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PROXIMAL POINT ALGORITHM FOR A COUNTABLE FAMILY
OF WEIGHTED RESOLVENT AVERAGES

MALIHE BAGHERI1 AND MEHDI ROOHI1

Abstract. In this paper, we introduce a composite iterative algorithm for finding a
common zero point of a countable family of weighted resolvent average of finite family
of monotone operators in Hilbert spaces. We prove that the sequence generated
by the iterative algorithm converges strongly to a common zero point. Finally, we
apply our results to split common zero point problem.

1. Introduction

Monotone operator theory plays a central role in many areas of nonlinear functional
analysis, nonlinear analysis and modern optimization. The literature on monotone
operator theory is quiet rich. During the last five decades, monotone operators and
their applications in so many branches of mathematics, have received a lot of attention
(see [3] and [6] and the references cited therein). Monotone operator theory was first
introduced by George Minty to aid in the abstract study of electrical networks [9],
then in the setting of partial differential equations by Felix Browder and his school
[4]. Maximal monotone operators rapidly found uses for subgradients, optimization,
variational inequalities, algorithms, mathematical economics, and much more.

Let H be a real Hilbert space with the norm ‖ · ‖ and the inner product 〈·, ·〉. The
notation T : H → H means that the operator (also called mapping) T maps every
point in H to a point T (x) in H. The notation A : H ( H means that A is a
set-valued operator (mapping) from H to H, i.e., A maps every point x ∈ H to a set
A(x) ⊆ H. Then A is characterized by its graph

graA = {(x, u) ∈ H ×H : u ∈ A(x)}.
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The domain and the range of A are
domA = {x ∈ H : A(x) 6= ∅} and ranA = A(H),

respectively. A set-valued operator A : H ( H is said to be monotone if
〈x− y, u− v〉 ≥ 0, for all (x, u), (y, v) ∈ graA.

A monotone operator A is called maximal monotone if there exists no monotone
operator B such that graA is a proper subset of graB. The resolvent of A is the
mapping JλA = (λA+ Id)−1 for all λ > 0.

Let us consider the zero point problem for monotone operator A on a real Hilbert
space H, i.e., finding a point x ∈ domA such that 0 ∈ A(x). It was first introduced
by Martinet [8] in 1970. Rockafellar [12] extended the proximal point algorithm of
Martinet by generating a sequence {xn} such that

xn+1 = JsnAxn + en, n ∈ N,
for arbitrary point x0 ∈ H, where {en} is a sequence of errors and {sn} ⊆ (0,∞).
The sequence {xn} is known to converge weakly to a point such that 0 ∈ A(x), if
lim infn→∞ sn > 0 and ∑∞

n=0 ‖en‖ < ∞, see [12], but fails in general to converge
strongly [5]. Recently, Xu [13] investigated a modified version of the initial proximal
point algorithm studied by Rockafellar with x0 ∈ H chosen arbitrary,

xn+1 = βnx0 + (1− βn)JsnAxn + en, n ∈ N,
where {en} is the error sequence. For {en} summable, it was proved that [13] {xn} is
strongly convergent if sn →∞ and βn ⊆ (0, 1) with ∑∞n=0 βn =∞ and limn→∞ βn = 0.

Recently, Marino and Rugiano [7] introduced the following iteration process: For
chosen x0 ∈ H construct a sequence {xn} by

xn+1 = βnf(xn) + (1− βn)T (αnxn + (1− αn)xn+1), n ∈ N,
where αn, βn ∈ (0, 1) and f is a k-contraction mapping on H. They showed that this
process converges strongly to unique fixed point of the contraction PFix(T ).

In 2014, Mongkolkeha, Cho and Kumam [10], defined the following iterative scheme,
by x0 ∈ H and 

zn = (1− γn)xn + γnUxn,
yn = (1− βn)Txn + βnSzn,
xn+1 = (1− αn)xn + αnyn,

where {αn}, {βn} and {γn} are sequence in (0, 1). They show that if
lim inf(1− αn)αn > 0, lim inf(1− βn)βn > 0 and ∑n∈N γn <∞ then {xn} converges
weakly to Fix(T ) ∩ Fix(S).

In this paper, we introduce a composite iteration for a countable family of weighted
resolvent average of a finite family of monotone operators as follows: yn = βnxn +

n∑
i=1

(βi−1 − βi)JR(Ai,λi)xn,

xn+1 = αnγf(xn) + (Id−µαnB)yn,
(1.1)
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where B is a l-Lipschitz and η-strongly monotone operator and f is a k-Lipschitz
mapping onH. We prove, under certain appropriate assumption on sequences {αn}∞n=1,
{βn}∞n=0 ⊆ (0, 1] and β0 = 1, that {xn} converges strongly to a zero point of the
resolvent average of the family.

