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INDECOMPOSABLE MODULES IN THE GRASSMANNIAN CLUSTER
CATEGORY CM(B5,10)

DUŠKO BOGDANIĆ1 AND IVAN-VANJA BOROJA2

Abstract. In this paper, we study indecomposable rank 2 modules in the Grassmannian
cluster category CM(B5,10). This is the smallest wild case containing modules whose
profile layers are 5-interlacing. We construct all rank 2 indecomposable modules with a
specific natural filtration, classify them up to isomorphism, and parameterize all infinite
families of non-isomorphic rank 2 modules.

1. Introduction and Preliminaries

In their seminal work [7], Fomin and Zelevinsky used the homogeneous coordinate ring
C[Gr(2, n)] of the Grassmannian of 2-dimensional subspaces of Cn as one of the first
examples of the theory of cluster algebras. Scott proved in [17] that this cluster structure
can be generalized to the coordinate ring C[Gr(k, n)]. These results initiated a lot of
research activities in cluster theory, e.g. [5, 8, 10, 12–16, 18]. Geiss, Leclerc, and Schroer
[9,11] gave an additive categorification of the cluster algebra structure on the homogeneous
coordinate ring of the Grassmannian variety of k-dimensional subspaces in Cn in terms
of a subcategory of the category of finite dimensional modules over the preprojective
algebra of type An−1, called the boundary algebra. Jensen, King, and Su [14] introduced a
new additive categorification of this cluster structure using the maximal Cohen-Macaulay
modules over the completion of an algebra Bk,n which is a quotient of the preprojective
algebra of type An−1. In the category CM(Bk,n) of Cohen-Macaulay modules over Bk,n,
among the indecomposable modules are the rank 1 modules which are known to be in
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bijection with k-subsets of {1, 2, . . . , n}, and their explicit construction has been given
in [14] (a k-subset I corresponds to a rank 1 module denoted LI). Rank 1 modules are
the building blocks of the category as any module in CM(Bk,n) can be filtered by rank 1
modules (the filtration is noted in the profile of a module, [14, Corollary 6.7]). The number
of rank 1 modules appearing in the filtration of a given module is called the rank of that
module.

The aim of this paper is to explicitly construct all rank 2 indecomposable Cohen-Macaulay
Bk,n-modules in the case when k = 5 and n = 10. All indecomposable Bk,n-modules of rank
2 whose rank 1 filtration layers LI and LJ satisfy the condition |I ∩ J | ≥ k − 4 have been
constructed in [4]. This covers all tame cases and the wild case (k, n) = (4, 9). The case
(k, n) = (5, 10) is the smallest wild case that contains rank 2 indecomposable modules whose
layers are 5-interlacing. In this case, the only profiles with 5-interlacing layers are of the
form {i, i+2, i+4, i+6, i+8} | {i+1, i+3, i+5, i+7, i+9}, where i = 1, 2. We construct all
indecomposable modules with the profile {i, i+2, i+4, i+6, i+8} | {i+1, i+3, i+5, i+7, i+9},
classify them up to isomorphism, and parameterize all infinite families of non-isomorphic
rank 2 modules. It is important to remark that even though we only treat the case (5, 10)
in this paper, all arguments and results are also valid for the general case (k, n) for all rank
2 modules with tightly 5-interlacing layers.

We follow the exposition from [2, 3, 14] in order to introduce notation and background
results. Here, the central combinatorial notion is that of r-interlacing.

Definition 1.1 (r-interlacing). Let I and J be two k-subsets of {1, . . . , n}. The sets
I and J are said to be r-interlacing if there exist subsets {i1, i3, . . . , i2r−1} ⊂ I \ J and
{i2, i4, . . . , i2r} ⊂ J \ I such that i1 < i2 < i3 < · · · < i2r < i1 (cyclically) and if there
exist no larger subsets of I and of J with this property. We say that I and J are tightly
r-interlacing if they are r-interlacing and |I ∩ J | = k − r.

Let Γn be the quiver of the boundary algebra, with vertices C0 = Zn on a cycle and
arrows xi : i−1 → i, yi : i → i−1, i ∈ C0. We write CM(Bk,n) for the category of maximal
Cohen-Macaulay modules for the completed path algebra Bk,n of Γn, with relations xy −yx
and xk − yn−k (at every vertex). The centre of Bk,n is Z := C[|t|], where t = ∑

i xiyi. For
example, in the following figure we have the quiver Γn for n = 5. We view the completed
path algebra of Γn as a topological algebra via the m-adic topology, where m is the two-
sided ideal generated by the arrows of the quiver, see [6, Section 1]. The algebra Bk,n was
introduced in [14, Section 3]. Observe that Bk,n is isomorphic to Bn−k,n, so we will always
take k ≤ n

2 . Moreover, throughout this paper, we will be working with the algebra B5,10.
For background results on algebras given by quivers and relations and their representations
we recommend [1].

