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OBTAINING VOIGT FUNCTIONS VIA QUADRATURE FORMULA
FOR THE FRACTIONAL IN TIME DIFFUSION AND WAVE

PROBLEM

HEMANT KUMAR1, M. A. PATHAN2, AND SURYA KANT RAI3

Abstract. In many given physical problems and in the course of dispersion curve
through a spectral line under the influence of the Doppler-effect and in collision
damping, the Voigt functions have been widely utilized. By taking advantage of
the fractional calculus in spectral theory and the Sturm-Liouville problems, in this
paper, we obtain the Voigt functions via the quadrature formulae of one dimensional
fractional in time evolution diffusion and wave problems consisting of different initial
and inhomogeneous boundary conditions.

1. Introduction

The Voigt functions Vγ,ν(x, y, z) in generalized form have been studied by many
authors (e.g., [10, 19, 25] and [26]) for getting various connections with a class of
special functions and the numbers. In astrophysics the fundamental equations of
stellar statistics are of this type. Other remarkable examples are the Voigt functions
which occurs and utilized frequently in the course of the dispersion curve through a
spectral line under the influence of the Doppler-effect and collision damping. The Voigt
functions Vγ,ν(x, y, z) which play an essential role in spectroscopy, neutron physics
and in several diverse field of physics and harmonic analysis are generally investigated
from the viewpoint of integral operators.

Key words and phrases. Caputo fractional derivative, Sturm-Liouville diffusion and wave problem,
non-zero zeros of Bessel function, Voigt functions.
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In 1991, Klusch [10] defined the generalized Voigt function of the second kind by
the Hankel integral transform

(1.1) Vγ,ν(x, y, z) =
√
x

2

∫ ∞
0

tγe−yt−zt
2
Jν(xt)dt, x, y, z ∈ R+, R(γ + ν) > −1,

where Jν(·) is the classical Bessel function (see [1, 22] and [24]) defined by

Jv(z) =
∞∑
n=0

(−1)n(z/2)v+2n

Γ(n+ 1)Γ(v + n+ 1) , |z| <∞.

Again, we note that Jv(z) is the defining oscillatory kernel of Hankel’s integral
transform

(Hvf)(x) =
∫ ∞

0
f(t)Jv(xt)dt.

Furthermore, the relation of the Bessel functions with the trigonometrical functions
is given by

J 1
2
(z) =

√
2
π
z−

1
2 sin z and J− 1

2
(z) =

√
2
π
z
−1
2 cos z.

To explore new ideas for representing the relation of the Voigt functions (1.1) with
the quadrature formula of the solution of fractional in time diffusion and wave problem,
in our current investigation, we present following fractional in time Sturm-Liouville
type diffusion and wave equation in the form:

C
t D

α
0+Y (x, t) = ∂

∂x

[
p(x) ∂

∂x

]
Y (x, t)− q(x)Y (x, t) + f(x, t), 0 < α ≤ 2,(1.2)

for all (x, t) ∈ (0, l) × (0,∞), for the function defined by f : [0, l] × [0,∞) → R,
[0, l] ⊂ R.

Throughout this paper l is taken greater than zero, and also subjected to the initial
and inhomogeneous boundary values

Y (x, 0) =g(x) +
(
x

l
− 1

)
ϕ1(0)− x

l
ϕ2(0),(1.3)

∂

∂t
Y (x, t)|t=0 =

(
x

l
− 1

)
ϕ
′

1(0)− x

l
ϕ
′

2(0), (x, t) ∈ [0, l]× {0},

Y (0, t) + ϕ1(t) =0, ∂

∂x
Y (x, t)|x=0 = 1 + 1

l
(ϕ1(t)− ϕ2(t)), (x, t) ∈ {0} × [0,∞),

Y (l, t) + ϕ2(t) =0, for all (x, t) ∈ {l} × [0,∞).

Here in (1.2), the Caputo fractional derivative C
t D

α
0+ , m− 1 < α ≤ m, of function

Y (t) is given by

(1.4) (Ct Dα
0+Y )(t) = (Im−αY (m))(t), for all m ∈ N,
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where Y (m)(t) = dmY
dtm

(t), Im−α being the Riemann-Liouville fractional integral (see,
Diethelm [2, p. 49])

(Im−αY )(t) =


1

Γ(m−α)
∫ t

0 (t− τ)m−α−1Y (τ)dτ, t > 0, m− 1 < α ≤ m,

Y (t), α = m, for all m ∈ N.

