,β,γ
1,− , p)}α∗ = D3, where

D3 =D2∩
⋃

M>1

{
a = (an) ∈ w : sup

k

∑
n

∣∣∣∑
k

(−1)n−k
n∏

l=k

(l+1)D̄k
n−k(C1∆α,β,γ

1,− )an

∣∣∣ < +∞
}

.

Proof. The proof follows from Theorem 8 of [8]. Suppose a ∈ D1 and x ∈ w∞(∆α,β,β
1,− , p).

Now, ∑
n

|anxn| =
∑

n

|an| · |xn|

=
∑

n

|an|M
1

pk M
− 1

pk

∑
k

∣∣∣∣(−1)n−k
n∏

l=k

(l + 1)D̄k
n−k(C1∆α,β,γ

1,− )
∣∣∣∣

×
∣∣∣∣(−1)n−k

n∏
l=k

(l + 1)D̄k
n−k(C1∆α,β,γ

1,− )
∣∣∣∣−1

|xn|
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≤ sup
n

∣∣∣∣ 1
k + 1

k−n∑
j=0

(−α)j

j!

∣∣∣∣ · ∣∣∣∣M− 1
pk |xn|

∑
n

∣∣∣∣∑
k

∣∣∣∣(−1)n−k

×
n∏

l=k

(l + 1)D̄k
n−k(C1∆α,β,γ

1,− )an

∣∣∣∣M 1
pk

∣∣∣∣ < +∞, for all k ∈ N0.

So,
a ∈ {w∞(∆α,β,γ

1,− , p)}α∗ =⇒ D1 ⊂ {w∞(∆α,β,γ
1,− , p)}α∗

.

Conversely, suppose a ̸∈ D1, Then, exists M > 1 such that,∑
n

∣∣∣∣∑
k

(−1)n−k
n∏

l=k

(l + 1)D̄k
n−k(C1∆α,β,γ

1,− )anM
1

pk

∣∣∣∣ = +∞.

Thus, we can find strictly increasing sequence of integer n(s) such that,
n(1) =1 < n(2) < n(3) < · · · < n(s) < n(s + 1)

< · · · <
n(s+1)∑
n=n(s)

∑
n

∣∣∣∣∑
k

(−1)n−k
n∏

l=k

(l + 1)D̄k
n−k(C1∆α,β,γ

1,− )M− 1
pk

∣∣∣∣ > 1.

Now, let us define a sequence x = (xn) by

xn =


0, if 1 < n < n(s),

M
− 1

pk

∣∣∣∣∑
k

(−1)n−k
n∏

l=k

(l + 1)D̄k
n−k(C1∆α,β,γ

1,− ) sgn(an)
∣∣∣∣, n(s) < n < n(s + 1).

Clearly, x = (xn) ∈ w∞(∆α,β,γ
1,− , p).

Moreover,
+∞∑
n=0

|anxn| =
n(2)∑

n=n(1)
|anyn| +

n(3)∑
n=n(2)

|anyn| + · · ·

=
n(2)∑

n=n(1)
|an| ·

∣∣∣M− 1
pk

∑
k

(−1)n−k
n∏

l=k

(l + 1)D̄k
n−k(C1∆α,β,γ

1,− )
∣∣∣

+
n(3)∑

n=n(2)
|an| ·

∣∣∣∣M− 1
pk

∑
k

(−1)n−k
n∏

l=k

(l + 1)D̄k
n−k(C1∆α,β,γ

1,− )
∣∣∣∣+ · · ·

≥
+∞∑
n=1

1 > +∞.

i.e., a = (an) ̸∈ {w∞(∆α,β,γ
1,− , p)}α∗

. By contra positively, we get w∞{(∆α,β,γ
1,− , p)}α∗ ⊂

D1, which consequently results {w∞(∆α,β,γ
1,− , p)}α∗ = D1.

So, it completes the proof. Similarly, we may prove the other two results. □

Theorem 3.2. (a) {w∞(∆α,β,γ
1,− , p)}β∗ = D4, where

D4 =
⋂

M>1

{
a = (an) ∈ w : lim

n→+∞

∑
k

∣∣∣(−1)n−k
n∏

l=k

(l + 1)D̄k
n−k(C1∆α,β,γ

1,− )anM
1

pk

∣∣∣ converges
}

.
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(b) {w0(∆α,β,γ
1,− , p)}β∗ = D5, where

D5 =
⋃

M>1

{
a = (an) ∈ w : sup

n

∑
k

∣∣∣∣(−1)n−k
n∏

l=k

(l + 1)D̄k
n−k(C1∆α,β,γ

1,− )anM
− 1

pk

∣∣∣∣ < ∞
}

.

(c) {w(∆α,β,γ
1,− , p)}β∗ = D6

⋂
D7, where

D6 =
⋃

M>1

{
a = (an) ∈ w :

sup
n

∑
k

∣∣∣∣(−1)n−k
n∏

l=k

(l + 1)D̄k
n−k(C1∆α,β,γ

1,− )anM
− 1

pk − bk

∣∣∣∣ = 0, for all bk ∈ C
}

and

D7 =
{

a = (an) ∈ w :

lim
n→+∞

∑
k

∣∣∣∣(−1)n−k
n∏

l=k

(l + 1)D̄k
n−k(C1∆α,β,γ

1,− )an − bk

∣∣∣∣ = 0, for all bk ∈ C
}

.