The (maximal) Cohen-Macaulay Bk,n-modules are precisely those which are free as Z-
modules. Such a module M is given by a representation {Mi : i ∈ C0} of the quiver with
each Mi a free Z-module of the same rank (which is the rank of M).
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Figure 1. The quiver Γ5

Definition 1.2 ([14, Definition 3.5]). For any Bk,n-module M and K the field of fractions
of Z, the rank of M , denoted by rk(M), is defined to be the length of M ⊗Z K, rk(M) :=
len(M ⊗Z K).

Note that Bk,n⊗Z K ∼= Mn(K), which is a simple algebra. It is easy to check that the rank
is additive on short exact sequences and rk(M) = 0 for any finite-dimensional Bk,n-module
(because these are torsion over Z). Also, for any Cohen-Macaulay Bk,n-module M and
every idempotent ej, j ∈ C0, rkZ(ejM) = rk(M), so that, in particular, rkZ(M) = nrk(M).

Definition 1.3 ([14, Definition 5.1]). For any k-subset I of C0, we define a rank 1 Bk,n-
module

LI = (Ui, i ∈ C0 ; xi, yi, i ∈ C0)
as follows. For each vertex i ∈ C0, set Ui = C[[t]], ei acts as the identity on Ui and eiUj = 0,
for i ̸= j. For each i ∈ C0, set

xi : Ui−1 → Ui to be multiplication by 1 if i ∈ I, and by t if i ̸∈ I;
yi : Ui → Ui−1 to be multiplication by t if i ∈ I, and by 1 if i ̸∈ I.

The module LI can be represented by a lattice diagram LI in which U0, U1, U2, . . . , Un

are represented by columns of vertices (dots) from left to right (with U0 and Un to be
identified), going down infinitely. The vertices in each column correspond to the natural
monomial C-basis of C[t]. The column corresponding to Ui+1 is displaced half a step
vertically downwards (respectively, upwards) in relation to Ui if i + 1 ∈ I (respectively,
i+1 ̸∈ I), and the actions of xi and yi are shown as diagonal arrows. Note that the k-subset
I can then be read off as the set of labels on the arrows pointing down to the right which
are exposed to the top of the diagram. For example, the lattice diagram L{1,4,5} in the case
k = 3, n = 8, is shown in Figure 2.

We see from Figure 2 that the module LI is determined by its upper boundary, denoted
by the thick lines, which we refer to as the rim of the module LI (this is why we call the
k-subset I the rim of LI). Throughout this paper we will identify a rank 1 module LI with
its rim. Moreover, most of the time we will omit the arrows in the rim of LI and represent
it as an undirected graph.



910 D. BOGDANIĆ AND I.-V. BOROJA

1

1

2

2

3

3

3

4

4

4

5

5

6

6

7

7

7 8

8

8

8

Figure 2. Lattice diagram of the module L{1,4,5}

Proposition 1.1 ([14], Proposition 5.2). Every rank 1 Cohen-Macaulay Bk,n-module is
isomorphic to LI for some unique k-subset I of C0.

Every Bk,n-module has a canonical endomorphism given by multiplication by t ∈ Z. For
LI this corresponds to shifting LI one step downwards. Since Z is central, HomBk,n

(M, N)
is a Z-module for arbitrary Bk,n-modules M and N . If M, N are free Z-modules, then so
is HomBk,n

(M, N). In particular, for any two rank 1 Cohen-Macaulay Bk,n-modules LI and
LJ , HomBk,n

(LI , LJ) is a free module of rank 1 over Z = C[[t]], generated by the canonical
map given by placing the lattice of LI inside the lattice of LJ as far up as possible so that
no part of the rim of LI is strictly above the rim of LJ [14, Section 6].

Every indecomposable module M of rank n in CM(Bk,n) has a filtration having factors
LI1 , LI2 , . . . , LIn of rank 1. A specific filtration given by the dimension vector of a module
is noted in its profile, pr(M) = I1 | I2 | . . . | In, [14, Corollary 6.7]. In the case of a rank
2 module M with filtration LI | LJ (i.e. with profile I | J), we picture the profile of this
module by drawing the rim J below the rim I, in such a way that J is placed as far up as
possible so that no part of the rim J is strictly above the rim I. Note that there is at least
one point where the rims I and J meet (see Figure 3 for an example).

0 10 2 3 4 5 6 7 8 9 10

Figure 3. The profile {1, 3, 5, 7, 9} | {2, 4, 6, 8, 10} in CM(B5,10).

For background on the poset and dimension vector associated with an indecomposable
module or to its profile, we refer to [14, Section 6].
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2. Tight 5-Interlacing

In this section we construct all rank 2 indecomposable modules with the profile I | J in
the case when I and J are tightly 5-interlacing 5-subsets, i.e., when |I \J | = |J \I| = 5 and
non-common elements of I and J interlace, that is, |I ∩ J | = 0. Rank 2 indecomposable
modules with 3-interlacing and 4-interlacing layers have been constructed and parameterized
in [4].