In this work, we also use the Laplace transformation of Caputo derivative (1.4), for
L[Y (t)] = Y (s), s > 0, (see, Kilbas, Srivastava and Trujillo [8, p. 312]), given by

L[(Ct Dα
0+Y )(t)] =sαY (s)− sα−1Y (0)− sα−2Y (1)(0)− · · · − sα−mY (m−1)(0),(1.5)

m− 1 < α ≤ m.

It may be observed that for α = 1, the equation (1.2) converts into a linear second
order parabolic partial differential equation and a diffusion problem with initial and
boundary conditions given in (1.3). For α = 2, equation (1.2) reduces to a linear
second order elliptic partial differential equation of wave problem with given initial
and inhomogeneous boundary conditions (see Evans [3]). On the other hand, when
0 < α ≤ 1, the above problem becomes identical to the initial-boundary value problem
for the one dimensional time fractional diffusion equation because of the availability
of the vast literature due to the researchers and authors (e.g., [4, 9, 14,15]) with some
additional boundary conditions. The analytic solutions of the space-time fractional
differential equations with initial and boundary value problems are computed by the
authors ([11, 14]). The computation of anomalous diffusion problems in the form of
integral equations can be found in ([5, 12] and [13]). For the theory and analysis of
the fractional differential equations, we refer the work of the researchers including
authors (e.g., [2, 6–8,18,21] and [23]).

We will focus on the relations of the Voigt functions with the quadrature formula
of the solution of fractional in time diffusion and wave problem. We first convert
this fractional in time problem into the Sturm-Liouville problem and then find out
its solution on using Green function in the form of Mercer formula [20]. The theory
and applications of Sturm-Liouville problems are studied and computed by various
authors (e.g., [5, 17,28]).

2. Solution of the Problem (1.2)–(1.3)

We solve our problem (1.2)–(1.3) by setting Y (x, t) = y(x, t)+x
l
(ϕ1(t)−ϕ2(t))−ϕ1(t)

and to get

C
t D

α
0+y(x, t) = ∂

∂x

[
p(x) ∂

∂x

]
y(x, t)− q(x)y(x, t) + f1(x, t), 0 < α ≤ 2,(2.1)

for all (x, t) ∈ (0, l)× (0,∞), where

f1(x, t) =
(

1− x

l

)
C
t D

α
0+ϕ1(t) + x

l
C
t D

α
0+ϕ2(t) +

[(
1− x

l

)
q(x) + p

′(x)
l

]
ϕ1(t)
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+
[
x

l
q(x)− p

′(x)
l

]
ϕ2(t) + f(x, t),

along with initial and homogeneous boundary conditions, given by

y(x, 0) = g(x), ∂

∂t
y(x, t)|t=0 = 0, for all (x, t) ∈ [0, l]× {0},(2.2)

y(0, t) = 0, ∂

∂x
y(x, t)|x=0 = 1, for all (x, t) ∈ {0} × [0,∞),

y(l, t) = 0, for all (x, t) ∈ {l} × [0,∞).

Then consider L{y(x, t)} = ȳ(x, s) for s > 0. Now using the result (1.5), and
then taking Laplace transformation of (2.1) and (2.2), we find that in the form of
Sturm-Liouville problem [1]

(2.3) ∂

∂x

[
p(x) ∂

∂x

]
ȳ(x, s)− {q(x) + sα}ȳ(x, s) = f̄1(x, s),

where,

f̄1(x, s) =− sα−1
{
g(x)−

(
1− x

l

)
ϕ1(0)− x

l
ϕ2(0)

}
+ sα−2

{(
1− x

l

)
ϕ
′

1(0) + x

l
ϕ
′

2(0)
}
− sα

{(
1− x

l

)
ϕ̄1(s) + x

l
ϕ̄2(s)

}

−
{(

1− x

l

)
q(x) + p

′(x)
l

}
ϕ̄1(s)−

{
x

l
q(x)− p

′(x)
l

}
ϕ̄2(s)− f̄(x, s),

0 < α ≤ 2 for all x ∈ (0, l) and s > 0, along with homogeneous boundary conditions

ȳ(0, s) = 0, for all (x, s) ∈ {0} × (0,∞), s > 0,(2.4)
ȳ(l, s) = 0, for all (x, s) ∈ {l} × (0,∞), s > 0.