Proof. On contrary, let a = (an) be a sequence such that a ̸∈ {w∞(∆α,β,γ
1,− , p)}β∗ .

Then, there exists x = (xn) ∈ w∞(∆α,β,β
1,− , p) such that

∑
n

anxn does not converge.

Consequently, this leads that
∑

n

|anxn| diverges to ∞. Furthermore,

∑
n

|anxn| =
∑

n

∣∣∣∣anM
1

pk M
− 1

pk

∑
k

(−1)n−k
n∏

l=k

(l + 1)D̄k
n−k(C1∆α,β,γ

1,− ) 1
k + 1

k−n∑
j=0

(−α)j

j! xn

∣∣∣∣
≤ sup

n

∑
n

∣∣∣∣∑
k

(−1)n−k
n∏

l=k

(l + 1)D̄k
n−k(C1∆α,β,γ

1,− )anM
1

pk

×
∣∣∣∣ 1
k + 1

k−n∑
j=0

(−α)j

j! M
− 1

pk xn

∣∣∣∣ → ∞, for larger n.

Since, x ∈ w∞(∆α,β,γ
1,− , p), implies
∑

k

∣∣∣∣(−1)n−k
n∏

l=k

(l + 1)D̄k
n−k(C1∆α,β,γ

1,− )anM
1

pk

∣∣∣∣ → +∞,

which is a contradiction to the fact that a ∈ D4. So, we get a ̸∈ {w∞(∆α,β,γ
1,− , p)}β∗

and D4 ⊂ {w∞(∆α,β,γ
1,− , p)}β∗ .

Conversely, suppose that a ∈ {w∞(∆α,β,γ
1,− , p)}β∗ . By definition ∑n anxn converges,

which necessarily gives lim
n→+∞

anxn = 0. So, for each ϵ > 0, there exists N ∈ N0 such
that |anxn| < ϵ, for all n > N . Again,

|anxn| =
∣∣∣∣an

∑
k

(−1)n−k
n∏

l=k

(l + 1)D̄k
n−k(C1∆α,β,γ

1,− )M
1

pk M
− 1

pk
1

k + 1

k−n∑
j=0

(−α)k−n

(k − n)! xn

∣∣∣∣
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≤ sup
n,k>N

∣∣∣∣ 1
k + 1

k−n∑
j=0

(−α)j

j! M
− 1

pk xn

∣∣∣∣ · ∣∣∣∣∑
k

(−1)n−k
n∏

l=k

(l + 1)D̄k
n−k(C1∆α,β,γ

1,− )

× M
1

pk an

∣∣∣∣ < ϵ,

for some M > 1. For x ∈ w∞(∆α,β,γ
1,− , p), it brings∑

k

∣∣∣∣(−1)n−k
n∏

l=k

(l + 1)D̄k
n−k(C1∆α,β,γ

1,− )M
1

pk an

∣∣∣∣ < ϵ,

i.e., a ∈ D4, which implies {w∞(∆α,β,γ
1,− , p)}β∗ = D4.

Otherwise, for any larger k ∈ N by Theorem 5.1 in [18], there exists b = (bk) be
any sequence of scalar in C, such that

lim
n→+∞

∑
k

∣∣∣∣(−1)n−k
n∏

l=k

(l + 1)D̄k
n−k(C1∆α,β,γ

1,− )M
1

pk an − bk

∣∣∣∣ = 0,

i.e., converges. So, it completes the proof. Similarly, we may obtain the other two
results. □

4. Matrix Transformations

In this section, we characterize some matrix transformations among newly con-
structed sequence spaces as defined earlier. We characterize matrix transformations
among spaces w∞(∆α,β,γ

1,− , p), w0(∆α,β,γ
1,− , p) and w(∆α,β,γ

1,− , p) with classical sequence
spaces c(q), c0(q) and ℓ∞(q).

In brief, for A, be an infinite matrix from X to Y , i.e., A : X → Y, where for all
x = (xn) ∈ X, implies that{

(Ax)n

}
=
{ ∑

k∈N0

ankxk

}
n∈N0

∈ Y.

Suppose that (X, Y ) denote the set of all matrix transformations from X to Y . Before
proceeding further. We need the following propositions from [18], for (qk)k∈N0 , non
decreasing bounded sequence of positive real numbers. For more convenience, we can
replace the ∑∞

k=0 by ∑k.
(a) A ∈ (ℓ∞(p), ℓ∞(q)) if and only if for all M, such that

(4.1) sup
n

(∑
k

∣∣∣ank

∣∣∣M 1
pk

)qn

< +∞.

