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ON GENERALIZED MADDOX SPACES VIA DIFFERENCE
OPERATOR

SUBHASMITA MAHARANA! AND PINAKADHAR BALIARSINGH?*

ABSTRACT. In the present work, we begin our investigation with some dynamic
properties of new generalized difference operator AZ’ﬁ "7 defined in Baliarsingh
[5]. Combining this operator with the well known Cesaro operator, we also in-
troduce new classes of generalized Cesaro summable difference sequence spaces
w(AZ’ﬁ’“’,p),wo(AZ’ﬁ"y,p) and wOO(AZ’ﬁ"Y,p), which are the natural extension of
the spaces wP, w} and wk, defined in [12] and wo(p), w(p), and we(p) defined
by Maddox [21]. We establish various topological properties on these spaces along
with some inclusion relations with other basic sequence spaces. Further, our in-
vestigation is carried out to determine a*- and *- duals and characterize matrix
transformations on these spaces.

1. INTRODUCTION, DEFINITIONS AND PRELIMINARIES

One of the potential fields of sequence spaces as well as the growing achievements
of summability theory is the difference sequence spaces, which enriched with the
existence of sequence spaces via various difference operators providing wide range of
applications in both pure and applied area of mathematics. Moreover, ideal concepts of
difference operators and the related spaces are stimulating diverse fields of research like
approximation theory [11,19], spectral theory and linear algebra [1,7,15], numerical
analysis [8], compact operator theory [25,31], fractional calculus [5,6] and matrix
theory [13,26,29], etc.

A sequence space is a subspace of linear space w (the space of all real or complex
valued sequences), for instance, ¢, ¢y and f, are the spaces of all convergent, null,
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and bounded sequences, respectively, normed by ||z|« = supy |zk|. As the initial
development of this theory, in 1981, the idea of difference sequence spaces X (A) =
{z = (2r) € w: Az € X}, where X € {cp, ¢, -} had been considered by Kizmaz [20],
by using the forward difference operator

(1.1) Axp =z — k41, k € Ny (the set of all non negative integers).

Recently, the difference space bv, consisting of the sequences x = (z) such that
(), — x—1) € £, have been studied in the case 0 < p < 1 by Altay and Basar [2], and
in the case 1 < p < +oo by Bagar and Altay [13]. The reader also refer to the recent
monograph [29], and references therein, devoted to the matrix transformations and
related topics.

In 1995, these spaces had been extended to the case of integer order 'm’ by Et and
Colak [17], using the difference operator A™, defined by

(12) AMx = f:(—l)z (T;l) Thti k € Ny.

=0
Latter, Baliarsingh [4] (see, also [8]) extended these spaces by using fractional order
difference operator, A® for a positive proper fraction «, i.e.,

> - Da+1)
1. Aoy =S (~1)i- 2T g ke N,
(13) h §< Vitar1—go kel

where T'(«) denotes the Euler gamma function. Quite recently, the idea has been
extended to the case of arbitrary order «, 3, by Baliarsingh [5] by defining

o8, o (—a)i(=p)i
(14) Ah ’yxk‘ - ;} (—”}/)Z Z' ha+57,\/xk‘ﬂ:i7

where (o) is the Pochhamer symbol or shifted factorial for ¢ € R, defined by

1, oc=0or k=0,
(o) ={

olo+1)---(c—k+1), keN

In particular, if h = 1 the above operators include the cases, such as the operator
A' ([20]) for a = 1, 3 = =, the operator A ([17]) for « = m € N,y = 3 and
the operator A* ([4]) for 8 = 7. Note that matrix representation of the operators
A= (61), A™ = (), A% = (6%,) and Ap?7 = (5p0) (defined in (1.1), (1.2), (1.3)

and (1.4)), respectively, are as follows:

1’ k == n’ 17 k: = n?
07 k> n, 0, k> n,

]_’ k:n7 17 k:n,

Oy = Gt 0<k<m, and ophp=(=liea 0<k<n,

Oa k>n7 0, k > n.
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Several authors including Mursaleen, Altay and Bagar [27], Mursaleen and Basgar [29],
Dutta and Baliarsingh [6], Tripathy and Sarma [30], Aydin and Polat [26], Vardwaj
and Gupta [14], Et [16], etc., have given their valuable attempts to construct new
sequence spaces by combining the notion of difference operators with some functions
(like Modulus function, Orlicz function, ¢ function, etc.), and certain means (Cesaro
mean, Norlund mean, Riesz mean, Euler mean, etc.). In this regard, various authors
studied the topological properties on defined sequence spaces along with their matrix
transformations, inclusion relations and also determined their dual spaces. It has
been remarked that the above works will be more convenient if the used difference
operators defined by (1.1), (1.2), (1.3) and (1.4) are well defined and the related
difference sequences are convergent. In fact, the behavior of the operators mentioned
earlier on any arbitrary sequences is completely dynamic in nature. At this stage, we
want to emphasize this dynamic nature by following examples.

