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BI-PERIODIC HYPER-FIBONACCI NUMBERS

NASSIMA BELAGGOUN1,2 AND HACÈNE BELBACHIR1,2

Abstract. In the present paper, we introduce and study a new generalization of
hyper-Fibonacci numbers, called the bi-periodic hyper-Fibonacci numbers. Further-
more, we give a combinatorial interpretation using the weighted tilings approach and
prove several identities relating these numbers. Moreover, we derive their generating
function and new identities for the classical hyper-Fibonacci numbers.

1. Introduction

The Fibonacci numbers Fn are defined, as usual, by the recurrence relation
F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2, for n ≥ 2.

The hyper-Fibonacci numbers denoted F (r)
n , are introduced by Dil and Mezö [10], for

n, r ∈ N ∪ {0}, as entries of an infinite matrix arranged such that F (r)
n is the entry of

the rth row and nth column, satisfying

(1.1) F (0)
n = Fn, F

(r)
0 = 0 and F (r)

n = F
(r)
n−1 + F (r−1)

n , for n, r ≥ 1.

The sum of the first n + 1 elements of row r − 1 is expressed by F (r)
n , i.e.,

(1.2) F (r)
n =

n∑
k=0

F
(r−1)
k .

They satisfy many interesting number theoretical and combinatorial properties, see
[9]. Belbachir and Belkhir [3] provided a combinatorial interpretation of the hyper-
Fibonacci numbers in terms of linear tilings and gave some combinatorial identities.
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They also defined bivariate hyper-Fibonacci polynomials in [4], as

(1.3) F (r)
n (x, y) = xF

(r)
n−1(x, y) + yF (r−1)

n (x, y), for n, r ≥ 1,

with initial conditions F (0)
n (x, y) = Fn(x, y), F

(r)
0 (x, y) = 0, where x, y are real

parameters and Fn(x, y) is the nth bivariate Fibonacci polynomial, defined by (see
[1, 5])

F0(x, y) = 0, F1(x, y) = 1 and Fn(x, y) = xFn−1(x, y) + yFn−2(x, y).
The bivariate hyper-Fibonacci polynomials are given by the following explicit formula

(1.4) F
(r)
n+1(x, y) =

⌊n/2⌋+r∑
k=r

(
n + 2r − k

k

)
xn+2r−2kyk.

The associated generating function is given as follows

(1.5)
∑
n≥0

F (r)
n (x, y)zn = yrz

(1 − xz − yz2)(1 − xz)r
.

For y = 1, we denote Fn(x, y) by Fn(x).
Edson and Yayenie [12] introduced a new generalization for the Fibonacci sequence,

called as bi-periodic Fibonacci sequence, that depends on two real parameters a and
b, defined for n ⩾ 2, as follows

(1.6) qn =

aqn−1 + qn−2, if n is even,

bqn−1 + qn−2, if n is odd,

with initial values q0 = 0 and q1 = 1. These sequences are found in the study of
continued fraction expansion of the quadratic irrational numbers and combinatorics
on words or dynamical system theory [18]. Some well-known sequences, such as the
Fibonacci sequence, the Pell sequence and the k-Fibonacci sequence for some positive
integer k, are special cases of this sequence. For more results related to this sequence,
see [8, 11–18]

The generating function of qn is given by

(1.7)
∑
n≥0

qnzn = z (1 + az − z2)
1 − (ab + 2)z2 + z4 .

Yayenie [18] gave an explicit formula of bi-periodic Fibonacci numbers, as

(1.8) qn+1 = aξ(n)
⌊n/2⌋∑
k=0

(
n − k

k

)
(ab)⌊n/2⌋−k,

where ξ(n) = n − 2⌊n/2⌋, i.e., ξ(n) = 0 when n is even and ξ(n) = 1 when n is odd.
In this paper, we define a new generalization of hyper-Fibonacci numbers, which

we will also call bi-periodic hyper-Fibonacci numbers. We give a combinatorial in-
terpretation of these numbers using a weighted tilings approach and provide several
combinatorial proofs of some identities. We also obtain new identities for the classical
hyper-Fibonacci numbers. Moreover, by using the generating function of the bivariate
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hyper-Fibonacci polynomials, we establish the generating function of the bi-periodic
hyper-Fibonacci sequence.