In the case (5, 10), there are only two profiles with 5-interlacing layers, namely I | J and
J | I, where I = {1, 3, 5, 7, 9} and J = {2, 4, 6, 8, 10}. We will work with the profile I | J ,
the arguments are the same for J | I.

In [4], we defined a rank 2 module M(I, J) with filtration LI | LJ in a similar way as rank
1 modules are defined in CM(Bk,n). We recall the construction here. Let Vi := C[|t|]⊕C[|t|],
i = 1, . . . , n. The module M(I, J) has Vi at each vertex 1, 2, . . . , n of Γn. In order to have
a module structure for Bk,n, for every i we need to define xi : Vi−1 → Vi and yi : Vi → Vi−1
in such a way that xiyi = t · id and xk = yn−k.

Define

x2i+1 =
(

t b2i+1
0 1

)
, x2i =

(
1 b2i

0 t

)
,

y2i+1 =
(

1 −b2i+1
0 t

)
, y2i =

(
t −b2i

0 1

)
,

for i = 0, 1, 2, 3, 4. Also, we assume that ∑9
i=0 bi = 0. By construction it holds that xy = yx

and x5 = y10−5 at all vertices and that M(I, J) is free over the centre of B5,10. Hence,
M(I, J) is in CM(B5,10).

It was shown in [4] that M(I, J) is isomorphic to LI ⊕ LJ if and only if t | bi + bi+1, for i
odd.

Our aim is to study the structure of the module M(I, J) in terms of the divisibility
conditions the coefficients bi satisfy. Since I and J are fixed, M(I, J) will be denoted by
M.

We distinguish between different cases depending on whether the sums b1 + b2, b3 + b4,
b5 + b6, b7 + b8, and b9 + b10 are divisible by t or not. We will call these the five divisibility
conditions t | b1 + b2, t | b3 + b4, t | b5 + b6, t | b7 + b8, and t | b9 + b10, and write (div) to
abbreviate. Also, we write Bi = bi + bi+1 for odd i. There are four base cases: one of the
sums Bi is divisible by t and four are not, two are divisible by t and three are not, three
are divisible by t and two are not, and none of the sums is divisible by t. Note that it is
not possible that four of the sums are divisible by t and one is not because they sum up
to 0.

Theorem 2.1. The module M(I, J) is indecomposable if and only if there exist odd indices
il1 and il2 such that t | bi + bi+1, for il1 < i < il2, i odd, t ∤ bil1

+ bil1 +1, t ∤ bil2
+ bil2 +1, and

t ∤ bil1
+ bil1 +1 + bil2

+ bil2 +1.
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Throughout the paper, in all the cases we consider, we will assume that the assumptions
of the previous theorem are fulfilled, i.e. that there are odd indices il1 and il2 such that
t | bi+bi+1, for il1 < i < il2 , i odd, t ∤ bil1

+bil1 +1, t ∤ bil2
+bil2 +1, and t ∤ bil1

+bil1 +1+bil2
+bil2 +1.

This means that one of the base cases, the case where two of the sums Bi are not divisible
by t and three are divisible by t, will not be considered, because in this case the assumptions
of the previous theorem are not fulfilled. More precisely, the sum of the only two Bi’s that
are not divisible by t is divisible by t, because ∑10

i=1 bi = 0. Therefore, there are only three
base cases to consider.

We will show that there are infinitely many non-isomorphic modules with the same
filtration for the cases when none of the sums is divisible by t and when four of the sums
are not divisible by t.

Let (c1, c2, c3, c4, c5, c6, c7, c8, c9, c10) be another 10-tuple such that ∑10
i=1 ci = 0 and that

the module defined by this tuple is indecomposable. Denote this module by M′ and by Ci

the sum ci +ci+1, for odd i. We say that the modules M and M′ satisfy the same divisibility
conditions if the following holds: t | Bi if and only if t | Ci, and t | Bi + Bj if and only if
t | Ci + Cj.

For the rest of the paper, if tdv = w, for a positive integer d, then t−dw denotes v. If
there is an isomorphism φ = (φi) between the modules M and M′, then the following holds.