Ezample 1.1. Let a >y >0, § =0, h =1 and define a sequence = = () = (), k €
Ny. Then, we have

APy 1 & 1

g ZO "f“:fﬂfZ vii! 50
1+§ Da—=2)-(a—i+1) 1
el Gl (7—2)---(7—i+1)i! 5
1 &

-

By applying D’Almbert’s ratio test, we obtain the right hand side of above series

ti —
lim L Jim ‘ (a ,Z> =0.
isoo | t; itoo | (y —i)(i 4+ 1)5
This ultimately makes the sequence AZ"B T converges. So, the above series is conver-

gent.

Ezample 1.2. Let = e = (1,1,1,...) and @« > v > 0 and § = 0, h = 1. Then,
clearly, the sequence A‘f"ﬁ Tz converges. But, for 5 = v, h = 1, it can be observed
that

ala+1)

A‘“xk:a+T+---—>+oo, as k — 400,

which is divergent.

Example 1.3. Let the sequence x = (zj) be defined by x) = k3, k € Ny. Then, it can
be easily observed that

Az, =k3 — (k+1)% = —2—0(/65) — —00, as k — 400,

which is divergent. But, for « =3, § =, h =1 we obtain
Az, =k — 3(k+1)% +3(k+2)3 — (k+3)3
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55 15
—k3 —3 {k: + §k:% + gk% + O(k—%)}
15 5 135 .

. 1 5
+3{k3+5k3+;k§+0(ls‘§)}—{k2+2kz+ 2 k:2+0(k‘§)}—>0,

as k — +oo0.

As a result, we conclude that the sequence A3z is convergent.

Ezample 1.4. Let x = (z) be the oscillating sequence defined by zj, = % +
k € Ny. Now, after applying the operator A* on = we have,

204—1 k .
— 1S even
6] _ 3 Y )
A%x, = {

20471 .
—=5—, kisodd,

which is a divergent sequence.

Furthermore, the study on convergence of difference sequences up to the case of
fractional order, is found in the work of Baliarsingh [6]. But, convergence analysis
in general case is quite challenging, which to be discussed in this sections. Moreover,
our aim is to construct some new class of difference sequence spaces by combining the
generalized difference operator with Cesaro operator of order one and also investigate
their topological properties with some inclusion relations. Usually, the Cesaro operator
C; of order one, and its inverse (C})~!, respectively, in matrix form are given by

C) = (cni), and O7' = (s,1), where

n—+1, k=n,

_1 < k<

Crk = n+17 O_k_na and Spk = _<k~_|_1>7 k‘:n—17
0, elsewhere, 0 lsewh

, elsewhere.

Now, combining the generalized difference operator Aaf 7 and Cesaro operator Cf,

we have the generalized Cesaro difference operator (C1A77) as

Sy el i 0 <k <,
(OlAi7E7’y)nk = %_H, k = n,
0, k> n.

Using Theorem 2 and Remark 1 of [9], we determine the inverse of C1 A explicitly
as
(1) * I (U + 1) DE_(CLATPT), i 0 <k <,
(CLATE) =+ 1, k=n,
0, k> n,
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where
(1.5)
k+1 (=a)i(=8); 1

k+2 Z] =k ( 'y) ig! k2 0
~ Ek+]§ )i (= ?)' Ek+]1 (—a);(= ')j 1
Dfi(ClA‘f‘f’”) k+3 J ( 'Y)].] k+3 J (=7);3! k+3

—a)g( B _1 swn—1 (—a)j(—ﬁ)j o k+1 i(=B);
n+1 Z 753! n+l ~j=k  (—v);j! n+1 Z )Jj!

This follows from the fact that (C’lA(f‘f’V)_l = (A‘f‘f”)_lc’fl. Note that Cl_ is as

stated above and

Y

L, k =n,
(AT = S (D) FDI(ATY), 0k <n—1,
0, k> n,
where o )
dio din - dip
) dyo dyn -+ dap
DZ(A??V) =|d3o ds1 -+ dyn-a],
an dnl Czn,n—l
where djp = =22, dyy = 1, dln 1 =0, dayg = %, doy = _%ﬂa d2,n71 =0,
duo :—a(a —D(a—=2)B(8—1)(5 —2)
3y(y = 1) (v —2) ’
= ala—1 -1 ~
d31 = ( , LG ), d3n-1 =0,
2ly(y—1)
q=(_pe= D=2 (a—nt DAE - 1)(E=2) - (B-n+]1)
! Y =D =2 (y—n+nl ’
5 yala—D(@=2)---(a-—n+2)f(E-1)(B—-2)--- (B —n+2)
dn1=(—1) '
Yy =Dy =2)-- (v =+ 2)(n 1)
PR
v