Definition 1.1. For any integers n, r ≥ 1 and nonzero real numbers a and b, the
bi-periodic hyper-Fibonacci numbers, denoted by q(r)

n , are defined by

(1.9) q(r)
n =

n∑
k=0

aξ(k)ξ(n+1)bξ(k+1)ξ(n)(ab)⌊(n−k)/2⌋q
(r−1)
k ,

with initial values q
(r)
0 = 0 and q(0)

n = qn, where qn is the nth bi-periodic Fibonacci
number.

The first few generations are as follows in Table 1.

Table 1. Sequence of bi-periodic hyper-Fibonacci numbers in the first
few generations

n 0 1 2 3 4 5 6
q(0)

n 0 1 a ab + 1 a2b + 2a a2b2 + 3ab + 1 a3b2 + 4a2b + 3a
q(1)

n 0 1 2a 3ab + 1 4a2b + 3a 5a2b2 + 6ab + 1 6a3b2 + 10a2b + 4a
q(2)

n 0 1 3a 6ab + 1 10a2b + 4a 15a2b2 + 10ab + 1 21a3b2 + 20a2b + 5a
q(3)

n 0 1 4a 10ab + 1 20a2b + 5a 35a2b2 + 15ab + 1 56a3b2 + 35a2b + 6a
q(4)

n 0 1 5a 15ab + 1 35a2b + 6a 70a2b2 + 21ab + 1 126a3b2 + 56a2b + 7a

From the definition, we have the following recurrence relation:

(1.10) q(r)
n =

aq
(r)
n−1 + q(r−1)

n , if n is even,

bq
(r)
n−1 + q(r−1)

n , if n is odd.

Note that, for a = b = 1, we obtain the classical hyper-Fibonacci sequence (1.1).

2. Combinatorial Identities

The Fibonacci numbers can be interpreted as the number of ways to tile a board
of length n (i.e., an n-board) with cells numbered 1 to n from left to right using
only squares and dominoes; see [6, 7]. We expand the results to bi-periodic Fibonacci
numbers using weighted tilings. We assign a weight to each square in a tiling based
on its position. It is assigned a weight a if it is in an odd position and a weight b if it
is in an even position. The weight of a tiling of an n-board is defined as the product
of the weights of its individual tiles. The sum of all possible weighted tilings is given
by qn+1. Furthermore, the total of all possible weighted tilings of an (n + 2r)-board
with at least r dominoes is given by the bi-periodic hyper-Fibonacci numbers q

(r)
n+1, as

shown in Theorem 2.1.
For example, Figure 1 shows the tilings and the sum of their weights of a 5-board.

We have q
(0)
6 = q6 = a3b2 + 4a2b + 3a.
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Figure 1. Tilings of a 5-board

Figure 2 shows the tilings and the sum of their weights of a 6-board with at least 2
dominoes, there are q

(2)
3 = 6ab + 1 dispositions.

a b a b a b a b

a b a b

ab

ab ab

ababab

1

Figure 2. Tilings of a 6-board with at least 2 dominos

Therefore, we have the following results.

Theorem 2.1. For n, r ≥ 0, q
(r)
n+1 gives the weight of all tilings of an (n + 2r)-board

having at least r dominoes.

Proof. Given (n + 2r)-board. If it ends with a square, then there are bq(r)
n ways to tile

the (n + 2r − 1)-board for n even and aq(r)
n for n odd. If it ends with a domino, then

there are q
(r−1)
n+1 ways to tile the (n + 2(r − 1))-board. When n = 0, there is one way

to tile a 2r-board with at least r dominoes and there are qn+1 ways to tile a n-board
with at least 0 dominoes. There is no way to tile an (n + 2r)-board with at least r
dominoes for n < 0. □

Let f(n, k) be the number of weighted tilings having n tiles and exactly k dominoes.
Then

f(n, k) = aξ(n+k)bξ(n+k+1)f(n − 1, k) + f(n − 1, k − 1).
In fact, if the (n + k)-board ends in a square there are aξ(n+k)bξ(n+k+1)f(n − 1, k) ways
to tile the board. If it ends with a domino, then there are f(n − 1, k − 1) ways.