Let us assume that φ0 =
(

α β
γ δ

)
. Then from φixi = xiφi−1 we get that φ2i+1 is

(
α + (c1 + · · · + c2i+1)t−1γ βt − α

∑2i+1
j=1 bj + δ

∑2i+1
j=1 cj − (∑2i+1

j=1 bj)(
∑2i+1

j=1 cj)t−1γ
t−1γ δ − (b1 + . . . b2i+1)t−1γ0

)
,

and that φ2i is equal to(
α + (c1 + · · · + c2i)t−1γ β + t−1(−α

∑2i
j=1 bj + δ

∑2i
j=1 cj − t−1γ

∑2i
j=1 bj

∑2i
j=1 cj)

γ δ − (b1 + · · · + b2i)t−1γ

)
,

where t | γ and

t | −α(b1 + b2) + δ(c1 + c2) − (b1 + b2)(c1 + c2)t−1γ,

t | −α ·
4∑

i=1
bi + δ ·

4∑
i=1

ci − t−1γ
4∑

i=1
bi

4∑
i=1

ci,

t | −α ·
6∑

i=1
bi + δ ·

6∑
i=1

ci − t−1γ
6∑

i=1
bi

6∑
i=1

ci,(2.1)

t | −α
8∑

i=1
bi + δ

8∑
i=1

bi − t−1γ
8∑

i=1
bi

8∑
i=1

ci.

Since t | γ and we would like φ to be invertible, then it must be that t ∤ α and t ∤ δ.

Then the inverse of φ0 is 1
αδ−βγ

(
δ −β

−γ α

)
. Thus, in order to construct an isomorphism
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between M and M′, we have to make sure that the divisibility conditions (2.1) are met for
the coefficients of φ0. This will be used repeatedly throughout the paper.

Before considering base cases, in the next theorem we show that if the modules M and
M′ do not satisfy the same divisibility conditions, then they are not isomorphic.

Theorem 2.2. The above defined modules M and M′ are not isomorphic if they do not
satisfy the same divisibility conditions.

Proof. Let us assume that there is an odd index, say i1, such that t ∤ bi1 + bi1+1 and

t | ci1 + ci1+1. If φ = (φi) is an isomorphism between M and M′, let φi1−1 =
(

α β
γ δ

)
. Then

the coefficients of φi1−1 have to satisfy divisibility conditions (2.1). Since t | ci1 + ci1+1, the
first condition from (2.1), t | −α(bi1 + bi1+1) + δ(ci1 + ci1+1) − (bi1 + bi1+1)(ci1 + ci1+1)t−1γ,
reduces to t | α(bi1 + bi1+1). But t ∤ α and t ∤ bi1 + bi1+1 which is a contradiction. Hence, M
and M′ are not isomorphic in this case.

Assume that, for every odd i, t ∤ bi + bi+1 if and only if t ∤ ci + ci+1. Since M and
M′ do not satisfy the same divisibility conditions, there is an index, say i1, such that
t ∤ Bi1 + Bi2 and t | Ci1 + Ci2 . Then the second divisibility condition from (2.1), t |
−α(Bi1 +Bi2)+ δ(Ci1 +Ci2)− (Bi1 +Bi2)(Ci1 +Ci2)t−1γ, reduces to t | −α(Bi1 +Bi2). But,
t ∤ −α and t ∤ Bi1 + Bi2 which is a contradiction. Hence, M and M′ are not isomorphic in
this case as well. □

For the remainder of the paper, when we investigate if the modules M and M′ are
isomorphic, we will implicitly assume that they satisfy the same divisibility conditions.

2.1. Three of the sums Bi are not divisible by t. Assume that t ∤ bil
+ bil+1, l = 1, 2, 3,

and t | bil
+ bil+1, l = 4, 5, where {i1, i2, i3, i4, i5} = {1, 3, 5, 7, 9}. Since ∑10

i=1 bi = 0, it
follows that t ∤ Bil

+ Bis , for all l, s ≤ 3. By Theorem 2.1, the constructed module is
indecomposable. Denote this module by Mi1,i2,i3 . Let (ci) be another tuple giving rise to
the module Mj1,j2,j3 . The following theorem says that the modules Mi1,i2,i3 and Mj1,j2,j3

are isomorphic if and only if they satisfy the same divisibility conditions.

Theorem 2.3. The above-defined modules Mi1,i2,i3 and Mj1,j2,j3 are isomorphic if and only
if {i1, i2, i3} = {j1, j2, j3}.

Proof. Let {i1, i2, i3} = {j1, j2, j3} and φi1−1 =
(

α β
γ δ

)
. The divisibility conditions (2.1)

reduce to the following two conditions (recall that we write Bi for bi + bi+1):
t | −αBi1 + δCi1 − Bi1Ci1t−1γ,

t | −α(Bi1 + Bi2) + δ(Ci1 + Ci2) − (Bi1 + Bi2)(Ci1 + Ci2)t−1γ.

Here, we assume that we started numbering from i1, and that i1 < i2 < i3.
Since there are no conditions attached to β, we set it to be 0. If we set

−αBi1 + δCi1 − Bi1Ci1t−1γ = 0,
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−α(Bi1 + Bi2) + δ(Ci1 + Ci2) − (Bi1 + Bi2)(Ci1 + Ci2)t−1γ = 0,

then we get

α(Bi1 + Bi2)[C−1
i1 (Ci1 + Ci2) − 1] + δ(Ci1 + Ci2)[B−1

i1 (Bi1 + Bi2) − 1] = 0.