2. Preliminaries

The operator T : H → H is called l-Lipschitz continuous if there exists a constant
l > 0 such that

‖Tx− Ty‖ ≤ l‖x− y‖, for all x, y ∈ H.
The operator T : H → H is said to be nonexpansive if it is Lipschitz continuous with
constant 1, i.e.,

‖Tx− Ty‖ ≤ ‖x− y‖, for all x, y ∈ H.
The operator T : H → H is called firmly nonexpansive if

‖Tx− Ty‖2 + ‖(Id−T )x− (Id−T )y‖2 ≤ ‖x− y‖2, for all x, y ∈ H.
Clearly, every firmly nonexpansive mapping is nonexpansive and the converse generally
is not true (see [2, Example 4.17]).

A point x ∈ H is said to be a fixed point of an operator T : H → H, if Tx = x.
The set of all fixed points of T is denoted by Fix(T ), i.e.,

Fix(T ) = {x ∈ H : Tx = x}.
Let K be a closed convex subset of H. Then for every point x ∈ H, there exists a
unique nearest point in K, denoted by PK(x), such that

‖x− PK(x)‖ ≤ ‖x− y‖, for all y ∈ K.
The operator PK is called metric projection of H onto K. It is well known that PK(x)
is nonexpansive. The metric projection PK(x) is characterized by PK(x) ∈ K and

〈u− PK(x), x− PK(x)〉 ≤ 0, for all u ∈ K.
A mapping f : H → H is said to be k-contraction on H if there exists a constant

k ∈ (0, 1) such that
‖f(x)− f(y)‖ ≤ k‖x− y‖, for all x, y ∈ H.

A sequence of points {xn} in a Hilbert space H is said to converge weakly to a point
x in H if

〈xn, y〉 → 〈x, y〉 , for all y ∈ H;
in symbols, xn ⇀ x.

An operator B : H → H is called η-strongly monotone on H if there exists a
constant η > 0 such that

〈Bx−By, x− y〉 ≥ η‖x− y‖2, for all x, y ∈ H.
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These basic definitions are also have presented in various parts of the book [2]. Now,
we recall some properties of monotone operators.

Proposition 2.1. [2, Proposition 23.7] Suppose that λ > 0 and A : H ( H is a
set-valued mapping. Then

(i) if A is monotone, then JλA is single-valued and firmly nonexpansive;
(ii) if A is maximal monotone, then JλA is single-valued and firmly nonexpansive

and its domain is all of H;
(iii) 0 ∈ A(x) if and only if x ∈ Fix(JλA). Since the fixed point set of nonexpansive

operators is closed and convex, the projection onto Z = A−1(0) is well defined
whenever Z 6= ∅.

We recall (see [1]) the definition of the resolvent average. To this end, we assume
that m ∈ N and I = {1, 2, . . . ,m}. For every i ∈ I, let Ai : H ( H be a set-
valued mapping, let λi > 0 be such that ∑i∈I λi = 1. We set A = (A1, . . . , Am) and
λ = (λ1, . . . , λm).

Definition 2.1. [1, Definition 1.4] The λ-weighted resolvent average of A is defined
by

R(A,λ) =
(∑
i∈I

λi(Ai + Id)−1
)−1
− Id .(2.1)

The equation (2.1) is equivalent to the following equation (see [1]):
JR(A,λ) =

∑
i∈I

λiJAi .

Proposition 2.2. [1, Theorem 2.5] Suppose that for each i ∈ I, Ai : H ( H is
monotone and x ∈ H. If ⋂i∈I A−1

i ({0}) 6= ∅, then
(R(A,λ))−1({0}) =

⋂
i∈I
A−1
i ({0}).

Proposition 2.3. [1, Theorem 2.2] Suppose that for each i ∈ I, Ai : H ( H is a
set-valued mapping. Then (

R(A,λ)
)−1

= R(A−1,λ).

Lemma 2.1. [1, Theorem 2.11] Let Ai : H ( H be monotone for each i ∈ I. Then
R(A,λ) is monotone and

dom JR(A,λ) =
⋂
i∈I

dom JAi .