Lemma 2.1. The number of weighted tilings having n tiles and exactly k dominoes is

aξ(n+k)
(

n

k

)
(ab)⌊(n−k)/2⌋.
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Proof. Let g(n, k) = aξ(n+k)
(

n
k

)
(ab)⌊(n−k)/2⌋. Then

aξ(n+k)
(

n

k

)
(ab)⌊(n−k)/2⌋ = aξ(n+k)

((
n − 1

k

)
+
(

n − 1
k − 1

))
(ab)⌊(n−k)/2⌋.

Using ⌊(n − k)/2⌋ = ⌊(n − k − 1)/2⌋ + ξ(n + k + 1), we get

aξ(n+k)
(

n

k

)
(ab)⌊(n−k)/2⌋ = aξ(n+k)(ab)ξ(n+k+1)

(
n − 1

k

)
(ab)⌊(n−k−1)/2⌋

+ aξ(n+k)
(

n − 1
k − 1

)
(ab)⌊(n−k)/2⌋

= aξ(n+k)bξ(n+k+1)g(n − 1, k) + g(n − 1, k − 1).
Since g(n, k) satisfies the same recurrence of f(n, k) and the same initial conditions,
we get result. □

In the following theorems, we establish an explicit formula for the bi-periodic
hyper-Fibonacci sequence.

Theorem 2.2. For n, r ≥ 0, we have

(2.1) q
(r)
n+1 = aξ(n)

⌊n/2⌋+r∑
k=r

(
n + 2r − k

k

)
(ab)⌊n/2⌋+r−k.

Proof. From Theorem 2.1, q
(r)
n+1 counts the number of ways to tile an (n + 2r)-board

with at least r dominoes. On the other hand, using Lemma 2.1, the possible tilings
with exactly k dominoes contains n + 2r − 2k squares and n + 2r − k tiles, have
cardinality aξ(n)

(
n+2r−k

k

)
(ab)⌊n/2⌋+r−k. Since it contains at least r dominoes, the sum

over k ≥ r gives the identity. □

Now, we establish a double-summation formula for even-numbered bi-periodic hyper-
Fibonacci numbers q

(r)
2n+2.

Theorem 2.3. For n, r ≥ 0, we have

(2.2) q
(r)
2n+2 = a

n+r∑
k=r

k∑
j=0

(ab)ξ(n+r−k)
(

n + r − j

k − j

)(
n + r − k + j

j

)
(ab)2⌊(n+r−k)/2⌋.

Proof. Consider an (n + 2r + 1)-board. Since the length of the board is odd, there
are an odd number of squares such that we have at least one in each tiling. Suppose
there are i dominoes to the left of its median square and j dominoes to its right,
whose total is at least r dominoes, i.e., i + j ≥ r. The median square contributes
an aξ(n+r−i−j+1)bξ(n+r−i−j) to the weight (according to the position of the median
square). Such tiling contains 2n + 2r − 2i − 2j + 1 squares, so there are n + r − i − j
squares on each side of the median square. The left side gives n + r − j tiles with i

dominos. Hence, there are aξ(n+r−i−j)
(

n+r−j
i

)
(ab)⌊(n+r−i−j)/2⌋ different ways. Similarly,
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we have aξ(n+r−i−j)
(

n+r−i
j

)
(ab)⌊(n+r−i−j)/2⌋ different ways to tile the right side. Thus,

the possible tilings have cardinality a(ab)ξ(n+r−i−j)
(

n+r−i
j

)
(ab)2⌊(n+r−i−j)/2⌋. Summing

over i + j ≥ r, we get

a
∑

r≤i+j≤n+r

(ab)ξ(n+r−i−j)
(

n + r − j

i

)(
n + r − i

j

)
(ab)2⌊(n+r−i−j)/2⌋

=a
n+r∑
k=r

∑
i+j=k

(ab)ξ(n+r−k)
(

n + r − j

i

)(
n + r − i

j

)
(ab)2⌊(n+r−k)/2⌋

=a
n+r∑
k=r

k∑
j=0

(ab)ξ(n+r−k)
(

n + r − j

k − j

)(
n + r − k + j

j

)
(ab)2⌊(n+r−k)/2⌋. □

For a = b = 1, we get the following identity.

