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FRACTIONAL CALCULUS PERTAINING TO MULTIVARIABLE
I-FUNCTION

DINESH KUMAR1 AND FRÉDÉRIC AYANT2,3

Abstract. In this paper, we study and investigate unified and extended fractional
integral operator involving the multivariable I-function defined by Prasad, Raizada’s
generalized polynomial set and general class of multivariable polynomials. During
the present study, we derive five theorems pertaining to Mellin transforms of these
operators. Furthermore, on account of the general nature of the functions involved
herein, many known and (presumably) new fractional integral operators involved
simpler functions can be obtained. We also give the special case concerning the
multivariable H-function.

1. Introduction and Preliminaries

Fractional calculus is a branch of mathematical analysis that deals with derivatives
and integrals of arbitrary orders. Recently, it has been shown many phenomena in
physics, mechanics, biology, chemistry and other sciences can be described successfully
by models using mathematical tools from fractional calculus. Baleanu et al. [2] have
given generalized fractional integrals for the product of two H-functions and a general
class of polynomials. Certain unified fractional integrals and derivatives for a product
of Aleph function and a general class of multivariable polynomials have been studied by
Choi and Kumar [5]. Chaurasia and Srivastava [3], Daiya et al. [6], Kumar and Daiya
[12], Kumar et al. [13] and others have studied the fractional calculus pertaining
to the multivariable H-function [24]. Recently, Kumar and Ayant [9] have given
formulas for fractional calculus pertaining to the multivariable I-function defined by
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Prathima. The eeader can also refer to recent work on multivariable special functions,
for example, see [1, 10,11,18].

The explicit form of Raizada’s generalized polynomial set [16, Eqn.(2.3.4), p.7] is
defined and represented by

Sα,β,τ
n [x; r, s, q, A, B, m, k, l]

=Bqnxl(m+n) (1 − τxr) lm+n
m+n∑
υ=0

υ∑
e=0

m+n∑
δ=0

δ∑
p=0

(−1)δ (−δ)p (α)δ

p! δ! e! υ!

×
(−υ)e (−α − qn)p

(1 − α − δ)p

(
−β

τ
− sn

)
υ

(
p + k + re

l

)
m+n

( −τxr

1 − τxr

)υ (Ax

B

)δ

.(1.1)

It may be pointed out here that the polynomial set defined by (1.1) is very general in
nature and it unifies and extends a number of classical polynomials.

The generalized polynomials defined by Srivastava [23], are given in the following
manner:

SM1,...,Ms

N1,...,Ns
[y1, . . . , ys]

=
[N1/M1]∑

K1=0
· · ·

[Ns/Ms]∑
Ks=0

(−N1)M1K1

K1!
× · · · ×

(−Ns)MsKs

Ks!
A [N1, K1; . . . ; Ns, Ks] yK1

1 · · · yKs
s ,

where M1, . . . , Ms are arbitrary positive integers and the coefficients A [N1, K1; . . . ;
Ns, Ks] are arbitrary constants, real or complex.

The multivariable I-function [15] is an extension of the multivariable H-function
[24]. It is defined in term of multiple Mellin-Barnes type integral, given by

I (z1, . . . , zr) =I0,n2;0,n3;...;0,nr:m′,n′;...;m(r),n(r)

p2,q2,p3,q3;...;pr,qr:p′,q′;...;p(r),q(r)


z1
...

zr

∣∣∣∣∣∣∣
(
a2j; α′

2j, α′′
2j

)
1,p2

; . . . ;(
b2j; β′

2j, β′′
2j

)
1,q2

; . . . ;(
arj; α′

rj, . . . , α
(r)
rj

)
1,pr

:
(
a′

j, α′
j

)
1,p′

; . . . ;
(
a

(r)
j , α

(r)
j

)
1,p(r)(

brj; β′
rj, . . . , β

(r)
rj

)
1,qr

:
(
b′

j, β′
j

)
1,q′

; . . . ;
(
b

(r)
j , β

(r)
j

)
1,q(r)

 ,

= 1
(2πω)r

∫
L1

· · ·
∫
Lr

ϕ (s1, . . . , sr)
r∏

i=1
θi (si) zsi

i ds1 · · · dsr.(1.2)

For the existence and convergence conditions of defined integral of the above function,
see Prasad [15].