(b) A ∈ (ℓ∞(p), c(q)) if and only if exists ηk, such that

(4.2) sup
n

∑
k

|ank|M
1

pk < +∞, for all integers M > 1,

and

(4.3) lim
n

(∑
k

∣∣∣ank − ηk

∣∣∣M− 1
pk

)qn

= 0, for all M > 1.
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(c) A ∈ (c0(p), ℓ∞(q)) if and only if exists M, such that

(4.4) sup
n

(∑
k

∣∣∣ank

∣∣∣M− 1
pk

)qn

< +∞.

(d) A ∈ (c0(p), c(q)) if and only if (4.4) holds for all L exist M , and ηk ∈ R such
that

lim
M

sup
n

∑
k

|ank|M− 1
pk < +∞,(4.5)

sup
n

L
1

qn

∑
k

∣∣∣ank − ηk

∣∣∣M− 1
pk < +∞,(4.6)

lim
n→+∞

|ank − ηk|qn = 0.(4.7)

(e) A ∈ (c0(p), c0(q)) if and only if for all L, exists M, such that

(4.8) sup
n

L
1

qn

∑
k

∣∣∣ank

∣∣∣M− 1
pk < +∞.

(f) A ∈ (c(p), ℓ∞(q)) if and only if (4.2) holds

(4.9) sup
n

∣∣∣∣∑
k

ank

∣∣∣∣qn

< +∞.

(g) A ∈ (ℓ∞(p), c0(q)) if and only if for all M,

(4.10) lim
n

(∑
k

∣∣∣ank − ηk

∣∣∣M− 1
pk

)qn

= 0 < +∞.

(h) A ∈ (c(p), c(q)) if and only if (4.2), (4.5), (4.6) hold, exists α ∈ R, such that

(4.11) lim
n

∣∣∣∣∑
k

ank − η
∣∣∣∣qn

= 0.

(i) A ∈ (c0(p), ℓ(q)) if and only if exists M ∈ N

(4.12) sup
k

∑
n

∣∣∣∣ ∑
k∈K

ankM
− 1

pk

∣∣∣∣qn

< +∞.

(j) A ∈ (c(p), ℓ(q)) if and only if (4.11) holds and

(4.13)
∑

n

∣∣∣∣∑
k

ank

∣∣∣∣qn

< +∞.

Consider the infinite matrix Â = (ânk) via the matrix A = (ank) as

ânk =
+∞∑
j=k

(−1)k−i
k∏

l=i

(l + 1)D̄i
k−i(C1∆α,β,γ

1,− )anj,

where D̄i
k−i(C1∆α,β,γ

1,− ) is defined as in equation (1.5) and Â is called the associated
matrix of A.
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Theorem 4.1. (a) A ∈ (w∞(∆α,β,γ
1,− , p), ℓ∞(q)) if and only if (4.1) holds, with ânk

instead of ank.
(b) A ∈ (w∞(∆α,β,γ

1,− , p), c(q)) if and only if (4.2) and (4.3) hold, with ânk instead
of ank.

(c) A ∈ (w∞(∆α,β,γ
1,− , p), c0(q)) if and only if (4.9) holds and (4.2), (4.3) hold, with

ânk instead of ank, with ηk = 0.

Theorem 4.2. (a) A ∈ (w(∆α,β,γ
1,− , p), ℓ∞(q)) if and only if (4.4), (4.8) hold, with ânk

instead of ank.
(b) A ∈ (w(∆α,β,γ

1,− , p), c(q)) if and only if (4.5), (4.6) and (4.11) hold, with ânk

instead of ank.
(c) A ∈ (w(∆α,β,γ

1,− , p), c0(q)) if and only if (4.6), (4.7) hold, with ânk instead of ank

with ηk = 0.

Theorem 4.3. (a) A ∈ (w0(∆α,β,γ
1,− , p), ℓ∞(q)) if and only if (4.4) holds, with ânk

instead of ank.
(b) A ∈ (w0(∆α,β,γ

1,− , p), c(q)) if and only if (4.5), (4.6), (4.7) hold, with ânk instead
of ank.

(c) A ∈ (w0(∆α,β,γ
1,− , p), c0(q)) if and only if (4.1), (4.3) holds and (4.6), (4.7) hold,

with ânk instead of ank with ηk = 0.

Proof. Suppose that A ∈ (w∞(∆α,β,γ
1,− , p), ℓ∞(q)). Then, by the definition ∑+∞

k=0 ankyk ∈
ℓ∞(q), for every y = (yk) ∈ w∞(∆α,β,γ

1,− , p). Again, y = (yk) ∈ w∞(∆α,β,γ
1,− , p), if and

only if ȳ = C1∆α,β,γ
1,− (y) ∈ ℓ∞(p). From Lemma 4.1 of [28], we get ∑+∞

k=0 ânkȳk ∈ ℓ∞(q),
and the matrix Â ∈ (ℓ∞(p), ℓ∞(q)). Using the equation (4.1), Â ∈ (ℓ∞(p), ℓ∞(q)) if
and only if supn

(∑
k

∣∣∣ânk

∣∣∣M 1
pk

)qn

< +∞. This completes the proof of the first bit.
We can prove the remaining parts of the theorem and the next theorems using similar
argument. □

Acknowledgements. Authors express their sincere thanks to the anonymous referees
for their valuable suggestions.
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