# BI-PERIODIC HYPER-FIBONACCI NUMBERS 

NASSIMA BELAGGOUN ${ }^{1,2}$ AND HACÈNE BELBACHIR ${ }^{1,2}$


#### Abstract

In the present paper, we introduce and study a new generalization of hyper-Fibonacci numbers, called the bi-periodic hyper-Fibonacci numbers. Furthermore, we give a combinatorial interpretation using the weighted tilings approach and prove several identities relating these numbers. Moreover, we derive their generating function and new identities for the classical hyper-Fibonacci numbers.


## 1. Introduction

The Fibonacci numbers $F_{n}$ are defined, as usual, by the recurrence relation

$$
F_{0}=0, F_{1}=1 \quad \text { and } \quad F_{n}=F_{n-1}+F_{n-2}, \quad \text { for } n \geq 2 .
$$

The hyper-Fibonacci numbers denoted $F_{n}^{(r)}$, are introduced by Dil and Mezö [10], for $n, r \in \mathbb{N} \cup\{0\}$, as entries of an infinite matrix arranged such that $F_{n}^{(r)}$ is the entry of the $r$ th row and $n$th column, satisfying

$$
\begin{equation*}
F_{n}^{(0)}=F_{n}, F_{0}^{(r)}=0 \quad \text { and } \quad F_{n}^{(r)}=F_{n-1}^{(r)}+F_{n}^{(r-1)}, \quad \text { for } n, r \geq 1 \tag{1.1}
\end{equation*}
$$

The sum of the first $n+1$ elements of row $r-1$ is expressed by $F_{n}^{(r)}$, i.e.,

$$
\begin{equation*}
F_{n}^{(r)}=\sum_{k=0}^{n} F_{k}^{(r-1)} . \tag{1.2}
\end{equation*}
$$

They satisfy many interesting number theoretical and combinatorial properties, see [9]. Belbachir and Belkhir [3] provided a combinatorial interpretation of the hyperFibonacci numbers in terms of linear tilings and gave some combinatorial identities.

[^0]They also defined bivariate hyper-Fibonacci polynomials in [4], as

$$
\begin{equation*}
F_{n}^{(r)}(x, y)=x F_{n-1}^{(r)}(x, y)+y F_{n}^{(r-1)}(x, y), \quad \text { for } n, r \geq 1 \tag{1.3}
\end{equation*}
$$

with initial conditions $F_{n}^{(0)}(x, y)=F_{n}(x, y), F_{0}^{(r)}(x, y)=0$, where $x, y$ are real parameters and $F_{n}(x, y)$ is the $n$th bivariate Fibonacci polynomial, defined by (see $[1,5])$

$$
F_{0}(x, y)=0, F_{1}(x, y)=1 \quad \text { and } \quad F_{n}(x, y)=x F_{n-1}(x, y)+y F_{n-2}(x, y)
$$

The bivariate hyper-Fibonacci polynomials are given by the following explicit formula

$$
\begin{equation*}
F_{n+1}^{(r)}(x, y)=\sum_{k=r}^{\lfloor n / 2\rfloor+r}\binom{n+2 r-k}{k} x^{n+2 r-2 k} y^{k} . \tag{1.4}
\end{equation*}
$$

The associated generating function is given as follows

$$
\begin{equation*}
\sum_{n \geq 0} F_{n}^{(r)}(x, y) z^{n}=\frac{y^{r} z}{\left(1-x z-y z^{2}\right)(1-x z)^{r}} . \tag{1.5}
\end{equation*}
$$

For $y=1$, we denote $F_{n}(x, y)$ by $F_{n}(x)$.
Edson and Yayenie [12] introduced a new generalization for the Fibonacci sequence, called as bi-periodic Fibonacci sequence, that depends on two real parameters $a$ and $b$, defined for $n \geqslant 2$, as follows

$$
q_{n}= \begin{cases}a q_{n-1}+q_{n-2}, & \text { if } n \text { is even }  \tag{1.6}\\ b q_{n-1}+q_{n-2}, & \text { if } n \text { is odd }\end{cases}
$$

with initial values $q_{0}=0$ and $q_{1}=1$. These sequences are found in the study of continued fraction expansion of the quadratic irrational numbers and combinatorics on words or dynamical system theory [18]. Some well-known sequences, such as the Fibonacci sequence, the Pell sequence and the $k$-Fibonacci sequence for some positive integer $k$, are special cases of this sequence. For more results related to this sequence, see [8,11-18]

The generating function of $q_{n}$ is given by

$$
\begin{equation*}
\sum_{n \geq 0} q_{n} z^{n}=\frac{z\left(1+a z-z^{2}\right)}{1-(a b+2) z^{2}+z^{4}} . \tag{1.7}
\end{equation*}
$$

Yayenie [18] gave an explicit formula of bi-periodic Fibonacci numbers, as

$$
\begin{equation*}
q_{n+1}=a^{\xi(n)} \sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n-k}{k}(a b)^{\lfloor n / 2\rfloor-k}, \tag{1.8}
\end{equation*}
$$

where $\xi(n)=n-2\lfloor n / 2\rfloor$, i.e., $\xi(n)=0$ when $n$ is even and $\xi(n)=1$ when $n$ is odd.
In this paper, we define a new generalization of hyper-Fibonacci numbers, which we will also call bi-periodic hyper-Fibonacci numbers. We give a combinatorial interpretation of these numbers using a weighted tilings approach and provide several combinatorial proofs of some identities. We also obtain new identities for the classical hyper-Fibonacci numbers. Moreover, by using the generating function of the bivariate
hyper-Fibonacci polynomials, we establish the generating function of the bi-periodic hyper-Fibonacci sequence.