The condition for absolute convergence of multiple Mellin-Barnes type contour
(1.2) can be obtained by extension of the corresponding conditions for multivariable
H-function, given by

|arg zi| <
1
2Ωi π,
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where

Ωi =
n(i)∑
k=1

α
(i)
k −

p(i)∑
k=n(i)+1

α
(i)
k +

m(i)∑
k=1

β
(i)
k −

q(i)∑
k=m(i)+1

β
(i)
k +

 n2∑
k=1

α
(i)
2k −

p2∑
k=n2+1

α
(i)
2k


+ · · · +

 nr∑
k=1

α
(i)
rk −

pr∑
k=nr+1

α
(i)
rk

−
( q2∑

k=1
β

(i)
2k +

q3∑
k=1

β
(i)
3k + · · · +

qr∑
k=1

β
(i)
rk

)
,

where i = 1, . . . , r and zi ∈ C\ {0}.
Throughout the present paper, we assume the existence and absolute convergence

conditions of the multivariable I-function.
We may express the asymptotic expansion in the following convenient form:

I (z1, . . . , zr) = 0
(
|z1|γ

′
1 , . . . , |zr|γ

′
r

)
, max {|z1| , . . . , |zr|} → 0,

I (z1, . . . , zr) = 0
(
|z1|β

′
1 , . . . , |zr|β

′
s

)
, min {|z1| , . . . , |zr|} → +∞,

where k = 1, . . . , z, α′
k = min

[
Re

(
b

(k)
j /β

(k)
j

)]
, j = 1, . . . , mk, and

β′
k = max

[
Re

((
a

(k)
j − 1

)
/α

(k)
j

)]
, j = 1, . . . , nk.

In this paper, we also use the following notations:

A = (a2k, α′
2k, α′′

2k)1,p2
; . . . ;

(
a(r−1)k, α′

(r−1)k, α′′
(r−1)k, . . . , α

(r−1)
(r−1)k

)
1,pr−1

,

B = (b2k, β′
2k, β′′

2k)1;q2
; . . . ;

(
b(r−1)k, β′

(r−1)k, β′′
(r−1)k, . . . , β

(r−1)
(r−1)k

)
1,qr−1

,

A = (ask; α′
rk, α′′

rk, . . . , αr
rk)1,pr

; B = (brk; β′
rk, β′′

rk, . . . , βr
rk)1,qr

,

A′ = (a′
k, α′

k)1,p′ ; . . . ;
(
a

(r)
k , α

(r)
k

)
1,p(r)

; B′ = (b′
k, β′

k)1,q′ ; . . . ;
(
b

(r)
k , β

(r)
k

)
1,q(r)

.

The Mellin transform of f(x) will be denoted by M [f(x)] or F (s). If p and y are real,
we write s = p−1 + iy. If p ≥ 1, f(x) ∈ Lp (0, +∞), then, for p = 1, we have

M [f(x)] = F (s) =
∫ +∞

0
xs−1f(x)dx and f(x) = 1

2iπ

∫
L

F (s)x−sds.

For p > 1,

M [f(x)] = F (s) = l.i.m.
∫ x

1/x
xs−1 f(x)dx,

where l.i.m. denotes the usual limit in the mean for Lp-spaces.