3. Main Results

In this section, we introduce a new proximal point algorithm for a countable family of
weighted resolvent averages of finite family of monotone operators and its convergence
analysis is given. First we present some useful lemmas.
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Lemma 3.1. Let B : H → H be an l-Lipschitz and η-strongly monotone operator.
Let 0 < µ < 2η/l2 and τ = µ(η − µl2/2). Then I − µB is (1− τ)-contraction.

Proof. By assumption, we have
‖(I − µB)x− (I − µB)y‖2 = 〈(I − µB)x− (I − µB)y, (I − µB)x− (I − µB)y〉

= ‖x− y‖2 − 2µ 〈Bx−By, x− y〉+ µ2‖Bx−By‖2

≤ ‖x− y‖2 − 2µη‖x− y‖2 + µ2l2‖x− y‖2

= (1− 2µη + µ2l2)‖x− y‖2

≤ (1− 2µ(η − 1
2µl

2) + µ2(η − 1
2µl

2)2)‖x− y‖2

= (1− µ(η − 1
2µl

2))2‖x− y‖2.

Therefore, ‖(I − µB)(x− y)‖ ≤ (1− τ)‖x− y‖. �

Remark 3.1. It should be noticed that the contraction constant 1 − τ in the above
lemma is sharp. For example, let B = Id. Then l = η = 1 and 0 < µ < 2. On the
contrary suppose 1− τ is not sharp. Then there exists ε > 0 (small enough) such that
A := I − µB is (1− τ − ε)-contraction. Let µ =

√
ε. Then A is (1−

√
ε)-contraction.

On the other hand,
1− τ − ε = 1−

√
ε(1−

√
ε/2)− ε = 1−

√
ε− ε/2 < 1−

√
ε.

Lemma 3.2. For each n ∈ N, let {An,j : H ( H}j∈In be a finite family of monotone
operators, An = (An,1, . . . , An,mn) with ⋂n∈N(R(An,λn))−1({0}) 6= ∅, where In =
{1, 2, . . . ,mn}, mn ∈ N, λn,j > 0 and λn = (λn,1, . . . , λn,mn) with ∑j∈In λn,j = 1. Let
B : H → H be an l-Lipschitz and η-strongly monotone operator. Assume that f is a
k-Lipschitz mapping on H. Let 0 < µ < 2η/l2, 0 < γ < τ/k with τ = µ(2η−µl2) and
{βn} be a strictly decreasing sequence on (0, 1]. Let {xn} be the sequence generated
by (1.1). Then

{
‖xn − z‖ : n ∈ N

}
is bounded for each z ∈ ⋂n∈N(R(An,λn))−1({0}).

Consequently, {xn} and {‖JR(Ai,λi)xn − xn‖ : n ∈ N}i∈N are bounded.

Proof. Let z ∈ ⋂n∈N(R(An,λn))−1({0}) be arbitrary and fixed. By using the Propo-
sition 2.1 and the triangle inequality, we have

‖yn − z‖ = ‖βnxn +
n∑
i=1

(βi−1 − βi)JR(Ai,λi)xn − z‖

= ‖βn(xn − z) +
n∑
i=1

(βi−1 − βi)
(
JR(Aiλi)xn − z

)
‖

≤ βn‖xn − z‖+
n∑
i=1

(βi−1 − βi)‖JR(Ai,λi)xn − z‖

≤ βn‖xn − z‖+
n∑
i=1

(βi−1 − βi)‖xn − z‖(3.1)
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≤ βn‖xn − z‖+ (1− βn)‖xn − z‖
= ‖xn − z‖.

By using the triangle inequality, Lemma 3.1 and (3.1), we obtain
‖xn+1 − z‖ = ‖αnγf(xn) + (Id−µαnB)yn − z‖

= ‖αnγf(xn) + (Id−µαnB)yn − (Id−µαnB)z − µαnBz‖
= ‖αn(γf(xn)− µBz) + (Id−µαnB)yn − (Id−µαnB)z)‖
≤ αn(‖(γf(xn)− γf(z)‖+ ‖γf(z)− µBz‖)

+ ‖(Id−µαnB)yn − (Id−µαnB)z)‖
≤ kγαn‖xn − z‖+ αn‖γf(z)− µBz‖+ (1− αnτ)‖yn − z‖
≤ kγαn‖xn − z‖+ αn‖γf(z)− µBz‖+ (1− αnτ)‖xn − z‖

= (1− αn(τ − kγ))‖xn − z‖+ αn(τ − kγ)‖γf(z)− µBz‖
τ − kγ

≤ max
{
‖xn − z‖,

‖γf(z)− µBz‖
τ − kγ

}
.