If t | C−1
i1 (Ci1 + Ci2) − 1, then t | Ci2 , which is not true. It follows that C−1

i1 (Ci1 + Ci2) − 1
is invertible. The same holds for B−1

i1 (Bi1 + Bi2) − 1. Thus, if we set δ = 1, then we get

α = −(Ci1 + Ci2)(Bi1 + Bi2)−1[B−1
i1 (Bi1 + Bi2) − 1][C−1

i1 (Ci1 + Ci2) − 1]−1

and
γ = t(−αC−1

i1 + B−1
i1 ).

Hence,

φ0 =


−(Ci1 + Ci2)(Bi1 + Bi2)−1[B−1

i1 (Bi1 + Bi2) − 1][C−1
i1 (Ci1 + Ci2) − 1]−1 0

t(−αC−1
i1 + B−1

i1 ) 1

 .

The other invertible matrices φi are now determined from φixi = xiφi−1. Note that all of
them are invertible because their determinant is equal to αδ − βγ which is an invertible
element.

If {i1, i2, i3} ≠ {j1, j2, j3}, then M and M′ do not satisfy the same divisibility conditions.
It follows by Theorem 2.2 that M and M′ are not isomorphic. □

The previous theorem tells us that the module Mi1,i2,i3 only depends on the divisibility
conditions of the coefficients bi, so if we have two different tuples satisfying the same
divisibility conditions, then they give rise to isomorphic modules. In total, there are(

5
3

)
non-isomorphic indecomposable modules that arise this way, one for each subset of

{1, 2, 3, 4, 5} with three elements.

2.2. Four of the sums Bi are not divisible by t. Assume that t ∤ bil
+bil+1, l = 1, 2, 3, 4,

and t | bj + bj+1, where {i1, i2, i3, i4} ∪ {j} = {1, 3, 5, 7, 9}. Since ∑10
i=1 bi = 0, it follows that

t | ∑4
l=1 Bil

. Recall that we assume that the divisibility conditions from Theorem 2.1 hold
so that the constructed module is indecomposable. Denote this module by M. It means
that t ∤ Bil

+ Bil+1 for at least one index l. If t ∤ Bil
+ Bil+1 , then t ∤ Bil+2 + Bil+3 . For the

remaining two sums Bil+1 + Bil+2 and Bil+3 + Bil
, either both of them are divisible by t or

none of them is. Thus, we have to distinguish between these subcases.
Before we start considering these subcases, we recall that two modules that do not satisfy

the same divisibility conditions are not isomorphic. Let (ci) be another tuple giving rise to
another indecomposable module M′. Here, we assume that t ∤ cjl

+ cjl+1, l = 1, 2, 3, 4, and
t | ci + ci+1, where {j1, j2, j3, j4} ∪ {i} = {1, 3, 5, 7, 9}. Since ∑10

i=1 ci = 0, it follows that
t | ∑4

l=1 Cjl
. Also, we assume that t ∤ Cjl

+ Cjl+1 for at least one index l.
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Now we examine if the modules M and M′ are isomorphic when they satisfy the same
divisibility conditions. Let {i1, i2, i3, i4} = {j1, j2, j3, j4}. Here, we can assume that these
odd numbers are consecutive.

The first subcase is when two of the sums Bi1 + Bi2 are divisible by t, and two are not.
Thus, we assume that t ∤ Bi1 + Bi2 , t ∤ Bi3 + Bi4 , t | Bi2 + Bi3 , and t | Bi4 + Bi1 . The same
conditions hold for M′, so t ∤ Ci1 + Ci2 , t ∤ Ci3 + Ci4 , t | Ci2 + Ci3 , and t | Ci4 + Ci1 . Note
that if t ∤ Bi1 + Bi2 , then t ∤ Bi3 + Bi4 because t | ∑4

l=1 Bil
. Analogously, if t | Bi2 + Bi3 ,

then t | Bi4 + Bi1 .

Theorem 2.4. If M and M′ are such that t ∤ Bi1 + Bi2, t | Bi2 + Bi3, t ∤ Ci1 + Ci2, and
t | Ci2 + Ci3, then M and M′ are isomorphic.

Proof. Keeping the same notation as before when constructing isomorphisms, the divisibility
conditions (2.1) reduce to:

t | −αBi1 + δCi1 − Bi1Ci1t−1γ,

t | −α(Bi1 + Bi2) + δ(Ci1 + Ci2) − (Bi1 + Bi2)(Ci1 + Ci2)t−1γ,

because t | Bi2 + Bi3 , t | Ci2 + Ci3 , t | ∑4
l=1 Bil

, and t | ∑4
l=1 Cil

. Now, we proceed as in the
proof of Theorem 2.3 in order to construct an isomorphism between M and M′. □

In total, this subcase gives 2
(

5
4

)
non-isomorphic indecomposable modules. There are two

modules for every choice of a four-element subset of {1, 3, 5, 7, 9}.
The second subcase is when none of the sums Bi1 +Bi2 is divisible by t. Thus, we assume

that t ∤ Bil
+ Bil+1 and t ∤ Cil

+ Cil+1, for l = 1, 2, 3, 4.