Definition 1.1. For any integers $n, r \geq 1$ and nonzero real numbers $a$ and $b$, the bi-periodic hyper-Fibonacci numbers, denoted by $q_{n}^{(r)}$, are defined by

$$
\begin{equation*}
q_{n}^{(r)}=\sum_{k=0}^{n} a^{\xi(k) \xi(n+1)} b^{\xi(k+1) \xi(n)}(a b)^{\lfloor(n-k) / 2\rfloor} q_{k}^{(r-1)}, \tag{1.9}
\end{equation*}
$$

with initial values $q_{0}^{(r)}=0$ and $q_{n}^{(0)}=q_{n}$, where $q_{n}$ is the $n$th bi-periodic Fibonacci number.

The first few generations are as follows in Table 1.
TABLE 1. Sequence of bi-periodic hyper-Fibonacci numbers in the first few generations

| $n$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q_{n}^{(0)}$ | 0 | 1 | $a$ | $a b+1$ | $a^{2} b+2 a$ | $a^{2} b^{2}+3 a b+1$ | $a^{3} b^{2}+4 a^{2} b+3 a$ |
| $q_{n}^{(1)}$ | 0 | 1 | $2 a$ | $3 a b+1$ | $4 a^{2} b+3 a$ | $5 a^{2} b^{2}+6 a b+1$ | $6 a^{3} b^{2}+10 a^{2} b+4 a$ |
| $q_{n}^{(2)}$ | 0 | 1 | $3 a$ | $6 a b+1$ | $10 a^{2} b+4 a$ | $15 a^{2} b^{2}+10 a b+1$ | $21 a^{3} b^{2}+20 a^{2} b+5 a$ |
| $q_{n}^{(3)}$ | 0 | 1 | $4 a$ | $10 a b+1$ | $20 a^{2} b+5 a$ | $35 a^{2} b^{2}+15 a b+1$ | $56 a^{3} b^{2}+35 a^{2} b+6 a$ |
| $q_{n}^{(4)}$ | 0 | 1 | $5 a$ | $15 a b+1$ | $35 a^{2} b+6 a$ | $70 a^{2} b^{2}+21 a b+1$ | $126 a^{3} b^{2}+56 a^{2} b+7 a$ |

From the definition, we have the following recurrence relation:

$$
q_{n}^{(r)}= \begin{cases}a q_{n-1}^{(r)}+q_{n}^{(r-1)}, & \text { if } n \text { is even }  \tag{1.10}\\ b q_{n-1}^{(r)}+q_{n}^{(r-1)}, & \text { if } n \text { is odd }\end{cases}
$$

Note that, for $a=b=1$, we obtain the classical hyper-Fibonacci sequence (1.1).

## 2. Combinatorial Identities

The Fibonacci numbers can be interpreted as the number of ways to tile a board of length $n$ (i.e., an $n$-board) with cells numbered 1 to $n$ from left to right using only squares and dominoes; see $[6,7]$. We expand the results to bi-periodic Fibonacci numbers using weighted tilings. We assign a weight to each square in a tiling based on its position. It is assigned a weight $a$ if it is in an odd position and a weight $b$ if it is in an even position. The weight of a tiling of an $n$-board is defined as the product of the weights of its individual tiles. The sum of all possible weighted tilings is given by $q_{n+1}$. Furthermore, the total of all possible weighted tilings of an $(n+2 r)$-board with at least $r$ dominoes is given by the bi-periodic hyper-Fibonacci numbers $q_{n+1}^{(r)}$, as shown in Theorem 2.1.

For example, Figure 1 shows the tilings and the sum of their weights of a 5 -board. We have $q_{6}^{(0)}=q_{6}=a^{3} b^{2}+4 a^{2} b+3 a$.


Figure 1. Tilings of a 5-board
Figure 2 shows the tilings and the sum of their weights of a 6 -board with at least 2 dominoes, there are $q_{3}^{(2)}=6 a b+1$ dispositions.