Again, letting Lȳ(x, s) = { ∂
∂x

[p(x) ∂
∂x

] − q(x)}ȳ(x, s), we may write the problem
(2.3)–(2.4) in the form

(2.5) Lȳ(x, s)− sαȳ(x, s) = f̄1(x, s), 0 < α ≤ 2,

for all x ∈ (0, l), (0, l) ⊂ R, and s > 0, along with the boundary conditions given in
(2.4).

Now, to solve the differential equation (2.5), with boundary conditions (2.4), first we
construct a Green function and consider the normalized eigenfunctions (see, Churchill
[1, p. 291]) Ψn(x), for all n = 1, 2, 3, . . ., where Ψn(x) = ȳn(x,sn)

‖ȳn(x,sn)‖ for s ≥ sn, sn > 0
for all n = 1, 2, 3, . . . , and the orthonormalized property, given by

∫ l

0
Ψn(t)Ψm(t)dt =

0, m 6= n,

1, m = n.
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Thus, by differential equation (2.5) with boundary conditions (2.4), we have the
following homogeneous differential equation

(2.6) LΨn(x)−sαnΨn(x) = 0,Ψn(0) = 0,Ψn(l) = 0, for all x ∈ [0, l], n = 1, 2, 3, . . .

Again then, in (2.5) and (2.6), we introduce two series

f̄1(x, s) =
∞∑
n=1

AnΨn(x), ȳ(x, s) =
∞∑
n=1

CnΨn(x),(2.7)

for all s ≥ sn, sn > 0, An 6= 0, n = 1, 2, 3, . . .
Then on using the relations from (2.5) to (2.7), we find following equations

(2.8)
∞∑
n=1

LCnΨn(x)− sα
∞∑
n=1

CnΨn(x) =
∞∑
n=1

AnΨn(x)

and

(2.9)
∞∑
n=1

LCnΨn(x)−
∞∑
n=1

sαnCnΨn(x) = 0.

Therefore, on use of (2.8) and (2.9), we find that

(2.10) −
∞∑
n=1

(sα − sαn)Cn
∫ l

0
Ψn(x)Ψm(x)dx =

∞∑
n=1

An

∫ l

0
Ψn(x)Ψm(x)dx.

Now, for obtaining the solution of the problem (1.2)-(1.3), for s ≥ sn, sn > 0, we
use the orthogonal property given in (2.5) and consider that An[[α]]s,sn =

(
Bno

s−sn

)
,

Bn0 6= 0, when s→ sn for all n ≥ n0 and

Cn = − An
H(α; s, sn) , α > 0, s ≥ sn, sn > 0 for all n = 1, 2, 3, . . . ,

where

H(α; s, sn) =

(s− sn)[[α]]s,sn , s > sn > 0,
(s− sn)−2, s→ sn, sn > 0,

for all n = 1, 2, 3, . . . , α > 0. Here [[α]]s,sn = (sm−1 + sm−2sn + ... + ssm−2
n + sm−1

n ),
[α] = m, m is the smallest integer greater than or equal to α, then

Cn =


−An
sα − sαn

, s > sn, sn > 0,

0, s→ sn, for all n = 1, 2, 3, . . .

Again then, for s ≥ sn, sn > 0 for all n = 1, 2, 3, . . ., by (2.7) and (2.10), and the
orthogonal property (2.5), we may write

(2.11) ȳ(x, s) = −
∞∑
n=1

An
(sα − sαn)Ψn(x),
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and further for all s ≥ sn, sn > 0 for all n = 1, 2, 3, . . . , and by relation (2.7), we get
an equality as

∞∑
m=1

∫ l

0

f̄1(ξ, s)
(sα − sαn)Ψm(x)Ψm(ξ)dξ =

∞∑
m=1

∞∑
n=1

An
(sα − sαn)Ψm(x)

∫ l

0
Ψn(ξ)Ψm(ξ)dξ.

Therefore, for all m = n, by using the orthogonal property (2.5), and the relations
given in (2.11), we obtain an identity

(2.12) ȳ(x, s) =
∫ l

0
G(x, ξ, s)f̄1(ξ, s)dξ,

where the following Green function in form of Mercer formula [20] is obtained as

(2.13) G(x, ξ, s) = −
∞∑
n=1

Ψn(x)Ψn(ξ)
(sα − sαn) , s ≥ sn, sn > 0 for all n = 1, 2, 3, . . .