This shows by induction that

‖xn+1 − z‖ ≤ max
{
‖x1 − z‖,

‖γf(z)− µBz‖
τ − kγ

}
.

Therefore, {‖xn−z‖ : n ∈ N} is bounded for each z ∈ ⋂n∈N(R(An,λn))−1({0}). Hence
{xn} is bounded. Finally, it follows from nonexpansivity of resolvent of R(Ai,λi) for
each i ∈ N, that

‖JR(Ai,λi)xn − xn‖ ≤ ‖JR(Ai,λi)xn − z‖+ ‖xn − z‖
≤ 2‖xn − z‖.

Therefore, {‖JR(Ai,λi)xn − xn‖ : n ∈ N}i∈N is bounded. We conclude that {yn} and
{JR(Ai,λi)xn}i∈N are bounded. �

Lemma 3.3. [13, Lemma 2.5] Assume that {an} is a sequence of nonnegative real
numbers such that

an+1 ≤ (1− γn)an + γnδn + ρn, n ≥ 0,
where {γn},{βn} and {δn} satisfy the conditions:

(i) γn ⊆ [0, 1],∑∞n=1 γn =∞;
(ii) lim supn→∞ δn ≤ 0 or ∑∞n=1 |γnδn| <∞;
(iii) ρn ≥ 0 for all n ≥ 0 with ∑∞n=0 ρn <∞;

then limn→∞ an = 0.

Lemma 3.4. [2, Theorem 4.17] Let C be a nonempty closed convex subset of a real
Hilbert space H. Let T : C → C be a nonexpansive mapping. Then Id−T is demi-
closed at 0, i.e., if xn ⇀ x ∈ C and xn − Txn → 0, then x = Tx.
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Lemma 3.5. [11] There holds the following inequality:
‖x+ y‖2 ≤ ‖x‖2 + 2 〈y, x+ y〉 , for all x, y ∈ H.

Theorem 3.1. For each n ∈ N, let {An,j : H ( H}j∈In be a finite family of monotone
operators, An = (An,1, . . . , An,mn) with Z := ⋂

n∈N(R(An,λn))−1({0}) 6= ∅, where
In = {1, 2, . . . ,mn}, mn ∈ N, λn,j > 0 and λn = (λn,1, . . . , λn,mn) with ∑j∈In λn,j = 1.
Let B be an l-Lipschitz and η-strongly monotone operator. Assume that f is a k-
Lipschitz mapping on H. Let 0 < µ < 2η/l2, 0 < γ < τ/k with τ = µ(2η − µl2) and
{βn} be a strictly decreasing sequence on (0, 1]. Let {xn} be the sequence generated by
(1.1). Assume that the following conditions hold:

(i) ∑∞n=1 αn =∞, lim
n→∞

αn = 0;
(ii) ∑∞n=1

∣∣∣βn+1 − βn
∣∣∣ <∞;

(iii) ∑∞n=1

∣∣∣αn+1 − αn
∣∣∣ <∞.

Then
(a) lim

n→∞
‖xn − JR(Ai,λi)xn‖ = 0 for every i ∈ N;

(b) {xn} converges strongly to z = PZ(γf + (Id−µB))(z).

Proof. (a) It follows from Lemma 3.2 that {xn} is bounded. First, we claim that
‖xn+1 − xn‖ → 0.

We observe that
yn = βnxn +

n∑
i=1

(βi−1 − βi)JR(Ai,λi)xn,

yn−1 = βn−1xn−1 +
n−1∑
i=1

(βi−1 − βi)JR(Ai,λi)xn−1.

Then

‖yn − yn−1‖ ≤ βn‖xn − xn−1‖+
n∑
i=1

(βi−1 − βi)‖JR(Ai,λi)xn − JR(Ai,λi)xn−1‖

+ |βn − βn−1|‖xn−1‖+ |βn − βn−1|‖JR(An,λn)xn−1‖
≤ βn‖xn − xn−1‖+ (1− βn)‖xn − xn−1‖+ |βn − βn−1|‖xn−1‖

+ |βn − βn−1|‖JR(An,λn)xn−1‖
≤ ‖xn − xn−1‖+ |βn − βn−1|‖xn−1‖+ |βn − βn−1|‖JR(An,λn)xn−1‖.(3.2)

On the other hand, we have
xn+1 − xn = αnγf(xn) + (Id−µαnB)yn − αn−1γf(xn−1)− (Id−µαn−1B)yn−1

= αnγ(f(xn)− f(xn−1)) + (αn − αn−1)γf(xn−1) + (Id−µαnB)yn
− (Id−µαnB)yn−1 − (αn − αn−1)µByn−1.