Corollary 2.1. For n, r ≥ 0, the following identity holds

(2.3) F
(r)
2n+2 =

n+r∑
k=r

k∑
j=0

(
n + r − j

k − j

)(
n + r − k + j

j

)
.

From the explicit formulas (1.8) and (2.1), we state the bi-periodic hyper-Fibonacci
sequence in terms of the bi-periodic Fibonacci sequence and binomial sum.

Theorem 2.4. Let n ≥ 0 and r ≥ 1 be integers, then we have

(2.4) q
(r)
n+1 = qn+1+2r − aξ(n)

r−1∑
k=0

(
n + 2r − k

k

)
(ab)⌊n/2⌋+r−k.

Note that, if we take a = b = 1, we get the following identity, see [3],

F
(r)
n+1 = Fn+1+2r −

r−1∑
k=0

(
n + 2r − k

k

)
.

Theorem 2.5. For n, r ≥ 1, we have

(2.5) q
(r)
n+1 = qn−1 +

r∑
k=0

aξ(n)bξ(n+1)q(k)
n .

Proof. There exists q
(r)
n+1 ways to tile a board of length n + 2r containing at least r

dominoes. Consider the number of dominoes at the end of each tiling. If tiling ends in
at least r dominoes, then the final r dominoes cover cells n + 1 through n + 2r, while
the remaining tilings can be done in qn+1 ways. On the other hand, if tilings ends in
exactly r − k dominoes for some 1 ≤ k ≤ r, preceded by a square at position n + 2k
and contribute aξ(n)bξ(n+1) to the weight, then the remaining (n − 1 + 2k)-board can
be tiled with at least k dominoes in q(k)

n ways. The result follows from the sum of
over k, i.e.,

q
(r)
n+1 = qn+1 +

r∑
k=1

aξ(n)bξ(n+1)q(k)
n = qn−1 +

r∑
k=0

aξ(n)bξ(n+1)q(k)
n .
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□

Note that, if we take a = b = x, we get the following hyper-Fibonacci identity.

Corollary 2.2. For n, r ≥ 1, we have

(2.6) F
(r)
n+1(x) = Fn−1(x) +

r∑
k=0

xF (k)
n (x).

For a = b = 1, we obtain the following identity, see [2],

F
(r)
n+1 = Fn−1 +

r∑
k=0

F (k)
n .

In the following theorem, we give the recurrence relation of the bi-periodic hyper-
Fibonacci sequence.

Theorem 2.6. For n ≥ 0 and r ≥ 2, we have

(2.7) q
(r)
n+2 = abq(r)

n + 2q
(r−1)
n+2 − q

(r−2)
n+2 .

Proof. We will construct a 3-to-1 correspondence between the following two sets.
• The set of all tiled (n + 2r − 1)-boards with at least r dominoes. There are

q(r)
n ways.

• The set of all tiled (n+2r+1)-boards with at least r dominoes and (n+2r−3)-
boards with at least r − 1 dominoes. There are q

(r)
n+2 + q(r−1)

n ways.
Consider an arbitrary tiling T of length n + 2r − 1, we can do the following.

1. Add two squares at the end of T to get an (n + 2r + 1)-board ending in a
square. Then there are abq(r)

n ways.
2. Add a domino at the end of T to get an (n + 2r + 1)-board ending in a domino.

Then there are q
(r−1)
n+2 ways.

3. Condition on whether T ends in a square or a domino.
i. Suppose T ends in a square, then insert a domino immediately to the left

of the square to creates (n + 2r + 1)-board ending in a square. Then there
are aξ(n+1)bξ(n)q

(r−1)
n+1 ways to do it.

ii. Suppose T ends in a domino, we remove the domino to get an (n + 2r − 2)-
board. Then there are q(r−1)

n ways.
So, we conclude that

q
(r)
n+2 + q(r−1)

n = abq(r)
n + q

(r−1)
n+2 + aξ(n+1)bξ(n)q

(r−1)
n+1 + q(r−1)

n

= abq(r)
n + 2q

(r−1)
n+2 + q(r−1)

n − q
(r−2)
n+2 .