Here in (2.12), the value of f̄1(x, s) is given in (2.3) and the functions Ψn(x) for all
n = 1, 2, 3, . . . , are found by the problem (2.6). Thus, by (2.3), (2.12) and (2.13), the
solution of the problem (2.5) with the conditions (2.4) may be computed in the form

ȳ(x, s)

(2.14)

=
∞∑
n=1

ȳn(x, sn)sα−1

‖ȳn(x, sn)‖2(sα − (sn)α)

∫ l

0
ȳn(ξ, sn)(g(ξ)−

(
1− ξ

l

)
ϕ1(0)− ξ

l
ϕ2(0))dξ

−
∞∑
n=1

ȳn(x, sn)sα−1

‖ȳn(x, sn)‖2s(sα − (sn)α)

∫ l

0
ȳn(ξ, sn)

((
1− ξ

l

)
ϕ
′

1(0) + ξ

l
ϕ
′

2(0)
)
dξ

+
∞∑
n=1

ȳn(x, sn)
‖ȳn(x, sn)‖2

∫ l

0
ȳn(ξ, sn)

((
1− ξ

l

)
ϕ̄1(s) + ξ

l
ϕ̄2(s)

)
dξ

+
∞∑
n=1

(sn)αȳn(x, sn)
‖ȳn(x, sn)‖2(sα − (sn)α)

∫ l

0
ȳn(ξ, sn)

((
1− ξ

l

)
ϕ̄1(s) + ξ

l
ϕ̄2(s)

)
dξ

+
∞∑
n=1

ȳn(x, sn)(sn)α
(sn)α‖ȳn(x, sn)‖2(sα − (sn)α)

∫ l

0
ȳn(ξ, sn)

(((
1− ξ

l

)
q(ξ) + p

′(ξ)
l

)
ϕ̄1(s)

+
(
ξ

l
q(ξ)− p

′(ξ)
l

)
ϕ̄2(s) + f̄(x, s)

)
dξ.

Now, to take the inverse Laplace transformation on both of the sides of result (2.14),
we have the following formulae. For 0 < α ≤ 2, |θ| < |sα| and s ≥ sn, sn > 0 for all
n = 1, 2, 3, . . ., the inverse Laplace transformation formula of Mittag-Leffler function
Eα(z), where Eα(z) = ∑∞

k=0
zk

Γ(kα+1) (see Mathai and Haubold [16, p. 80], and Kilbas,
Srivastava and Trujillo [8, p. 313]), is given by

(2.15) L−1
{
sα−1

sα − θ

}
= Eα(θtα), 0 < |θ| < |sα|.
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Again, the Laplace transformation formula of the derivative of the Mittag-Leffler
function (see in (2.15)), with the aid of formula (1.5), is found in the form

(2.16) L

{
d

dt
Eα(θtα)

}
= sα

sα − θ
− 1 = θ

sα − θ
,

so that the relation (2.16) gives us

(2.17) L−1
{ 1
sα − θ

}
= 1
θ

d

dt
Eα(θtα), 0 < |θ| < |sα|.

Finally, on making an application of the results (2.15)–(2.17), we obtain

(2.18) L−1
{
sα−2

sα − θ

}
= L−1

{
1
s

sα−1

sα − θ

}
=
∫ t

0
Eα(θτα)dτ .

Thus, on using above results of (2.15)–(2.18) into the result (2.14), we obtain the
solution of the problem (2.3)–(2.4) for all x ∈ (0, l), and t > 0, s ≥ sn, sn > 0 for all
n = 1, 2, 3, . . ., in the form

y(x, t)(2.19)

=
∞∑
n=1

yn(x, sn)
‖yn(x, sn)‖2Eα((sn)αtα)

∫ l

0
yn(ξ, sn)(g(ξ)−

(
1− ξ

l

)
ϕ1(0)− ξ

l
ϕ2(0))dξ

−
∞∑
n=1

yn(x, sn)
‖yn(x, sn)‖2

∫ t

0
Eα((sn)ατα)dτ

∫ l

0
yn(ξ, sn)

{(
1− ξ

l

)
ϕ
′
1(0) + ξ

l
ϕ
′
2(0)

}
dξ

+
∞∑
n=1

yn(x, sn)
‖yn(x, sn)‖2

∫ l

0
yn(ξ, sn)

{(
1− ξ

l

)
ϕ1(t) + ξ

l
ϕ2(t)

}
dξ

+
∞∑
n=1

yn(x, sn)
‖yn(x, sn)‖2

∫ l

0
yn(ξ, sn)

{(
1− ξ

l

)∫ t

0
ϕ1(t− τ) d

dτ
Eα((sn)ατα)dτ

+ ξ

l

∫ t

0
ϕ2(t− τ) d

dτ
Eα((sn)ατα)dτ

}
dξ

+
∞∑
n=1

yn(x, sn)
(sn)α‖yn(x, sn)‖2

∫ l

0
yn(ξ, sn)

{((
1− ξ

l

)
q(ξ) + p

′(ξ)
l

)

×
∫ t

0
ϕ1(t− τ) d

dτ
Eα((sn)ατα)dτ +

(
ξ

l
q(ξ)− p

′(ξ)
l

)

×
∫ t

0
ϕ2(t− τ) d

dτ
Eα((sn)ατα)dτ +

∫ t

0
f(x, t− τ) d

dτ
Eα((sn)ατα)dτ

}
dξ.