2. Definitions

In the context of fractional calculus, extended fractional integral operators can
enhance our understanding and application of fractional integrals, especially when
dealing with functions that exhibit complex behavior.
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The pair of new extended fractional integral operators are defined by the following
equations:

Qα,β
γn

[f(x)] =tx−α−tβ−1
∫ x

0
yα

(
xt − yt

)β
I


γ1υ1

...
γnυn

∣∣∣∣∣∣∣
A;A : A′

B;B : B′


×

k∏
j=1

Sαj ,βj ,τj
nj

zj

(
yt

xt

)aj
(

1 − yt

xt

)bj

; rj, sj, qj, Aj, Bj, mj, kj, lj



×
r∏

j=1
S

M
(j)
1 ,...,M

(j)
s

N
(j)
1 ,...,N

(j)
s


z

(j)
1

(
yt

xt

)g
(j)
1
(
1 − yt

xt

)h
(j)
1

...

z(j)
s

(
yt

xt

)g
(j)
s
(
1 − yt

xt

)h
(j)
s

Ψ
(

yt

xt

)
f(y) dy(2.1)

and

Rρ,β
γn

[f(x)] =txρ
∫ +∞

x
y−ρ−tβ−1

(
yt − xt

)β
I


γ1µ1

...
γnµn

∣∣∣∣∣∣∣
A;A : A′

B;B : B′


×

k∏
j=1

Sαj ,βj ,τj
nj

zj

(
xt

yt

)aj
(

1 − xt

yt

)bj

; rj, sj, qj, Aj, Bj, mj, kj, lj



×
r∏

j=1
S

M
(j)
1 ,...,M

(j)
s

N
(j)
1 ,...,N

(j)
s


z

(j)
1

(
xt

yt

)g
(j)
1
(
1 − xt

yt

)h
(j)
1

...

z(j)
s

(
xt

yt

)g
(j)
s
(
1 − xt

yt

)h
(j)
s

 Ψ
(

xt

yt

)
f(y) dy,(2.2)

where υi =
(

yt

xt

)ui
(
1 − yt

xt

)vi

, µi =
(

xt

yt

)ui
(
1 − xt

yt

)vi , t, ui and vi, g
(j)
i , h

(j)
i , aj and bj

are positive numbers.
The kernels Ψ

(
yt

xt

)
and Ψ

(
xt

yt

)
appearing in (2.1) and (2.2), respectively, are as-

sumed to be continuous functions such that integrals make sense for a wide class of
functions f .

The existence conditions of these operators are given as follows:
(a) f ∈ Lp (0, +∞) ;
(b) 1 ≤ p, q < +∞, p−1 + q−1 = 1;
(c) Re [α + tai (li (mi + ni) + ei + risini)]+t

∑n
i=1 ui min1≤j≤m(i) Re

[(
b

(i)
j

β
(i)
j

)]
> −q−1;

(d) Re [β + tbi (li (mi + ni) + ei + risini)] + t
∑n

i=1 vimin1≤j≤m(i)Re
[(

b
(i)
j

β
(i)
j

)]
> −q−1;

(e) Re [ρ + tai (li (mi + ni) + ei + risini)]+ t
∑n

i=1 vimin1≤j≤m(i)Re
[(

b
(i)
j

β
(i)
j

)]
> −p−1,

where i = 1, . . . , k. Condition (a) ensures that both operators defined in (2.1) and
(2.2) exist and belong to Lp (0, +∞). These operators are extensions of fractional
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integral operators defined and studied by several authors like Erdélyi [7], Love [14],
Saigo et al. [19], Saxena and Kiryakova [20], Saxena and Kumbhat [21,22], etc.

3. Main Results

In this section, we investigate a unified and extended fractional integral operator
involving the multivariable I-function defined by Prasad, Raizada’s generalized poly-
nomial set and a general class of multivariable polynomials. Here, we derive results
pertaining to the Mellin transforms of these operators.