Therefore
q

(r)
n+2 = abq(r)

n + 2q
(r−1)
n+2 − q

(r−2)
n+2 . □

Note that, if we take a = b = 1, we get the following hyper-Fibonacci identity.
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Corollary 2.3. For n ≥ 0 and r ≥ 2, we have
(2.8) F

(r)
n+2 = F (r)

n + 2F
(r−1)
n+2 − F

(r−2)
n+2 .

The following theorem gives the nonhomogeneous recurrence relation for the bi-
periodic hyper-Fibonacci sequence.

Theorem 2.7. For n, r ≥ 1, we have

(2.9) q
(r)
n+1 = aξ(n)bξ(n+1)q(r)

n + q
(r)
n−1 + aξ(n)(ab)⌊n/2⌋

(
n + r − 1

r − 1

)
.

Proof. There are q
(r)
n+1 ways to tile a (n + 2r)-board with at least r dominoes. We

consider the last tile in a tiling, which can be either a square or a domino. If the
board ends in a square, then there are bq(r)

n ways to tile (n + 2r − 1)-boards with at
least r dominoes for n even and aq(r)

n ways to do it for n odd. If the board ends in
a domino, we separate the tilings into two disjoint sets A and B. The set A with
exactly r dominoes and the set B whose contain tilings with at least r + 1 dominoes.
Having in mind that one domino is fixed, the tilings in the set A has n + r − 1 tiles
with exactly r − 1 dominoes, then by Lemma 2.1, we have |A| = aξ(n)(ab)⌊n/2⌋

(
n+r−1

r−1

)
.

The tilings in the set B are equivalent to the tilings of an (n + 2r − 2)-boards with at
least r dominoes, i.e., |B| = q

(r)
n−1. Therefore,

q
(r)
n+1 = aξ(n)bξ(n+1)q(r)

n + |A| + |B|. □

Note that, if we take a = b = x, we get the following hyper-Fibonacci identity, see
[4],

F
(r)
n+1(x) = xF (r)

n (x) + F
(r)
n−1(x) + xn

(
n + r − 1

r − 1

)
.

Theorem 2.8. For m, n ∈ N ∪ {0} with m ≤ r, we have

(2.10) q
(r)
n+m =

m∑
k=0

aξ(n+m+1)ξ(n+k)bξ(n+m)ξ(n+k+1)
(

m

k

)
(ab)⌊(m−k)/2⌋q

(r−k)
n+k .

Proof. There exists q
(r)
n+m ways to tile a board of length (n + m + 2r − 1) containing at

least r dominoes. Consider the number of dominoes among the first m tiles. The k

dominoes can be placed among the first m tiles in
(

m
k

)
ways and the remaining tiles

which consisting of squares, contribute aξ(n+m+1)ξ(n+k)bξ(n+m)ξ(n+k+1)(ab)⌊(m−k)/2⌋ to
the weight. The remaining right board has a length of n − 1 + 2r − k, with at least
r − k dominos that can be tiled in q

(r−k)
n+k ways. Summing over all possible k completes

the proof. □

Note that, if we take a = b = x and m = r, we get the following hyper-Fibonacci
identity, see [4],

F
(r)
n+r =

r∑
k=0

(
r

k

)
xr−kF

(r−k)
n+k .
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The bi-periodic hyper-Fibonacci sequence can be expressed in terms of the combi-
natorial sum of bi-periodic Fibonacci sequence.

Theorem 2.9. For n, r ≥ 1, we have

(2.11) q(r)
n =

n∑
k=1

aξ(n+1)ξ(k)bξ(n)ξ(k+1)
(

n + r − k − 1
r − 1

)
(ab)⌊(n−k)/2⌋qk.

Proof. The left-hand side of this equality counts the number of ways to tile a board
of length n + 2r − 1 containing at least r dominoes.