Let p = (px) be bounded sequence of positive real numbers and M = sup,{1, px.}

and

0 < inf pg. Then, the spaces wy(p), w(p) and ws(p) of all sequences that are strongly

summable to zero, summable and bounded sequences, respectively defined in [21,

as follows:

5l =0},

Z |z, — I|P* =0, for some [ € (C}

wo(p) :{x = (x) € w: nl_l}I_Eloo e

1
w(p) :{x = (zy) Ew: nl_lgloo e

22]
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Weo (P) :{x = (z1) € w: sgp( —1Fl Z ]:L’k|p’“> < +oo}

which are complete paranormed space with respect to the paranorm [12]

n L

1 b3
— Pk
o(e) =sup (g 2 )

Motivated by the idea above, we define following new spaces by combining the gener-
alized difference operator A? with Cesaro operator of order one Cj as

1 n
wo(Aa’fw,p) { = (z) €w: lim > ]A;:é"’xﬂpk = 0},

n%+oon—|—]_k p

Z ]Ao"ﬁ“’x —I[Pr =0,

By .
w2 ={e = ) €w e lim

for some [ € (C},

1
Woo Z,ﬁjv’p) { = (zx) € w: sup <+1 Z |Aaﬁvm |Pk) < —i—oo}
" k=0

where Azﬁj Ty = 5% (_(ﬁ%xk ;- In particular, these spaces includes the

following spaces.

(a) For a =0, 8 = v, h =1, the above spaces are reduced to the basic spaces
defined by [21].

(b) For (pi) = (p), where 1 < p < 400, « =0, =, h =1, the above spaces
are reduce to the basic spaces w?, , wj and w? defined by [12].

Now, we provide certain definitions which are used in the sequel.

e Let g be a function from a linear space to R, is said to be a paranorm if it
satisfies the following axioms
(a) g(x) =0if z = 0;
(b) g(—z) = g(x);
(©) glz+y) < g(z) +9(y);
(d) If (pn) be a sequence of scalars with p,, — pasn — +oo, and (2, )nen, T €

X. Then, g(p,z, — pzr) — 0 as n — +o0.

Moreover, (X, g) is called the paranormed space (cf. [12])

e A sequence space F is said to be solid, if (A\yzx) € E, for all sequence of scalar
|)\k| < 1, for (l’k) e k.

e A sequence space F is said to be separable if there exists a countable dense
subspace for this space.
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2. MAIN RESULTS

This section includes some results associated with convergence of generalized dif-
ference sequence Azé Tz, and topological properties of newly defined spaces. Before
proceeding further, we required the following definition (cf. [6]),

A sequence x = (zy) € w is said to be of order v > 0, i.e., x = O(k") if there exits
a positive constant C such that

7| < CKY, k=0,1,2,...
Motivated by the work in [6], we generalize the following theorem.
Theorem 2.1. Let a, 3,7 € RY (the set of positive real numbers) and x = (), be a

sequence of order v such that o+ 3 — v > v. Then, the difference sequence (AZ‘EWJU;C)
is absolutely convergent.

Proof. Suppose x = () is a sequence of order v. Then there exists a positive constant
M, such that,
|z < MEY, k€ Ny.

Now, the series defined in equation (1.4) becomes

a,B,y = (_&)1(_6)2
|Ah,€ o] = %z'( ~)ihatB- S Tk—i
(—a)i(=p);
Z{) l(—v)shoth= 7 Th—i
S (=a)i(=B)i v
=M | il(=y)shot A= Ik =il
3| N T R B (e
iheth=ry(y = 1) - (y = (i — 1))
_ M = (i—(a+1))(z’—(a+2))---(z’—(onrz'))‘
ha-l—b—c — 7
[T EIENCES R R T
=y +D))—(y+2) (i —(v+1i))

M 400 O(ii_(a+1))0('i_(ﬁ+l))
ShaJrﬁ*’Y ; Z'O(Zl (v+1) )
M O(Z'2z—(a+ﬂ)— )
- hot+B8—y ; O(Z'Qi—(%“l))
M =
:72 @(iv—(aﬂi)ﬂ—l) .
hatB8—y =

Note that for ¢ — +oo, |% —1|* — 1, and the right hand side converges if v — (a +
B)+7v—1< —1 which implies v < oo + § — 7.

el

v

S -1
]

v

o
1
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For more clarity, we mention the plots of Ay b, Pqy, for the set of sequences ), =
ER05 gL g5 LI5S k2 with o = 1 58, b =311, v =312, h =1 as
below. ]

1500 2000 2500 3000 3500 4000 4500

F1cure 1. Convergence of (AZ@ 7Txy), using the condition as in Theo-
rem 1

Theorem 2.2. For every convergent sequence x = (xy), the difference sequence
(Aa’ﬂ Txy) converges if a+ 5> 7.