Theorem 3.1. If f ∈ Lp (0, +∞) , 1 ≤ p ≤ 2, or f ∈ Lp (0, +∞) , p > 2, and the
following conditions are satisfied: p−1 + q−1 = 1,

Re [α + tai (li (mi + ni) + ei + risini)] + t
n∑

i=1
ui min

1≤j≤m(i)
Re

 b
(i)
j

β
(i)
j

 > −q−1,

Re [β + tbi (li (mi + ni) + ei + risini)] + t
n∑

i=1
vi min

1≤j≤m(i)
Re

 b
(i)
j

β
(i)
j

 > −q−1,

and the integrals involved are absolutely convergent, then

(3.1) M
{
Qα,β

γn
[f(x)]

}
= M {f(x)} Rα−s+1,β

γn
[1] ,

where Mp(0, +∞) stands for the class of all functions f from Lp (0, +∞) with p > 2,
which are the inverse Mellin-transforms of functions from Lp (−∞, +∞).

Proof. By making use of the Mellin transform of (2.1), we get

M
{
Qα,β

γn
[f(x)]

}
=
∫ +∞

0
xs−1

tx−α−tβ−1
∫ x

0
yα

(
xt − yt

)β
I


γ1υ1

...
γnυn

∣∣∣∣∣∣∣
A;A : A′

B;B : B′


×

k∏
j=1

Sαj ,βj ,τj
nj

zj

(
yt

xt

)aj
(

1 − yt

xt

)bj

; rj, sj, qj, Aj, Bj, mj, kj, lj



×
r∏

j=1
S

M
(j)
1 ,...,M

(j)
s

N
(j)
1 ,...,N

(j)
s


z

(j)
1

(
yt

xt

)g
(j)
1
(
1 − yt

xt

)h
(j)
1

...

z(j)
s

(
yt

xt

)g
(j)
s
(
1 − yt

xt

)h
(j)
s

Ψ
(

yt

xt

)
f(y)dy


dx.

By interchanging the order of integration, which is permissible under the conditions,
the result (3.1) follows in view of (2.2). □

Theorem 3.2. If f ∈ Lp (0, +∞) , 1 ≤ p ≤ 2, or f ∈ Lp (0, +∞) , p > 2, and the
following conditions are satisfied : p−1 + q−1 = 1,

Re [β + tbi (li (mi + ni) + ei + risini)] + t
n∑

i=1
vi min

1≤j≤m(i)
Re

 b
(i)
j

β
(i)
j

 > −q−1,
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Re [ρ + tai (li (mi + ni) + ei + risini)] + t
n∑

i=1
vi min

1≤j≤m(i)
Re

 b
(i)
j

β
(i)
j

 > −p−1,

and the integrals involved are absolutely convergent, then

(3.2) M
{
Rρ,β

γn
[f(x)]

}
= M {f(x)} Qρ+s−1,β

γn
[1] .

Proof. By making use of Mellin transform of (2.2), we get

M
{
Rρ,β

γn
[f(x)]

}
=
∫ +∞

0
xs−1

txρ
∫ +∞

x
y−ρ−tβ−1

(
yt − xt

)β
I


γ1µ1

...
γnµn

∣∣∣∣∣∣∣
A;A : A′

B;B : B′


×

k∏
j=1

Sαj ,βj ,τj
nj

zj

(
xt

yt

)aj
(

1 − xt

yt

)bj

; rj, sj, qj, Aj, Bj, mj, kj, lj



×
r∏

j=1
S

M
(j)
1 ,...,M

(j)
s

N
(j)
1 ,...,N

(j)
s


z

(j)
1

(
xt

yt

)g
(j)
1
(
1 − xt

yt

)h
(j)
1

...

z(j)
s

(
xt

yt

)g
(j)
s
(
1 − xt

yt

)h
(j)
s

Ψ
(

xt

yt

)
f(y) dy


dx.