The right-hand side is obtained by conditioning on the location of the rth domino.
Suppose that the rth domino occupies cell k and k + 1 (1 ≤ k ≤ n) (from the right).
The left part is a tiling of some section of length k − 1 which can be done in qk

ways. The rigth part is a tiling of the remaining portion of length n + 2r − 2 − k (i.e.,
cells k + 2 through n + 2r − 1) with exactly r − 1 dominos, which can be done in a
aξ(n+1)ξ(k)bξ(n)ξ(k+1)

(
n+r−k−1

r−1

)
(ab)⌊(n−k)/2⌋ ways (according to the parity of the numbers

n and k). The result follows from considering the sum of all possible locations of the
rth domino. □

Note that, if we take a = b = x, we get the following hyper-Fibonacci identity, see
[4],

F (r)
n (x) =

n∑
k=1

xn−k

(
n + r − k − 1

r − 1

)
Fk(x).

In the following theorem, we give the alternating binomial sum of the bi-periodic
hyper-Fibonacci numbers.

Theorem 2.10. For r, m, n ∈ N ∪ {0} with m ≤ r,we have

(2.12)
m∑

j=0
(−1)j

(
m

j

)
q

(r−j)
n+m = aξ(n)ξ(m)bξ(n+1)ξ(m)(ab)⌊m/2⌋q(r)

n .

Proof. We proceed by induction on m ≤ r. For m = 1 and m = 2, we get (1.10) and
Theorem 2.6, respectively. Suppose that the result holds for all i ≤ m. Then we can
prove it for m + 1

m+1∑
j=0

(−1)j

(
m + 1

j

)
q

(r−j)
n+m+1 =

m+1∑
j=0

(−1)j

((
m

j

)
+
(

m

j − 1

))
q

(r−j)
n+m+1

=
∑
j≥0

(−1)j

(
m

j

)
q

(r−j)
n+m+1 −

∑
j≥0

(−1)j

(
m

j

)
q

(r−j−1)
n+m+1 .

From (1.10), we obtain
m+1∑
j=0

(−1)j

(
m + 1

j

)
q

(r−j)
n+m+1 =

∑
j≥0

(−1)j

(
m

j

)
aξ(n+m)bξ(n+m+1)q

(r−j)
n+m

= aξ(n+m)bξ(n+m+1)aξ(n)ξ(m)bξ(n+1)ξ(m)(ab)⌊m/2⌋q(r)
n .
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Using ξ(n + m) = ξ(n) + ξ(m) − 2ξ(n)ξ(m) and ⌊m/2⌋ = ⌊(m + 1)/2⌋ − ξ(m), we get
m+1∑
j=0

(−1)j

(
m + 1

j

)
q

(r−j)
n+m+1 = aξ(n)ξ(m+1)bξ(n+1)ξ(m+1)(ab)⌊(m+1)/2⌋q(r)

n .

Therefore, the identity is valid for all m ≤ r. □

Note that, for a = b = x, we get the following result.

Corollary 2.4. The following equality holds for any nonnegative integers r ≥ m

(2.13)
m∑

j=0
(−1)j

(
m

j

)
F

(r−j)
n+m = xmF (r)

n .

The bi-periodic Fibonacci sequence can be expressed in terms of the bi-periodic
hyper-Fibonacci sequence.

Theorem 2.11. For r, m ∈ N ∪ {0}, we have

(2.14) qm+1 =
m∑

k=0

(
r

k

)
(−1)kaξ(k)ξ(m)bξ(k)ξ(m+1)(ab)⌊k/2⌋q

(r)
m+1−k.

Proof. We proceed by induction on m. This is true for m = 0. Suppose that the
result holds for all i ≤ m. Then we can prove it for m + 1. From (1.10), we get

qm+2 = aξ(m+1)bξ(m)qm+1 + qm

= aξ(m+1)bξ(m)
m∑

k=0

(
r

k

)
(−1)kaξ(k)ξ(m)bξ(k)ξ(m+1)(ab)⌊k/2⌋q

(r)
m+1−k

+
m−1∑
k=0

(
r

k

)
(−1)kaξ(k)ξ(m+1)bξ(k)ξ(m)(ab)⌊k/2⌋q

(r)
m−k.