Theorem 2.5. If t ∤ Bil
+ Bil+1 and t ∤ Cil

+ Cil+1, for l = 1, 2, 3, 4, then the modules M
and M′ are isomorphic if and only if

t | Bi1Ci2Bi3Ci4 − Ci1Bi2Ci3Bi4 .

Proof. As before, if there were an isomorphism between M and M′, its coefficients would
have to satisfy the following conditions that we obtain from (2.1):

t | −αBi1 + δCi1 − Bi1Ci1t−1γ,

t | −α(Bi1 + Bi2) + δ(Ci1 + Ci2) − (Bi1 + Bi2)(Ci1 + Ci2)t−1γ,

t | αBi4 − δCi4 − Bi4Ci4t−1γ,

because t | ∑4
l=1 Bil

, and t | ∑4
l=1 Cil

.
From these we get that

t | αCi2 [Ci1(Ci1 + Ci2)]−1 − δBi2 [Bi1(Bi1 + Bi2)]−1,

t | αCi3 [Bi4(Ci1 + Ci2)]−1 − δBi3 [Bi4(Bi1 + Bi2)]−1.

Finally, from the last two relations we get
t | α[Bi1Ci2Bi3Ci4 − Ci1Bi2Ci3Bi4 ].
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If t ∤ Bi1Ci2Bi3Ci4 − Ci1Bi2Ci3Bi4 , then there is no isomorphism between M′ and M. If
t | Bi1Ci2Bi3Ci4 − Ci1Bi2Ci3Bi4 , then we simply set α = 1, and compute δ and γ from the
above relations (as before, we set β = 0). □

Remark 2.1. To classify all non-isomorphic indecomposable modules given by the previous
theorem, we use exactly the same arguments as in Section 5 in [4]. To each β ∈ C\{−1, 0, 1}
corresponds an indecomposable module Mβ defined by Bi1 = 1, Bi2 = β, Bi3 = −1,
Bi4 = −β, and Bi5 = 0. Here, ij < ij+1. It was proved in [4] that Mβ

∼= Mγ if and
only if β = ±γ, and that for a given indecomposable module M there exists β such that
M ∼= Mβ. This means that all indecomposable modules in this case are parameterized by
a single parameter β. Obviously, there are five different families (each in bijection with C),
depending on which ij is set to be divisible by t.
2.3. None of the five sums Bi is divisible by t. Since t ∤ Bi + Bi+2 for at least one odd
index i, there are three subcases we have to consider. The first subcase is when t | Bi +Bi+2
and t | Bi+2 + Bi+4 for a unique odd index i. The second subcase is when t | Bi + Bi+2 for
a unique odd index i. The third subcase is when t ∤ Bi + Bi+2 for all odd i. In the last two
cases, we get infinitely many non-isomorphic indecomposable modules as we will show.

As before, let us assume that (ci)10
1 is another 10-tuple giving rise to a module M′

satisfying the same divisibility conditions as the module M.
Assume that there is a unique odd index i such that t | Bi + Bi+2 and t | Bi+2 + Bi+4.

Recall that whenever we state the divisibility conditions for the bi’s, we assume that the
same conditions hold for the ci’s.
Theorem 2.6. If l is odd such that t | Bl + Bl+2, t | Bl+2 + Bl+4, t ∤ Bi + Bi+2, for
i ̸= l, l + 2, and t | Cl + Cl+2, t | Cl+2 + Cl+4, t ∤ Ci + Ci+2, for i ̸= l, l + 2, then M and M′

are isomorphic.
Proof. Without loss of generality we can assume that l = 3. Keeping the same notation as
before when constructing isomorphisms, because t | B3 + B5, t | B5 + B7, the divisibility
conditions (2.1) reduce to:

t | −αB1 + δC1 − B1C1t
−1γ,

t | −α(B1 + B3) + δ(C1 + C3) − (B1 + B3)(C1 + C3)t−1γ.

Now, we proceed as in the proof of Theorem 2.3 in order to construct an isomorphism
between M and M′. □

There are five non-isomorphic indecomposable modules arising in this subcase, one for
each index l ∈ {1, 3, 5, 7, 9}.

Assume that there is a unique odd index i such that t | Bi + Bi+2 and t ∤ Bj + Bj+2, for
j ̸= i.
Theorem 2.7. If l is odd such that t | Bl + Bl+2, t ∤ Bi + Bi+2, for i ̸= l, and t | Cl + Cl+2,
t ∤ Ci + Ci+2, for i ̸= l, then M and M′ are isomorphic if and only if

t | (Bl−2 + Bl)ClBl+4Cl+6 − (Cl−2 + Cl)BlCl+4Bl+6.
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Proof. Without loss of generality, assume that l = 3. As before, if there were an isomor-
phism between M and M′, its coefficients would have to satisfy the following conditions
that we obtain from (2.1):

t | −αB1 + δC1 − B1C1t
−1γ,

t | −α(B1 + B3) + δ(C1 + C3) − (B1 + B3)(C1 + C3)t−1γ,

t | αB9 − δC9 − B9C9t
−1γ.