By interchanging the order of integration, which is permissible under the conditions,
the result (3.2) follows in view of (2.1). □

Theorem 3.3. If f ∈ Lp (0, +∞) , v ∈ Lp (0, +∞), and the following conditions are
satisfied:

Re [α + tai (li (mi + ni) + ei + risini)] + t
n∑

i=1
ui min

1≤j≤m(i)
Re

 b
(i)
j

β
(i)
j

 > −q−1,

Re [β + tbi (li (mi + ni) + ei + risini)] + t
n∑

i=1
vi min

1≤j≤m(i)
Re

 b
(i)
j

β
(i)
j

 > −q−1,

p−1 + q−1 = 1, and the integrals involved are absolutely convergent, then

(3.3)
∫ +∞

0
v(x) Qα,β

γn
[f(x)] dx =

∫ +∞

0
f(x) Rα,β

γn
[v(x)] dx.

Proof. The result of (3.3) can be obtained in view of (2.1) and (2.2). □

4. Inversion Formulae

In this section, we we provide inversion formulas for the main results.

Theorem 4.1. If f ∈ Lp (0, +∞) , 1 ≤ p ≤ 2, or f(x) ∈ Lp (0, +∞) , p > 2, and the
following conditions are satisfied: p−1 + q−1 = 1,

Re [α + tai (li (mi + ni) + ei + risini)] + t
n∑

i=1
ui min

1≤j≤m(i)
Re

 b
(i)
j

β
(i)
j

 > −q−1,
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Re [β + tbi (li (mi + ni) + ei + risini)] + t
n∑

i=1
vi min

1≤j≤m(i)
Re

 b
(i)
j

β
(i)
j

 > −q−1,

and the integrals involved are absolutely convergent and

(4.1) Qα,β
γn

[f(x)] = v(x),
then

(4.2) f(x) =
∫ +∞

0
y−1 [v(y)]

[
h

(
x

y

)]
dy,

where

h(x) = 1
2iπ

∫ c+i∞

c−i∞
y−1 x−s

R(s) ds,(4.3)

R(s) =Rα−s+1,β
γn

[1] .

Proof. By taking the Mellin transform of (4.1) and then applying Theorem 3.1, we
get

M {f(x)} = M {v(x)}
R(s) ,

which on inverting leads to

f(x) = 1
2iπ

∫ c+i∞

c−i∞
x−s M {v(x)}

R(s) ds = 1
2iπ

∫ c+i∞

c−i∞

x−s

R(s)

{∫ +∞

0
[v(y)] dy

}
ds.

Upon interchanging the order of integration, we have

f(x) =
∫ +∞

0

v(y)
y

{
1

2iπ

∫ c+i∞

c−i∞

(
x

y

)s 1
R(s) ds

}
dy.

Now in view of (4.3), we obtain the desired result (4.2). □

Theorem 4.2. If f ∈ Lp (0, +∞) , 1 ≤ p ≤ 2, or f ∈ Lp (0, +∞) , p > 2, and the
following conditions are satisfied: p−1 + q−1 = 1,

Re [β + tbi (li (mi + ni) + ei + risini)] + t
n∑

i=1
vi min

1≤j≤m(i)
Re

 b
(i)
j

β
(i)
j

 > −q−1,

Re [ρ + tai (li (mi + ni) + ei + risini)] + t
n∑

i=1
ui min

1≤j≤m(i)
Re

 b
(i)
j

β
(i)
j

 > −p−1,

and the integrals involved are absolutely convergent and

(4.4) Rρ,β
γn

[f(x)] = w(x),
then

f(x) =
∫ +∞

0
y−1 [w(y)]

[
g

(
x

y

)]
dy,(4.5)
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g(x) = 1
2iπ

∫ c+i∞

c−i∞
y−1 x−s

T (s) ds(4.6)

and
T (s) = Qρ+s−1,β

γn
[1] .