Finally, putting
y(x, t) = Y (x, t)− x

l
(ϕ1(t)− ϕ2(t)) + ϕ1(t)

in solution (2.19), we obtain the solution of the problem (1.2)–(1.3) for all x ∈ (0, l) and
t > 0, sn > 0, for all n = 1, 2, 3, . . ., in the form

Y (x, t)(2.20)
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=
∞∑
n=1

yn(x, sn)
‖yn(x, sn)‖2Eα((sn)αtα)

∫ l

0
yn(ξ, sn)

(
g(ξ)−

(
1− ξ

l

)
ϕ1(0)− ξ

l
ϕ2(0)

)
dξ

−
∞∑
n=1

yn(x, sn)
‖yn(x, sn)‖2

∫ t

0
Eα((sn)ατα)dτ

∫ l

0
yn(ξ, sn)

((
1− ξ

l

)
ϕ
′
1(0) + ξ

l
ϕ
′
2(0)

)
dξ

+
∞∑
n=1

yn(x, sn)
‖yn(x, sn)‖2

∫ l

0
yn(ξ, sn)

{(
1− ξ

l

)
ϕ1(t) + ξ

l
ϕ2(t)

}
dξ

+
∞∑
n=1

yn(x, sn)
‖yn(x, sn)‖2

∫ l

0
yn(ξ, sn)

{(
1− ξ

l

)∫ t

0
ϕ1(t− τ) d

dτ
Eα((sn)ατα)dτ

+ξ

l

∫ t

0
ϕ2(t− τ) d

dτ
Eα((sn)ατα)dτ

}
dξ

+
∞∑
n=1

yn(x, sn)
(sn)α‖yn(x, sn)‖2

∫ l

0
yn(ξ, sn){

((
1− ξ

l

)
q(ξ) + p

′(ξ)
l

)

×
∫ t

0
ϕ1(t− τ) d

dτ
Eα((sn)ατα)dτ

+
(
ξ

l
q(ξ)− p

′(ξ)
l

)∫ t

0
ϕ2(t− τ) d

dτ
Eα((sn)ατα)dτ

+
∫ t

0
f(x, t− τ) d

dτ
Eα((sn)ατα)dτ}dξ + x

l
(ϕ1(t)− ϕ2(t))− ϕ1(t).

Hence, from the study of the results (1.2) to (2.20), we find the following.

Theorem 2.1. If l > 0 and f is a function defined by f : [0, l] × [0,∞) → R, [0, l] ⊂ R,
q(x), p(x), p′(x), p′′(x) are continuous real valued functions of x on 0 ≤ x ≤ l. Then there
exists the normalized eigenfunctions

Ψn(x) = yn(x, sn)
‖yn(x, sn)‖ , sn > 0 for all n ∈ N,

by the solution of boundary value problem (2.5) and with boundary conditions (2.4) simulta-
neously give the Green’s function

G(x, ξ, s) = −
∞∑
n=1

Ψn(x)Ψn(ξ)
(sα − sαn) ,

provided that s ≥ sn, sn > 0 for all n ∈ N and 0 < α ≤ 2, for all x, ξ ∈ (0, l), (0, l) ⊂ R and
s > 0, which gives the solution of the problem (2.3) with boundary values (2.4), in the form

ȳ(x, s) = −
∞∑
n=1

∫ l

0
f̄1(ξ, s)Ψn(x)Ψn(ξ)

(sα − sαn) dξ, s ≥ sn, sn > 0, for all n = 1, 2, 3 . . . ,

the function f̄1(x, s) is given in the (2.3).
Finally, its inverse Laplace transformation gives the solution (2.20) of the fractional in

time Sturm-Liouville type diffusion and wave problem (1.2)–(1.3) for all x, 0 < x < l, t > 0,
s ≥ sn, sn > 0 for all n ∈ N.
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3. The Voigt Functions via Solution of the Problem (1.2)–(1.3) in Various
Conditions

In any given physical problem, a numerical, computational or analytical evaluation of the
Voigt functions (or of their variants) is required. We begin our study of Voigt functions and
their relations with quadrature formula of the solution of the fractional in time Sturm-
Liouville type diffusion and wave problem (1.2)–(1.3) in different particular cases and
conditions.