Proof. Suppose z = (xy) is a convergent sequence. Then, for each € > 0, there exist
[ € C and K € Ny such that

|z — 1| <€, forall k> K.

So, the series,

= _(=a)i(=B)
B = il(—cy)ihoth ki = EF l’
| (=a)i(=B) (=a)i(=0)
S e e ﬁ
= ( Oé)l<_ﬁ)z
=il +¢) il(—c);hoth—y




ON GENERALIZED MADDOX SPACES VIA DIFFERENCE OPERATOR 1229

Note that the convergence of the difference sequence depends on the convergence of
series in right hand side, above. For simplicity we take h = 1. Then, applying Raabe’s
test in the above series, we obtain

1 (=a)i(=B)i (=Y)i1 (i 1)

1)l =dm ST St
— lim —a(—a+1)---(—a+i—1) ’
ivtoola(—a+1)(—a+2) - (—a+1)

‘— 6+1 (= ﬁ+z‘—1)(i+1)—v(—v+1)-'-(—’y+i)‘

(=B+1D-(=B+i) ==y +1) - (y+i-1)

. (H—l)(—’H—i)
=t Z((—oH—i)(—B—l—i) - 1)‘
—iy+i2—y+i—af +ia+if —i?

= lim |7 ’

e i(=+D(=F+1)
(a+B-y+1) -5

2

lim ‘z( i

imtool M@yl =00

= lim 3

oo (~8 (=2 1)

This implies that the difference sequence converges while a + 8 — v+ 1 > 1, i.e.,
a + [ > v, which concludes the proof. 0

=a+pB-v+1

Remark 2.1. 1t is pertinent to note here that,
(Ail_’ﬁl M (A??_ﬁzﬁz (xk)) o (Ai1_+a2+51+ﬁ2m+72 (l’k)),
which can be countered by following example.

Ezample 2.1. Suppose the sequence x = (zy) is defined by zy = 1, k € Ny. Then it
can be easily observed that

1,2,2 0+1,-1+43,5-3
AL Ty = ALJF_ + T = A(ZL’k) = 0, as k — +oo.

But, for a; =0, as =1, g1 = —1, B =3, 1 = =3, 72 = 5Hand h = 1 and we
obtain,

135, X (—1)i(—3);

=0
which is a divergent sequence as k — 400, from Rabee’s test of a series. Consequently,
the sequence (AYZ""?(A7?°zy)) is divergent.

Remark 2.2. The spaces X (Aa"g '7p), X € {w,wy, ws}, respectively, form linear

B, exists for all k € N.

spaces, provided Ay’
Proof. The proof is trivial, hence omitted. O

Theorem 2.3. The spaces X(Azg Tp), X € {w,we} form complete paranormed
spaces with respect to the paranorm
1
Pk) M

g(z) = sup (nil EH:

k=0

a, B, v
A
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B,y

where M = max{1, H} and H = sup,py. However, the space ws(Ap"",p) is a

paranormed space if and only if inf pi, > 0.

Proof. Clearly, if z = 6 = (0,0,...), then g(z) = 0. Now, we prove the theorem for
X =w.

Again,
1 & M
— _1 Aau B, _ pk)
gte) =smw (g 3 - DAR (a
1 & PrY 77
— E Aa7 577 ) — _ X
Sl7llp (n—Flk:o i ’ o=
Also,

Z A 4 )

1
Pk \ M
1} )
1
1
a, B, a, B, vy
2o (e E e ) oo (o)

=g(z) + g(v).

Now, let (¢") be a sequence of scalar with ¢" — ¢ as n — 400 and 2" € w(

Then,
pk) i1

gz +y) =sup (

L
M

Ay 27 p).

>

A:,’—B’ (¢ "z — qzy)

9(¢"z" — qx) =sup

n

/N T N
S
e
[
i
=}

< - By ( n,.n n n P\ 77
= sup n+1,§A’_ (¢"vy — q"vp + q"2p — qay) >
I ¢ o, B, Y (n(n n )M
=sw (5 2 |A0 Gt = w0 +ate ") 0
as n — +o00. As (¢") and (z") converge to ¢ and z respectively, the right hand side

tends to zero.

For the case of w.. (A} f 7. p) the proofs of condition 1, 2 and 3 of the paranorm
are similar, hence we omit these. For last condition, we require the followings.

Let A = (\,,) be the sequence of scalar with A,, — 0 and z be fixed (implies \x — 6
(null sequence)). We need to prove inf p; > 0 to form a paranormed space.

On contrary, suppose inf py < 0 (Theorem 2 in [23]). Then, there exist ki, ko, . . ., k;,

. such that )
Pk < 24727

where 2! < ky <22, 22 <ky < 23,...,2" <k < 2"l Again consider,

h(z) —sup{ Z’ 8,7 . !

k}M‘
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Let (x)) be the sequence such that, Af‘f“’xk — 1 as k — +o0o. Now, let us define the
sequence T = () by

— Az’€77xk7 k = kl)
T = ’
0, elsewhere.
Clearly, = = (7y,) € woo(Ai’f’v,p). Again,

1
hAT) = oo 3 [ARP Dy [P = AP < A= =1, asi— +oo

Moreover,

(2.1) g(;) < h(z) < 2¢(x),

provided, the series for the operator A;y"”" exists. This implies g(Az) > %, which is a
contradiction. So, this proves the condition.