Now we proceed as in the proof of Theorem 2.5. □

Let us parameterize the indecomposable modules from the previous theorem. Let β ∈ C
and denote by Mβ the indecomposable module whose coefficients bi satisfy B1 = β, B3 = 1,
B5 = −1, B7 = −β − 1, and B9 = 1. Also, β ̸= 0, −1, −2.

Proposition 2.1. Let M′ be a module such that t | Cl + Cl+2, t ∤ Ci + Ci+2, for i ̸= l.
There exists β ∈ C \ {0, −1, −2} such that M′ ∼= Mβ .

Proof. Assume again that l = 3. By the previous theorem, if M and Mβ were isomorphic,
then t | (C1 + C3)C7β + C3C9(β + 1)2. If γi is the constant term of Ci, then we set β to be
a solution of the equation

(β + 1)2 = −γ−1
3 γ−1

9 (γ1 + γ3)γ7.

Since the right-hand side of the previous equation is invertible, β ̸= −1. If β = 0 or β = −2,
then −γ3γ9 = (γ1 + γ3)γ7, and subsequently, −γ3γ9 − γ3γ7 = γ1γ7. From γ1 + γ7 + γ9 = 0
(this follows from t | C1 + C7 + C9), we get γ3γ1 = γ1γ7. Thus, γ3 = γ7. This means that
γ7 + γ5 = γ3 + γ5 = 0, which is not possible since t ∤ C5 + C7. Hence, β ̸= 0, −1, −2. □

It is clear that Mβ
∼= Mγ if and only if (1 + β)2 = (1 + γ)2. This means that either β = γ

or β + γ = −2. This means that the non-isomorphic indecomposable modules given in this
subcase are parameterized by the set C \ {0, −1, −2}, where we identify two points if they
sum up to −2.

There are five different families (each in bijection with C) of indecomposable modules
arising in this subcase, one for each l ∈ {1, 3, 5, 7, 9}.

Assume that t ∤ Bi + Bi+2, for all odd i.

Theorem 2.8. If t ∤ Bi + Bi+2 and t ∤ Ci + Ci+2, for all odd i, then the modules M and
M′ are isomorphic if and only if the following conditions hold:

t | C1B3(C5 + C7)B9 − B1C3(B5 + B7)C9,

t | C1B3C5(B7 + B9) − B1C3B5(C7 + C9).

Proof. As before, if there were an isomorphism φ = (φi) between M and M′, the coefficients

of φ0 =
(

α β
γ δ

)
would have to satisfy the following conditions that we obtain from (2.1):

t | −αB1 + δC1 − B1C1t
−1γ,



918 D. BOGDANIĆ AND I.-V. BOROJA

t | −α(B1 + B3) + δ(C1 + C3) − (B1 + B3)(C1 + C3)t−1γ,

t | α(B7 + B9) − δ(C7 + C9) − (B7 + B9)(C7 + C9)t−1γ,

t | αB9 − δC9 − B9C9t
−1γ.

Now, we use the same calculations as in the proof of Theorem 2.5 in order to obtain
the desired divisibility conditions. The trick is to use any three of the above divisibility
conditions and treat them as in the proof of Theorem 2.5. For example, we use the
first two and the last condition, and treat B5 + B7 as B5 in the proof of Theorem 2.5.
This gives us that t | C1B3(C5 + C7)B9 − B1C3(B5 + B7)C9. Analogously, use the first
three conditions and treat B7 + B9 as B7 in the proof of Theorem 2.5 to obtain t |
C1B3C5(B7 + B9) − B1C3B5(C7 + C9).

Conversely, if the given conditions hold, by setting α = 1, one easily computes δ and γ
from the above relations: δ = B1C3B

−1
3 C−1

1 (B1 + B3)(C1 + C3)−1, γ = t(−C−1
1 + δB−1

1 ).
We set β = 0. □

We are left to parameterize the indecomposable modules from the previous theorem.
Denote by M the indecomposable module corresponding to the coefficients Bi = bi + bi+1,

for odd i. Since ∑Bi = 0, we can rescale so that one of the Bi’s is equal to 1, say B7,
because from the previous theorem it holds that the module M is isomorphic to the module
corresponding to the coefficients Ci = BiB

−1
7 , for i ̸= 7, and C7 = 1.