Using ξ(m + 1) = ξ(m − k + 1) + ξ(k)ξ(m + 1) − ξ(k)ξ(m) and ξ(m) = ξ(m − k) +
ξ(k)ξ(m) − ξ(k)ξ(m + 1) we get ξ(k)ξ(m) + ξ(m + 1) = ξ(k)ξ(m + 1) + ξ(m − k + 1)
and ξ(k)ξ(m + 1) + ξ(m) = ξ(k)ξ(m) + ξ(m − k). Therefore, we have

qm+2 =
m∑

k=0

(
r

k

)
(−1)kaξ(k)ξ(m+1)+ξ(m−k+1)bξ(k)ξ(m)+ξ(m−k)(ab)⌊k/2⌋q

(r)
m+1−k

+
m−1∑
k=0

(
r

k

)
(−1)kaξ(k)ξ(m+1)bξ(k)ξ(m)(ab)⌊k/2⌋q

(r)
m−k

=
∑
k≥0

(
r

k

)
(−1)kaξ(k)ξ(m+1)bξ(k)ξ(m)(ab)⌊k/2⌋

(
aξ(m−k+1)bξ(m−k)q

(r)
m+1−k + q

(r)
m−k

)

=
m+1∑
k=0

(
r

k

)
(−1)kaξ(k)ξ(m+1)bξ(k)ξ(m)(ab)⌊k/2⌋q

(r)
m+2−k. □

Note that, for a = b = x, we get the following result.



BI-PERIODIC HYPER-FIBONACCI NUMBERS 613

Corollary 2.5. The following equality holds for any integers r, m ≥ 0

(2.15) Fm+1(x) =
m∑

k=0

(
r

k

)
(−1)kxkF

(r)
m+1−k(x).

3. Generating Function

We start by establishing the relationship between the bi-periodic hyper-Fibonacci
sequence and the hyper-Fibonacci polynomials.

Lemma 3.1. For n, r ≥ 0, we have

(3.1) q(r)
n = 1

2

((
1 +

√
a

b

)
− (−1)n

(
1 −

√
a

b

))
F (r)

n

(√
ab
)

.

Proof. Using (1.4), (2.1) and ⌊n/2⌋ = (n − ξ(n))/2, we have

q(r)
n = aξ(n−1)

⌊(n−1)/2⌋+r∑
k=r

(
n − 1 + 2r − k

k

)
(ab)(n−1−ξ(n−1))/2+r−k

=
(

a√
ab

)ξ(n−1) ⌊(n−1)/2⌋+r∑
k=r

(
n − 1 + 2r − k

k

)(√
ab
)n−1+2r−2k

=
(√

a

b

)ξ(n−1) ⌊(n−1)/2⌋+r∑
k=r

(
n − 1 + 2r − k

k

)(√
ab
)n−1+2r−2k

=

(
1 +

√
a
b

)
− (−1)n

(
1 −

√
a
b

)
2

⌊(n−1)/2⌋+r∑
k=r

(
n − 1 + 2r − k

k

)(√
ab
)n−1+2r−2k

.□

Theorem 3.1. The generating function of the bi-periodic hyper-Fibonacci sequence
is given by∑
n≥0

q(r)
n zn =

z

(
1 +

√
a
b

) (
1 +

√
abz − z2

) (
1 +

√
abz

)r
+
(
1 −

√
a
b

) (
1 −

√
abz − z2

) (
1 −

√
abz

)r

2 (1 − (ab + 2)z2 + z4) (1 − abz2)r .

Proof. Using Lemma 3.1 and (1.5), we get∑
n≥0

q(r)
n zn = 1

2

(
1 +

√
a

b

)∑
n≥0

F (r)
n

(√
ab
)

zn − 1
2

(
1 −

√
a

b

)∑
n≥0

F (r)
n

(√
ab
)

(−z)n

= 1
2

(
1 +

√
a

b

)
z(

1 −
√

abz − z2
) (

1 −
√

abz
)r

− 1
2

(
1 −

√
a

b

) −z(
1 +

√
abz − z2

) (
1 +

√
abz

)r ,

which gives the desired result. □
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Note that, if we take r = 0, we obtain the generating function of the bi-periodic
Fibonacci sequence (1.7). If we take a = b = x, we obtain the generating function of
hyper-Fibonacci polynomials (1.5) with y = 1.
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