Secondly, our claim is now reduced to show the completeness property. So, let (z°)
be any arbitrary Cauchy sequence in w(Az’ﬁ 7 p).

By definition, for each € > 0, there exists I € Ny such that

By
—

glx' —27) <€, foralli,j>1T

e L
=7 Yieo ‘Aﬁffv(m‘}c — ) pk) M < ¢ for all i,j > I. This implies that

for each sufficiently large k € Ny the sequence (z%), forming a Cauchy sequence in

implies sup,, (

C, which is complete and so convergent to I (say), i.e., |z}, — [}|?* < &, where let
‘Azf’vxk =F.
Now,
, . 1 2 . PR\ 37 € < € F\ 1
' —1') =su ( ALY (gh [ ) < =Y |AYP < <> <€,
g( ) np n_i_lkz:%) h, (k k:) —sz:% h, F

for all # > I, for all k. Now (z°) is the Cauchy sequence with strong limit [° ultimately
gives ' € w(AY™7, p) ([24], page 320). O

Theorem 2.4. The space w(Aif’v, p) is not separable in general.

Proof. The proof follows from [14, Theorem 3.7]. Let us take the sequence = = (),
such that for each ¢ >0 € R

rr =kY+r, wherer € R.

Obviously, for each p € R, (z) € w(A'ff’ﬁ, p), (for a >, =7).

Now consider p = (px) = (e) and the set, A = {k? + r k? + s, k¥ +¢,...} =
{a", 2%, 2", ...}, where |r —s| > 3.

Now, g(x" — x°) = sup,, n%rl Sho |Aaf’6(xz —zp)| =|r—s|> 3.

Clearly, A is uncountable. Again, consider D be any arbitrary dense subset of
w(ATPP, p).
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Moreover, for each 2" = (2} )ken, € w(A?f’B, p), we can find y" = (y})ken, € D
such that g(z" —y") < .

Now, let us define the transformation f as f: A — D, 2" = (a}) — f(2") = (y},).
Again g(a” —y*) = g(a" —2* + 2" —y°) > g(a” —y*) —g(y —2°) > s —F = ¢.

This inequality represents for " # x® implies that y” # y* with respect to the
paranorm. This shows that f is one-to-one. Furthermore, f(A) C D and f(A) is
hence uncountable. Since, D is any arbitrary dense set so, the space w(Ai’f"B , p)is
not dense in general. O

Theorem 2.5. The space wo (A7 ©5 " p) forms a solid space. But, w(Aﬁff’”,p) does
not form solid in general.

Proof. Suppose (Ax) is any sequence of scalar such that |[A\;| < 1, for all k& € N,.
Now, the sequence (Apxy), for (x)) € woo Z’éw,p) So,

sup

— Z \Aa’ﬁ T Neg| P =sup ——

— Z ’)\k‘Pk|Aa/8'Yxk|pk
k=0

<sup ——— > [ARP g P .
_sganrlZ! Py |PF < +o0

This implies that (Ayzy) € woo(Ai’[_’) 7. p) and makes the space woo(AZ:[_g " p) as a solid

space. But the space w(AfL‘f 7
by following counter example.

Let (px) = (1,1,1,...), B =+, h =1 and the sequence of scalar A = () be
{1 k is even,

,p) does not form solid in general, which can be proved

27
0, otherwise.

A =

Clearly, |\x| < 1, for all k£ € Ny. Suppose that, z; = ¢ is any constant sequence, which
gives us x € w(A?”f’ﬁ, p). But,

¢ kis even c 2072 k is even
PV 4 Cand AR, T ’
Yk = Atk {0, k s odd, L R T Ze 202 ks odd,

i.e., we can not get an unique [ € C such that (y;) & w(Aa’fﬁ, D). d

Theorem 2.6. The space wx Aa’ﬁ_g’v,p does not form a sequence algebra, in general.
h7

Proof. Let x = (x3) and y = (yx) be two sequences such that, z; = k and y, = k?,
for all k € Ny with (py) = e. Clearly, x = (z1),y = (yx) € woo(Aféﬁ,p) But, for
2, = xpyp = K3, for all k € Ny and Aié”@zk =6k—2.

Again, sup,, (n%rl > h_o(6k — 2)) = 00, which consequently, gives us z = (2x) €
woo(A%’[jB ,p) and completes the proof. O
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Theorem 2.7. (a) If a4+ 5 > 7, then ¢ C w(Ai"‘_gﬁ’p),

(b) If AyP7(e) emists, then Loy C weo (AL, p).