By Lemma 3.1 and (3.2), we obtain
‖xn+1 − xn‖ ≤ αnγk‖xn − xn−1‖+ γ|αn − αn−1|‖f(xn−1)‖+ (1− αnτ)‖yn − yn−1‖
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+ µ|αn − αn−1|‖Byn−1‖
≤ αnγk‖xn − xn−1‖+ |αn − αn−1|(γ‖f(xn−1)‖+Byn−1‖)

+ (1− αnτ)‖xn − xn−1‖
+ (1− αnτ)|βn − βn−1|(‖xn−1‖+ ‖JR(An,λn)xn−1‖)
≤ (1− αn(τ − γk))‖xn − xn−1‖

+ (1− αnτ)|βn − βn−1|(‖xn−1‖+ ‖JR(An,λn)xn−1‖)
+ |αn − αn−1|(γ‖f(xn−1)‖+ µ‖Byn−1‖)
≤ (1− αn(τ − γk))‖xn − xn−1‖

+ |βn − βn−1|(‖xn−1‖+ ‖JR(An,λn)xn−1‖)
+ |αn − αn−1|(γ‖f(xn−1)‖+ µ‖Byn−1‖)
≤ (1− γn)‖xn − xn−1‖+ ρn,

where N = sup{‖xn − xn−1‖ : n ∈ N}, γn = αn(τ − γk), and
ρn = |βn − βn−1|(‖xn−1‖+ ‖JR(An,λn)xn−1‖) + |αn − αn−1|(γ‖f(xn−1)‖+ µ‖Byn−1‖).

By conditions (i)-(iii), we have γn → 0, ∑∞n=1 γn = ∞ and ∑∞
n=1 ρn < ∞.

Hence, it follows from Lemma 3.3 that
lim
n→∞

‖xn+1 − xn‖ = 0.(3.3)

For each z ∈ ⋂i∈N(R(Ai,λi))−1({0}), since for each i ∈ N, JR(Ai,λi) is nonex-
pansive, we have
‖xn − z‖2 ≥ ‖JR(Ai,λi)xn − z‖2 = ‖JR(Ai,λi)xn − xn + xn − z‖2

= ‖JR(Ai,λi)xn − xn‖2 + ‖xn − z‖2 + 2
〈
JR(Ai,λi)xn − xn, xn − z

〉
,

which implies that
1
2‖JR(Ai,λi)xn − xn‖2 ≤

〈
xn − JR(Ai,λi)xn, xn − z

〉
.

Then
1
2

n∑
i=1

(βi−1 − βi)‖JR(Ai,λi)xn − xn‖2

≤
n∑
i=1

(βi−1 − βi)
〈
xn − JR(Ai,λi)xn, xn − z

〉
=
〈

(1− βn)xn −
n∑
i=1

(βi−1 − βi)JR(Ai,λi)xn, xn − z
〉

= 〈xn − yn, xn − z〉
= 〈xn − xn+1, xn − z〉+ 〈xn+1 − yn, xn − z〉
= 〈xn − xn+1, xn − z〉+ αn 〈γf(xn)− µByn, xn − z〉
≤‖xn − xn+1‖‖xn − z‖+ αn‖γf(xn)− µByn‖‖xn − z‖,
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hence, by condition (i) and (3.3), we obtain

lim
n→∞

n∑
i=1

(βi−1 − βi)‖JR(Ai,λi)xn − xn‖2 = 0.

Since {βn} is strictly decreasing, for each i ∈ N, we get
lim
n→∞

‖xn − JR(Ai,λi)xn‖ = 0.

(b) First, we show that there exists a unique z ∈ Z such that z = PZ(γf +
(Id−B))(z). Since Z is nonempty, closed and convex, the projection PZ is well
defined. Since PZ is nonexpansive and f and B are respectively k-Lipschitz
and l-Lipschitz, for each x, y ∈ H, we get

‖PZ(γf + (Id−µB))(x)− PZ(γf + (Id−µB))(y)‖
≤‖(γf + (Id−µB))(x)− (γf + (Id−µB))(y)‖
≤‖γf(x)− γf(y)‖+ ‖(Id−µB)(x− y)‖
≤γk‖x− y‖+ (1− τ)‖x− y‖
≤(1− (τ − γk))‖x− y‖.