Proof. By taking the Mellin transform into account of (4.4) and then applying Theo-
rem 3.2, we get

f(x) = 1
2iπ

∫ c+i∞

c−i∞
x−s M {w(x)}

T (s) ds = 1
2iπ

∫ c+i∞

c−i∞

x−s

T (s)

{∫ +∞

0
[w(y)] dy

}
ds,

on interchanging the order of integration, then we have

f(x) =
∫ +∞

0

w(y)
y

{
1

2iπ

∫ c+i∞

c−i∞

(
x

y

)s 1
T (s) ds

}
dy.

Now in view of (4.6), we obtain the desired result (4.5). □

5. General Properties

The properties given below are consequences of Definitions 2.1 and 2.2

x−1Qα,β
γn

[1
x

f
(1

x

)]
=Rα,β

γn
[f(x)] ,

x−1Rρ,β
γn

[1
x

f
(1

x

)]
=Qρ,β

γn
[f(x)] ,

xµQα,β
γn

[f(x)] =Qα−µ,β
γn

[xµf(x)] ,

xµRρ,β
γn

[f(x)] =Rρ+µ,β
γn

[xµf(x)] .

The properties given below express the homogeneity of the operators Q and R, re-
spectively. If Qα,β

γn
[f(x)] = v(x), then Qα,β

γn
[f(cx)] = v(cx), and Rρ,β

γn
[f(x)] = w(x),

then Rρ,β
γn

[f(cx)] = w(cx).

6. Multivariable H-Function

In this section, we give special case concerning multivariable H-function.
If U = V = A = B = 0, the multivariable I-function defined by Prasad reduces

to multivariable H-function [4, 6, 13], see also [8, 17]. We obtain the two following
operators.

Qα,β
γn

[f(x)] =tx−α−tβ−1
∫ x

0
yα(xt − yt)β H


γ1υ1

...
γnυn

∣∣∣∣∣∣∣
A : A′

B : B′


×

k∏
j=1

Sαj ,βj ,τj
nj

zj

(
yt

xt

)aj
(

1 − yt

xt

)bj

; rj, sj, qj, Aj, Bj, mj, kj, lj
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×
r∏

j=1
S

M
(j)
1 ,...,M

(j)
s

N
(j)
1 ,...,N

(j)
s


z

(j)
1

(
yt

xt

)g
(j)
1
(
1 − yt

xt

)h
(j)
1

...

z(j)
s

(
yt

xt

)g
(j)
s
(
1 − yt

xt

)h
(j)
s

 Ψ
(

yt

xt

)
f(y) dy,

under the same notations and conditions that (2.1) with U = V = A = B = 0.

Rρ,β
γn

[f(x)] =txρ
∫ +∞

x
y−ρ−tβ−1

(
yt − xt

)β
H


γ1µ1

...
γnµn

∣∣∣∣∣∣∣
A : A′

B : B′


×

k∏
j=1

Sαj ,βj ,τj
nj

zj

(
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yt

)aj
(
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)bj

; rj, sj, qj, Aj, Bj, mj, kj, lj



×
r∏

j=1
S

M
(j)
1 ,...,M

(j)
s

N
(j)
1 ,...,N

(j)
s


z

(j)
1

(
xt

yt

)g
(j)
1
(
1 − xt

yt

)h
(j)
1

...

z(j)
s

(
xt

yt

)g
(j)
s
(
1 − xt

yt

)h
(j)
s

 Ψ
(

xt

yt

)
f(y) dy,

under the same notations and conditions as given in (2.2) with U = V = A = B = 0.
We can obtain the similar theorems and properties for multivariable H-function
concerning multivariable I-function.

7. Concluding Remarks

Fractional calculus involving multivariable I-functions is a rich area of study that
combines advanced mathematical concepts with practical applications. Understanding
the definitions and methods of fractional differentiation and integration is essential
for effectively leveraging these tools in real-world problems. The functions involved
in the results established in the present paper are of a unified and general nature,
hence a large number of known results lying in the literature follow as particular cases.
Further, on suitable specifications of the parameters involved, many new results
involving simpler functions can also be derived.
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