(c) wo(A?ff”,p) - w(Aa’BV,p) C woo(Azfn’p)_

(@) e(A327) € w(ARET,p), for pu < M, for all k € Ny, where (A7) = {u €
w: (AT ) € ¢

Proof. (a) Let x € ¢ be any convergent sequence, with o + 5 > 7. This implies,
(Aa’ﬁ xy,) is convergent. Ultimately, we obtain

Z |Aaﬁvxk —"* =0, for somel € C,

lim
n—+oom 4+ 1

ie.,
x € w(Azf’v,p) = cC w(Azf’W,p).

Furthermore, this inclusion is strict by the following example.

Let xp = k%, for all £ € Ny, a > 1, being a fixed real number. If a + 3 — v > a,
then x = (1) € w(AZ‘f”,p). But, (xy) is a divergent sequence. The proofs of (b)
and (c) are similar as above.

(d) Let z € c(A‘;f”), which implies |A°"B Yy, — 1] < e < ¢, for some | € C.

Clearly,

Z [ARZ e — 1P < ()M = ¢,

lim
n—+oon + 1
ie., zew(AY” p).
ThlS inclusion being strict by taking (zx) = (1,3,1,3,1,...) (see [14, Theorem 3.3]),
such that w(A%E’g, e) ¢ (Ai[iﬂ)
This completes the proof. 0

We obtain our next results by following to Maddox [22]. Hence consider the set
wo(AYP7 | p) denoting the set such that,

Pk
(2.2) PES

— 0,

where Y, is the sum over the k for k € [27,2""!) and r being any integer.
Theorem 2.8. ([22, Theorem 7]) wo(Azf”,p) C wo(Azf’v, e) if and only if
(a) there exists an integer N > 1 such that
B, =max M w2 " = 0(1),

(b) inf lim sup2™"M,(s) = 0, where M,(s) is the number of k in [2",2""1), such

s>11r—00

that pr. > s.
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Proof. Let x € wo(Ai’f . p), ie., there exists N € Ny for sufficiently large r, such
that,

1 1
-
Now, we may subdivide the sum as
2T Y AR = 2 S A Ty e 4 27 S AR e,
T 1 2

representing the sum >, and >, over p, < 1 and pr > 1. Let us consider p; < 1 and
Qx = pik. We get the following inequalities

MIAZP gy [P 2770 < MIAGH P2 < M 277 37 |ASE g o
1

Again,
7SI € 2 Y2 M|
1 1
This implies,
|Az:§v’7$k| SMl_qk|$k|pk 2—r+rq,

27N AR gy <277 MY AR qyfPr 2rae Ay
1 1
<27"M B, Y |AY Tz [P = O(1) - o(1) = o(1),

where the notation O is defined earlier and o( f2(y)) = fi(y), for every positive constant
M and there exists a constant g, such that 0 < fi(y) < M fo(y), for all y > yo.
Our claim is now reduced to prove that, 27", |A?L€7xk| =o(1).
Let € > 0 be arbitrary. Then, there exists s > 1 such that 27" N,(s) < €, for all
sufficiently large r. We may write the sum as
SUIARI m = ST IANI a4 Y ARy,
2 3 4

over the sum |AZ‘€ 7 <1 and |AZ‘€ Txr| > 1, respectively. Again, p, > 1, resulting
27N AR gy = 27 ST ARy P = o(1).
1 1

Let us subdivide the sum in two parts, i.e., 1 < pr < s and pp > 1, respectively, as

257 26'

Moreover, we found

> |Az€7xk| <> 1= M,(s).
6 6

This implies 27" Y |A,O:€ Txk| < e, for sufficiently large r. Now, only we want to show
it for 5.
Letting r so large that

277y |Az‘£’7xk|pk < min{e, €°}.
T
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From [22] we get that for sufficiently large r that,

B

9T Z |A2€7xk| <2 Z |A¢;:§ﬁxkypk + <2—r Z |Az£ka|pk> < e.
T r 6
So, all the inequalities obtained above ultimately resulting our claim that

27y |AZ§“’$;€| — 0, asr— 400,
T

ie.,
x € wo(ARP7 e) = wo(Ahﬁ ,p) Cwo(ARY @B ).
This completes the proof. 0
3. DUAL SPACES

Suppose X and Y are two non-empty sequence spaces, then the set
S(X,Y) = {z cw : xz=(xpz) €Y, for every x € X},

is called the multiplier space of X and Y. The special multiplier space that are
S(X, 1), S(X,cs) and S(X,bs), respectively, called as a-, - and ~-duals of X (cf.
[12]). In order to remove ambiguity, let us take X* = S(X,l;), X#" = S(X,¢s),
X7 = 5(X,bs).