3.1. The Voigt functions via non-homogeneous Bessel type diffusion and wave
problem, when 0 < α ≤ 2.

Theorem 3.1. If we put f = 0, q(x) = 0, p(x) = x for all x, 0 ≤ x ≤ l ⊂ R, ϕ1(t) = t,
ϕ2(t) = t2, 0 < α ≤ 2, t ≥ 0, in the problem (1.2)–(1.3), then our problem becomes Bessel
type fractional in time diffusion-wave problem of the form

(3.1) C
t D

α
0+Y (x, t) = ∂

∂x

[
x
∂

∂x

]
Y (x, t), 0 < α ≤ 2,

for all (x, t) ∈ (0, l)×(0,∞), (0, l) ⊂ R, subjected to the initial and inhomogeneous boundary
values

Y (x, 0) =g(x), ∂

∂t
Y (x, t)|t=0 =

(
x

l
− 1

)
, for all (x, t) ∈ [0, l]× {0}, [0, l] ⊂ R,(3.2)

Y (0, t) + t =0, ∂

∂x
Y (x, t)|x=0 = 1 + 1

l
(t− t2), for all (x, t) ∈ {0} × [0,∞),

Y (l, t) + t2 =0, for all (x, t) ∈ {l} × [0,∞).

Then, solution of problem (3.1)–(3.2) has the form

Y (x, t)(3.3)

=1
l

∞∑
n=1

J0(−µn
√

x
l )

[J1(−µn)]2 Eα

(
−(µn)2

4l tα
)∫ l

0
J0

−µn
√
ξ

l

 g(ξ)dξ

+ 2
l

∞∑
n=1

J0(−µn
√

x
l )

[J1(−µn)]2
∫ t

0
(t− τ) d

dτ
Eα

(
−(µn)2

4l τα
)
dτ

∫ l

0
J0

−µn
√
ξ

l

 ξdξ
+ 8l

∞∑
n=1

J0(−µn
√

x
l )

(µn)3J1(−µn)

×
[∫ t

0
(t− τ) d

dτ
Eα

(
−(µn)2

4l τα
)
dτ −

∫ t

0
(t− τ)2 d

dτ
Eα

(
−(µn)2

4l τα
)
dτ

]

+
(
x

l
− 1

)
t− x

l
t2, for all µn ∈ R−, n = 1, 2, 3, . . .

Proof. Here, put Y (x, t) = y(x, t) + x
l (t− t

2)− t, in differential equation (3.1) and boundary
values (3.2), and then make an appeal to the techniques applied for finding out the solution
(2.20) of the problem (1.2)–(1.3) and with the aid of Theorem 2.1, we obtain the solution
(3.3) of the problem (3.1)–(3.2). �
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Corollary 3.1. If J0(−µn) = 0 for all n = 1, 2, 3 . . . , and for all x, y, z ∈ R+, R(γ + ν) >
−1, then for all µn ∈ R− under the conditions given in the differential equation (3.1) and
boundary values (3.2), the quadrature formula of the solution (3.3) exists and is given by
the relation

∫ ∞
0

uγe−yu−zu
2
Jν

(
−µnu

√
x

l

)
Y (xu2, t)du

(3.4)

=
∞∑
n=1
{H1(t; l, µn) +H2(t; l, µn) +H3(t; l, µn)}

×
[(
−µn2

√
x

l

)ν ∞∑
m=0

Γ(1 + ν + 2m)
(Γ(1 + ν +m)(1)m)2

(
−(µn)2 x

4l

)m
I(1)
m (γ, ν, y, z)

]
+ x

(
t

l
− t2

l

)

×
(
−µn2

√
x

l

)−1/2
Vγ+2,ν

(
−µn

√
x

l
, y, z

)
− t

(
−µn2

√
x

l

)−1/2
Vγ,ν

(
−µn

√
x

l
, y, z

)
.