Let M′ denote another indecomposable module determined by the coefficients C1 = α,
C3 = β, C5 = γ, C7 = 1, and C9 = δ, all of them being complex numbers such that
α + β + γ + 1 + δ = 0. Also, α, β, γ, δ ̸= 0, γ, δ ≠ −1, α + β ̸= 0, α + δ ̸= 0, γ + β ̸= 0.
Under the assumption that M and M′ are isomorphic, we will express α, β, and δ as a
function of γ and coefficients Bi. This will help us to find an appropriate parameterization
of indecomposable modules in this subcase.

By the previous theorem, it must hold
t | α(1 + γ)B3B9 − βδB1(B5 + 1),
t | αγB3(1 + B9) − β(1 + δ)B1B5.

These two relations imply that
t | (1 + δ)(1 + γ)B5B9 − γδ(1 + B9)(B5 + 1),
t | B−1

1 B−1
5 [αγB3(1 + B9) − α(1 + γ)B3B5B9(1 + B5)−1] − β.

The first of the last two relations is equivalent to
t | B5B9(α + β) − γδ(B1 + B3).

Since, α + β = −1 − γ − δ, this yields
t | −(1 + γ)[1 + γB−1

5 B−1
9 (B1 + B3)]−1 − δ.

The last divisibility condition is under the assumption that 1 + γB−1
5 B−1

9 (B1 + B3) is
invertible, i.e., that t ∤ 1 + γB5B9(B1 + B3)−1. If this condition holds, then δ ≠ 0. If
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B−1
5 B−1

9 (B1 + B3) = 1, then from B1 + B3 + B5 + 1 + B9 = 0 we get (B5 + 1)(B9 + 1) = 0,
which is not possible. Thus, 1 + γB−1

5 B−1
9 (B1 + B3) ̸= 1 + γ and δ ̸= −1. Also, from

t | B5B9(α + β) − γδ(B1 + B3) follows that α + β ̸= 0 because γδ(B1 + B3) is invertible.
From t | B5B9(α +β)−γδ(B1 +B3) and t | B−1

1 B−1
5 [αγB3(1+B9)−α(1+γ)B3B5B9(1+

B5)−1] − β, we get t | α[(1 − B−1
1 (1 + B5)−1B3B9) − γB−1

1 (1 + B5)−1B3B
−1
5 (B1 + B3))] −

δγB−1
5 B−1

9 (B1 + B3). If t ∤ B5B
−1
3 (B1 + B3)−1(B1(1 + B5) − B3B9) − γ, then (1 − B−1

1 (1 +
B5)−1B3B9)−γB−1

1 (1+B5)−1B3B
−1
5 (B1 +B3)) is invertible, and so α ̸= 0. If t | α+δ, then

from t | α[(1−B−1
1 (1+B5)−1B3B9)−γB−1

1 (1+B5)−1B3B
−1
5 (B1+B3))]−δγB−1

5 B−1
9 (B1+B3)

direct computation yields that t | 1 + γB5B9(B1 + B3)−1 which we already assumed is not
true. Hence, t ∤ α + δ and α + δ ̸= 0. It is shown in a similar fashion that β + γ ̸= 0.

Therefore, if we define δ to be the constant term of −(1 + γ)[1 + γB−1
5 B−1

9 (B1 + B3)]−1,
α to be the constant term of −δγ[(1 − B−1

1 (1 + B5)−1B3B9) − γB−1
1 (1 + B5)−1B3B

−1
5 (B1 +

B3))]−1B−1
5 B−1

9 (B1 + B3), and β to be the constant term of −αB−1
1 (1 + B5)−1B3B9[1 +

γB−1
5 B−1

9 (B1+B3)], we get a parameterization of the coefficients of M with only one complex
parameter γ involved. The other parameters, α, β, and δ, are expressed as a function of
γ and the coefficients Bi. If we want to fix a value of one of the parameters α, β, γ, and
δ, then the sum of the remaining three is fixed. Thus, one of them is determined by the
remaining two, so we end up with a parameterization of the form, e.g., α, −2−α−γ, γ, 1, 1,
with two parameters. Two such modules corresponding to different 5-tuples of parameters
are isomorphic if and only if the divisibility conditions from Theorem 2.8 are satisfied.
Thus, we identify two 5-tuples if and only if they satisfy the divisibility conditions from
Theorem 2.8.

In this subcase there is only one family of indecomposable modules.

3. Conclusion

We explicitly constructed all rank 2 indecomposable Cohen-Macaulay Bk,n-modules in
the case when k = 5 and n = 10. This is the smallest wild case containing modules whose
profile layers are 5-interlacing. In this case, the only profiles with 5-interlacing layers are
of the form {i, i + 2, i + 4, i + 6, i + 8} | {i + 1, i + 3, i + 5, i + 7, i + 9}, where i = 1, 2.
We constructed all indecomposable modules with such a profile, classified them up to
isomorphism, and parameterized all infinite families of non-isomorphic rank 2 modules. All
arguments and results are also valid for the general case (k, n) for all rank 2 modules with
tightly 5-interlacing layers.
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