Theorem 3.1. (a) {woo(Ai’f’v,p)}a* = D,, where

D, :M(l{a = (a,) Ew: Sl;p; zk:( 13[ (I+1) D (C1AY M )ay, M| < +oo}
(b) {wo(ATEY, p)}e" = Dy, where

DQ:MLgl{ = (an) € w: s%pznj]%:(— E[lﬂ H(CIAT P a, M~ | < +oo}
() {w(AT27, p)}" = Ds, where

D=y U{a= (@) e w: supz\z - knm (CIAT)a, | < oo,

M>1

Proof. The proof follows from Theorem 8 of [8]. Suppose a € Dy and x € woo(A‘ff’B ,D).
Now,

Z |anxn| :Z |an| |
n n

Tk

n’f]‘[z+1 _(C1ATPT)

MHZH L (CrAsEm|

|:L‘n|
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‘M Pk]xn]Z

n

i 2
<TI0+ DDE (AT )a,

=k

-

pr| < 400, for all k€ Ny.

So,
a € {wa (AT, p)} = Dy C {weo (AT, p)}.

Conversely, suppose a ¢ D, Then, exists M > 1 such that,

SN (-1 ’fH [+ 1)DE (CL AT )a, Mv

no g
Thus, we can find strictly increasing sequence of integer n(s) such that,

n(l) =1 <n(2) <n(3) <---<n(s) <n(s+1)

= +00.

n(s+1)
“HH W(CIAP M| > 1
Now, let us define a sequence = = (z,,) by
0, if 1 <n <n(s),
=\ M > (=1 kH 14+ 1)DE_ (C1AY ﬁ7)sgn(an) n(s) <n <n(s+1).
k
Clearly, z = (z,,) € wm(A?fv, D).
Moreover,
+00 n(2) n(3)
S anza = D anyal + D lanynl + -+
n=0 n=n(1) n=n(2)
(2) n B
S an - [p77 >0 I+ DD (CrAT?)|
n=n(1) =k
+ Z ’an| ‘M sz nkHl+ 01A057)+ ..
+o0o
>3 1> +o0.
n=1

ie.,a=(a,) & {wOO(AfBV, p)}*". By contra positively, we get wuo{(AY 1 2 p)re C
Dl, which consequently results {woo(Aifﬁ’, p)}* = Dy.
So, it completes the proof. Similarly, we may prove the other two results. 0

Theorem 3.2. (a) {w. (AT, p)}P" = Dy, where

D4 = ﬂ {CL = (an w: lim Z’ 7‘L k ﬁ(l —+ ]_)Dfl_k(ClAi’E”y)anMi Converges}.
=k

%
M>1 norteo
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(b) {wo(AT p)}?" = Ds, where
D = U {a: (an) ) kH I+ 1)D C’lA‘f_ YanM Pk | < oo}.

(c) {w(A‘ff’”, p)}?" = D¢ D7, where

Ds=J {a:(an)Ew:

M>1

)= kH [+ 1)DE L (CL AT )a, M7 — b

= 0, forall by € C}

and

D, :{a: (ap) € w:

lim Z

*>
n+ook

”’szH (CIAY Y, — b,

— 0, for allby € (C}.

Proof. On contrary, let a = (a,) be a sequence such that a ¢ {woo(A?f”, )}
Then, there exists © = (7,) € weo (AT 2P p) such that Y a,x, does not converge.

n

Consequently, this leads that Z |a,x,| diverges to co. Furthermore,
n

2 lantal =3

n n

1 1 k—mn (__
anMaM*aZ(_ ”’“Hz+1 CA““]{:LZ(
§=0

H ((+1)D ClA?fV)anMPk

—n

(—a)j L
3 C i,
k +1:= !

— oo, for larger n.

Since, x € woo(Aff’f’v, p), implies

> |(=

k

Hl+1 W(CLATPa, M| — o0,

which is a contradiction to the fact that a € D,. So, we get a & {we (AP, p)}F”
and Dy C {wo (AT, p)}o.

Conversely, suppose that a € {woo(Ai’gﬁ, p)}?". By definition ¥, a,x, converges,
which necessarily gives ngrﬁ)o an,x, = 0. So, for each € > 0, there exists N € Ny such
that |a,z,| <€, foralln > N. Again,

k’—n

|anz,| =|an > (— H (1+1)Dk_ (CyASP) Mo M ™75 Z
ke =k k+1

J=0
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a);
su E M kan
_nk>pN‘k+1 s

S 1)L+ DDA (A

k =k

X Mﬁan < €,

for some M > 1. For x € wu( ?’EV, p), it brings

> |(

k

i.e., a € Dy, which implies {woo(A‘ff’w, )} = D,.
Otherwise, for any larger k¥ € N by Theorem 5.1 in [18], there exists b = (by) be
any sequence of scalar in C, such that

lim Z

*)
n+ook

D[+ 1D (CL AP M,
=k

< €,

n’sz+1 (CIAYP Y M, — | =0,

i.e., converges. So, it completes the proof. Similarly, we may obtain the other two
results. 0

4. MATRIX TRANSFORMATIONS

In this section, we characterize some matrix transformations among newly con-
structed sequence spaces as defined earlier. We characterize matrix transformations
among spaces wOO(A1 =), O(Aﬁfy,p) and w( ‘f"fv,p) with classical sequence
spaces ¢(q), co(q) and £ (q).