Here in (3.4), we have

H1(t; l, µn) = 1
l[J1(−µn)]2Eα

(
−(µn)2

4l tα
)∫ l

0
J0

−µn
√
ξ

l

 g(ξ)dξ,(3.5)

H2(t; l, µn) = 2
l[J1(−µn)]2

∫ t

0
(t− τ) d

dτ
Eα

(
−(µn)2

4l τα
)
dτ

∫ l

0
J0

−µn
√
ξ

l

 ξdξ,
H3(t; l, µn) = 8l

(µn)3J1(−µn)

[ ∫ t

0
(t− τ) d

dτ
Eα

(
−(µn)2

4l τα
)
dτ

∫ t

0
(t− τ)2 d

dτ
Eα

(
−(µn)2

4l τα
)
dτ

]
, µn ∈ R−, n = 1, 2, 3, . . . ,

and
I(1)
m (γ, ν, θ, φ) =

∫ ∞
0

uγ+ν+2me−θu−φu
2
du, for all m ∈ N, θ, φ ∈ R+,

(see [10]).

Proof. In both sides of (3.3), replace x by xu2 and then multiply by uγe−yu−zu2
Jν(−µn′u

√
x
l )

and then integrate both the sides with respect to u from 0 to ∞, and use (1.1) and (3.5),
to get the relation∫ ∞

0
uγe−yu−zu

2
Jν

(
−µn′u

√
x

l

)
Y (xu2, t)du(3.6)

=
∞∑
n=1

H1(t; l, µn)
∫ ∞

0
uγe−yu−zu

2
Jν

(
−µn′u

√
x

l

)
J0

(
−µnu

√
x

l

)
du

+
∞∑
n=1

H2(t; l, µn)
∫ ∞

0
uγe−yu−zu

2
Jν

(
−µn′u

√
x

l

)
J0

(
−µnu

√
x

l

)
du

+
∞∑
n=1

H3(t; l, µn)
∫ ∞

0
uγe−yu−zu

2
Jν

(
−µn′u

√
x

l

)
J0

(
−µnu

√
x

l

)
du



OBTAINING VOIGT FUNCTIONS VIA QUADRATURE FORMULA... 769

+ x

(
t

l
− t2

l

)(
−µn

′

2

√
x

l

)−1/2
Vγ+2,ν

(
−µn′

√
x

l
, y, z

)

− t
(
−µn

′

2

√
x

l

)−1/2
Vγ,ν

(
−µn′

√
x

l
, y, z

)
, µn, µn′ ∈ R−, n, n′ = 1, 2, 3, . . . .

Now in both sides of equation (3.6), replacing n′ by n and then using the following result
given in Rainville [22, p. 121]

Jν

(
−µnu

√
x

l

)
J0

(
−µnu

√
x

l

)
=

(
−u(µn

2 )
√

x
l

)ν
Γ(ν + 1) 2F3

[1
2(1 + ν), 1

2(2 + ν);
1, 1 + ν, 1 + ν; − u2(µn)2x

l

]
,

and the sequence of functions of mathematical physics due to [14], given by

I(1)
m (γ, ν, θ, φ) =

∫ ∞
0

uγ+ν+2me−θu−φu
2
du, for all m ∈ N, θ, φ ∈ R+,

to obtain the result (3.4). �

3.2. The Voigt functions via homogeneous Bessel type diffusion problem, when
0 < α ≤ 1. In a similar manner of the Theorem 3.1, we present and prove the following.

Theorem 3.2. If we put f = 0, q(x) = 0, p(x) = x for all x, 0 ≤ x ≤ l ⊂ R, ϕ1(t) = 0,
ϕ2(t) = 0, 0 < α ≤ 1, t > 0, in the equations (1.2)–(1.3), then we have Bessel type one
dimensional time fractional diffusion problem

(3.7) C
t D

α
0+Y (x, t) = ∂

∂x

[
x
∂

∂x

]
Y (x, t), 0 < α ≤ 1,

for all (x, t) ∈ (0, l)×(0,∞), (0, l) ⊂ R, subjected to the initial and inhomogeneous boundary
values

Y (x, 0) = g(x), ∂

∂t
Y (x, t)|t=0 = 0, for all (x, t) ∈ [0, l]× {0}, [0, l] ⊂ R,(3.8)

Y (0, t) = 0, ∂

∂x
Y (x, t)|x=0 = 1, for all (x, t) ∈ {0} × [0,∞),

Y (l, t) = 0, for all (x, t) ∈ {l} × [0,∞).
Then there exists

Y (x, t) = 1
l

∞∑
n=1

J0
(
−µn

√
x
l

)
[J1(−µn)]2 Eα

(
−(µn)2

4l tα
)∫ l

0
J0

−µn
√
ξ

l

 g(ξ)dξ,(3.9)

0 < x < l, t > 0.