Banach’s Contraction Principle guaranties that PZ(γf+(Id−µB)) has a unique
fixed point. That is, there exists a unique element z ∈ Z such that

z = PZ(γf + (Id−µB))(z).(3.4)
Next, we show that

lim sup
n→∞

〈γf(z)− µBz, xn − z〉 ≤ 0,

where z = PZ(γf + (Id−µB))(z).
It follows from Lemma 3.2 that there exists a point ω ∈ H and subsequence
{xnα} of {xn} such that xnα ⇀ ω and

lim
α→∞

〈γf(z)− µBz, xnα − z〉 = lim sup
n→∞

〈γf(z)− µBz, xn − z〉 ,(3.5)

We show that ω ∈ Z. To see this, for every i ∈ N, we have
‖xnα − JR(Ai,λi)ω‖ ≤ ‖xnα − JR(Ai,λi)xnα‖+ ‖JR(Ai,λi)xnα − JR(Ai,λi)ω‖

≤ ‖xnα − JR(Ai,λi)xnα‖+ ‖xnα − ω‖,
which implies that

lim sup
α→∞

‖xnα − JR(Ai,λi)ω‖ ≤ lim sup
α→∞

‖xnα − ω‖.

By Lemma 3.4, we obtain ω = JR(Ai,λi)ω for every i ∈ N. Hence ω ∈ Z.
Since Z is closed and convex, by (3.4) and (3.5), we get
lim sup
n→∞

〈(γf − µB)z, xn − z〉 = lim
α→∞

〈(γf − µB)z, xnα − z〉

= 〈(γf + (Id−µB))z − z, ω − z〉 ≤ 0.
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Finally, we show that xn → PZ(γf + (Id−µB))(z). By using Lemma 3.1 and
Lemma 3.5, we obtain

‖xn+1 − z‖2 = ‖αnγf(xn) + (Id−µαnB)yn − z‖2

= ‖(Id−µαnB)yn − (Id−µαnB)z + αn(γf(xn)−Bz)‖2

≤ ‖(Id−µαnB)yn − (Id−µαnB)z‖2 + 2αn 〈γf(xn)− µBz, xn+1 − z〉
≤ (1− αnτ)2‖(yn − z‖2 + 2αnγ 〈f(xn)− f(z), xn+1 − z〉

+ 2αn 〈γf(z)− µBz, xn+1 − z〉
≤ (1− αnτ)2‖(xn − z‖2 + αnkγ(‖(xn − z‖2 + ‖xn+1 − z‖2)

+ 2αn 〈γf(z)− µBz, xn+1 − z〉 ,

which implies that

‖xn+1 − z‖2 ≤ (1− αnτ)2 + αnkγ

1− αnγk
‖xn − z‖2 + 2αn

1− αnγk
〈γf(z)− µBz, xn+1 − z〉

≤
(

1− 2αn(τ − γk)
1− αnγk

)
‖xn − z‖2

+ 2αn(τ − γk)
1− αnγk

( 1
τ − γk

〈γf(z)− µBz, xn+1 − z〉
)

≤ (1− γn)‖xn − z‖2 + γnδn,

where N = sup{‖xn − z‖2 : n ∈ N}, γn = 2αn(τ−γk)
1−αnγk , and

δn = 1
τ − γk

〈γf(z)− µBz, xn+1 − z〉 .

By assumption γn → 0, ∑n∈N γn = ∞ and we have lim sup
n→∞

δn ≤ 0. Hence,
it follows from Lemma 3.3 that {xn} converges strongly to z = PZ(γf +
(Id−µB))(z). �

Corollary 3.1. Let A = {Ai : H ( H}i∈I be a finite family of monotone operators
with R(A,λ)−1({0}) 6= ∅, where λi > 0 and λ = (λ1, . . . , λm) with ∑i∈I λi = 1. Let B
be an l-Lipschitz and η-strongly monotone operator. Assume that f is a k-Lipschitz
mapping on H. Let {xn} be the sequence generated by

xn+1 = αnγf(xn) + (Id−µαnB)JR(A,λ)xn,

where β0 = 1, {βn}, {αn} ⊆ (0, 1], 0 < µ < 2η
l2

and 0 < γ < τ
k
with τ = µ(2η−µl2). If

(i) ∑∞n=1 αn =∞, lim
n→∞

αn = 0;
(ii) ∑∞n=1

∣∣∣αn+1 − αn
∣∣∣ <∞;

then {xn} converges strongly to z = PZ(γf + (Id−µB))(z).
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