In brief, for A, be an infinite matrix from X to Y, i.e., A : X — Y, where for all
x = (z,) € X, implies that

{(A@n} = { > ankxk} cY.

keNy neNg

Suppose that (X, Y") denote the set of all matrix transformations from X to Y. Before
proceeding further. We need the following propositions from [18], for (gx)ren,, non
decreasing bounded sequence of positive real numbers. For more convenience, we can

replace the > 2, by > ;.
(a) A€ (leo(p), €o(q)) if and only if for all M, such that

1\ 9n
(4.1) sup <Z ‘ank’MPk> < +o0.
" k
(b) A € ({o(p), c(q)) if and only if exists 7y, such that
(4.2) sup » |ank|Mi < 400, for all integers M > 1,
"ok

and

1 dn
(4.3) 117@(2‘%1@—%‘]\4_”0 =0, forall M >1.
e
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(c) A€ (co(p), l(q)) if and only if exists M, such that

In
(4.4) sup (Z ’ank’M Pk) < +00.
(d) A € (¢co(p),c(q)) if and only if (4.4) holds for all L exist M, and n; € R such
that
(4.5) lim supz ]ank|M_i < 00,
(4.6) Sup Lian Z ‘ank - nk’M P < 400,
(4.7) lim |ane — /™ = 0.

n—+o0o

(e) A€ (co(p),co(q)) if and only if for all L, exists M, such that
(4.8) sup L > ’ank’Mfi < +o0.
" k
(f) A € (c(p),ls(q)) if and only if (4.2) holds
Z - n
k

(g) A€ (lo(p), co(q)) if and only if for all M,

(4.9) sup < +00.

(4.10) lign(Z‘ank—nk‘M_Plkyn =0 < 4o0.
k

(h) A € (c(p),c(q)) if and only if (4.2), (4.5), (4.6) hold, exists a € R, such that

dn

(4.11) = 0.

(i) A € (co(p),€(q)) if and only if exists M € N

(4.12) Supz > an M- m

n 'keK

(j) A€ (c(p),£(q)) if and only if (4.11) holds and
dn

Z Ank

&

Consider the infinite matrix A = (d,;) via the matrix A = (an;) as

< +00.

(4.13) < +o0.

+oo k
s = > (=D I+ 1) Dy (CL ATV ay,,
=k =1

where D,i_i(ClA‘f‘f 7 is defined as in equation (1.5) and A is called the associated
matrix of A.
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Theorem 4.1. (a) A € (woo(Ai’f”,p),foo(q)) if and only if (4.1) holds, with G
instead of .

(b) A € (wao(AT?7,p), clq)) if and only if (4.2) and (4.3) hold, with ., instead
of Q.

(c) A€ (wool (i’f’v,p),co(q)) if and only if (4.9) holds and (4.2), (4.3) hold, with
Qi tnstead of ani, with ng = 0.

Theorem 4.2. (a) A € (w(A?”f’V,p),Em(q)) if and only if (4.4), (4.8) hold, with Gy
instead of ap.

(b) A € (w(Ai’f”,p),c(q)) if and only if (4.5), (4.6) and (4.11) hold, with Gy
instead of .

(c) A e (w( i’f”,p),co(q)) if and only if (4.6), (4.7) hold, with Gy, instead of any
with n, = 0.

Theorem 4.3. (a) A € (wo(Ai’f”,p),foo(q)) if and only if (4.4) holds, with G
instead of .

(b) A€ (wo(A?”f”,p),c(q)) if and only if (4.5), (4.6), (4.7) hold, with Gy, instead
of Q.

(c) A € (wo(AT?7,p), co(q)) if and only if (4.1), (4.3) holds and (4.6), (4.7) hold,
with any instead of any, with n, = 0.

Proof. Suppose that A € (wu( ?f’y,p), ls(q)). Then, by the definition S5 a,zyr €

lso(q), for every y = (yx) € woo(A?f”, p). Again, y = (yx) € woo(A?f”, p), if and

only if § = C1 AP (y) € Loo(p). From Lemma 4.1 of [28], we get Y725 anntin € Loo(q),
and the matrix A € ((oo(p), loo(q)). Using the equation (4.1), A € (lso(p), loo(q)) if

1

qn
and only if sup,, <Zk )&nk’M%> < +0o0. This completes the proof of the first bit.

We can prove the remaining parts of the theorem and the next theorems using similar
argument. O
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