Proof. With the aid of Theorem 2.1 and Subsection 3.1, the solution of the problems (3.7)–
(3.8) is found by result (3.9). �

Corollary 3.2. If J0(−µn) = 0 for all n = 1, 2, 3 . . ., and for all x, y, z ∈ R+, R(γ+ν) > −1,
then for all µn ∈ R− under the conditions given in (3.7) and (3.8), the quadrature formula
of the solution (3.9) exists and is given by the relation

∫ ∞
0

uγe−yu−zu
2
Jν

(
−µnu

√
x

l

)
Y (xu2, t)du =

∞∑
n=1

H1(t; l, µn)
(
−µn2

√
x

l

)ν(3.10)
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×
∞∑
m=0

Γ(1 + ν + 2m)
(Γ(1 + ν +m)(1)m)2

(
−(µn)2 x

4l

)m
× I(1)

m (γ, ν, y, z),

where H1(t; l, µn) and I(1)
m (γ, ν, θ, φ) are given in (3.5).

4. Numerical Example

In this section, we consider more briefly a computational formula starting from Y (x, t),
0 < x < l, t ∈ R+ and using the Theorem 3.2.

If we set g(x) = 1
2 for all x, 0 < x < l, in (3.9), we find a numerical formula

(4.1) Y (x, t) =
∞∑
n=1

J0
(
−µn

√
x
l

)
(−µn)J1(−µn)Eα

(
−(µn)2

4l tα
)
.

A fairly immediate consequence of this result is its use for obtaining the approximate
various real values of Y (x, t). According to our formalism we now in (4.1), introduce the
approximate value of Eα(−x), given by (see [27])

Eα(−x) =
1 + 1

Γ(1−α)q∗0
x

1 + q∗1
q∗0
x+ 1

q∗0
x2
,

where

q∗0 =
Γ(1+α)
Γ(1−α) −

Γ(1+α)Γ(1−α)
Γ(1−2α)

Γ(1 + α)Γ(1− α)− 1
and

q∗1 =
Γ(1 + α)− Γ(1−α)

Γ(1−2α)
Γ(1 + α)Γ(1− α)− 1 .

Again from the formula (1.1), it follows that

J0(x) =
∞∑
m=0

(−1)m

(m!)2

(
x

2

)2m
, J1(x) =

∞∑
m=0

(−1)m

(m+ 1)(m!)2

(
x

2

)2m+1
.

Now putting the zeros of J0(x) as µi, i = 1, 2, . . . , n, together with the values of α and l
such that 0 < α < 1 and l > 0, we can provide several examples with selected values of n
to compute and approximate various real values of Y (x, t), for all x, t ∈ R+. We omit them
due to lack of space and left them for further researchers in the field of computer science
and technology.

Conclusion

Explicit expressions for the generalized Voigt functions [10, 19, 25] and [26] of the second
kind defined by the Hankel integral transform (1.1) are given in terms of relatively more
familiar special functions of one and more variables, indeed, each of these representations
will naturally lead to various other needed properties of the Voigt functions. Here, in our
work, we have obtained the relations of the Voigt functions with the quadrature formula of
the solution of fractional in time diffusion and wave problem by first converting it into the
Sturm-Liouville problems and then looked out for its solutions. This concept may provide
the basis of investigations and further extensions for a high voltage technology to compute
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the fractional differential equations, anomalous diffusion problems and fractional in time
and space diffusion and wave problems with the help of Voigt functions.

To explore new ideas for representing the relation of the Voigt functions (1.1) with the
quadrature formula of the solution of fractional in time diffusion and wave problem, in our
current investigation, we have presented fractional in time Sturm-Liouville type diffusion
and wave equation. In the paper of Luchko [14] (see also [15]), some initial-boundary-value
problems with the Dirichlet boundary conditions for the time-fractional diffusion equation
were considered. Of course, the same method can be applied for the initial boundary value
problems with the Neumann, Robin, or mixed boundary conditions.

Besides establishing some interesting integral and series representations of special func-
tions, the results given in [13] and [14] may provide a new way of solution of a space-time
fractional anomalous diffusion problem using the series of bilateral eigenfunctions and se-
ries solution for initial value problems of time fractional generalized anomalous diffusion
equations as on the lines of [11,12] and [13].

Acknowledgements. The authors are highly grateful to the editor and reviewer for their
valuable comments and suggestions to improve the presentation of the paper.
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