Figure 2. Tilings of a 6 -board with at least 2 dominos
Therefore, we have the following results.
Theorem 2.1. For $n, r \geq 0, q_{n+1}^{(r)}$ gives the weight of all tilings of an $(n+2 r)$-board having at least $r$ dominoes.
Proof. Given $(n+2 r)$-board. If it ends with a square, then there are $b q_{n}^{(r)}$ ways to tile the $(n+2 r-1)$-board for $n$ even and $a q_{n}^{(r)}$ for $n$ odd. If it ends with a domino, then there are $q_{n+1}^{(r-1)}$ ways to tile the $(n+2(r-1))$-board. When $n=0$, there is one way to tile a $2 r$-board with at least $r$ dominoes and there are $q_{n+1}$ ways to tile a $n$-board with at least 0 dominoes. There is no way to tile an $(n+2 r)$-board with at least $r$ dominoes for $n<0$.

Let $f(n, k)$ be the number of weighted tilings having $n$ tiles and exactly $k$ dominoes. Then

$$
f(n, k)=a^{\xi(n+k)} b^{\xi(n+k+1)} f(n-1, k)+f(n-1, k-1) .
$$

In fact, if the $(n+k)$-board ends in a square there are $a^{\xi(n+k)} b^{\xi(n+k+1)} f(n-1, k)$ ways to tile the board. If it ends with a domino, then there are $f(n-1, k-1)$ ways.

Lemma 2.1. The number of weighted tilings having $n$ tiles and exactly $k$ dominoes is

$$
a^{\xi(n+k)}\binom{n}{k}(a b)^{\lfloor(n-k) / 2\rfloor} .
$$

Proof. Let $g(n, k)=a^{\xi(n+k)}\binom{n}{k}(a b)^{\lfloor(n-k) / 2\rfloor}$. Then

$$
a^{\xi(n+k)}\binom{n}{k}(a b)^{\lfloor(n-k) / 2\rfloor}=a^{\xi(n+k)}\left(\binom{n-1}{k}+\binom{n-1}{k-1}\right)(a b)^{\lfloor(n-k) / 2\rfloor} .
$$

Using $\lfloor(n-k) / 2\rfloor=\lfloor(n-k-1) / 2\rfloor+\xi(n+k+1)$, we get

$$
\begin{aligned}
a^{\xi(n+k)}\binom{n}{k}(a b)^{\lfloor(n-k) / 2\rfloor}= & a^{\xi(n+k)}(a b)^{\xi(n+k+1)}\binom{n-1}{k}(a b)^{\lfloor(n-k-1) / 2\rfloor} \\
& +a^{\xi(n+k)}\binom{n-1}{k-1}(a b)^{\lfloor(n-k) / 2\rfloor} \\
= & a^{\xi(n+k)} b^{\xi(n+k+1)} g(n-1, k)+g(n-1, k-1) .
\end{aligned}
$$

Since $g(n, k)$ satisfies the same recurrence of $f(n, k)$ and the same initial conditions, we get result.

In the following theorems, we establish an explicit formula for the bi-periodic hyper-Fibonacci sequence.

Theorem 2.2. For $n, r \geq 0$, we have

$$
\begin{equation*}
q_{n+1}^{(r)}=a^{\xi(n)} \sum_{k=r}^{\lfloor n / 2\rfloor+r}\binom{n+2 r-k}{k}(a b)^{\lfloor n / 2\rfloor+r-k} . \tag{2.1}
\end{equation*}
$$

Proof. From Theorem 2.1, $q_{n+1}^{(r)}$ counts the number of ways to tile an $(n+2 r)$-board with at least $r$ dominoes. On the other hand, using Lemma 2.1, the possible tilings with exactly $k$ dominoes contains $n+2 r-2 k$ squares and $n+2 r-k$ tiles, have cardinality $a^{\xi(n)}\binom{n+2 r-k}{k}(a b)^{\lfloor n / 2\rfloor+r-k}$. Since it contains at least $r$ dominoes, the sum over $k \geq r$ gives the identity.

Now, we establish a double-summation formula for even-numbered bi-periodic hyperFibonacci numbers $q_{2 n+2}^{(r)}$.

Theorem 2.3. For $n, r \geq 0$, we have

$$
\begin{equation*}
q_{2 n+2}^{(r)}=a \sum_{k=r}^{n+r} \sum_{j=0}^{k}(a b)^{\xi(n+r-k)}\binom{n+r-j}{k-j}\binom{n+r-k+j}{j}(a b)^{2\lfloor(n+r-k) / 2\rfloor} . \tag{2.2}
\end{equation*}
$$

Proof. Consider an $(n+2 r+1)$-board. Since the length of the board is odd, there are an odd number of squares such that we have at least one in each tiling. Suppose there are $i$ dominoes to the left of its median square and $j$ dominoes to its right, whose total is at least $r$ dominoes, i.e., $i+j \geq r$. The median square contributes an $a^{\xi(n+r-i-j+1)} b^{\xi(n+r-i-j)}$ to the weight (according to the position of the median square). Such tiling contains $2 n+2 r-2 i-2 j+1$ squares, so there are $n+r-i-j$ squares on each side of the median square. The left side gives $n+r-j$ tiles with $i$ dominos. Hence, there are $a^{\xi(n+r-i-j)}\binom{n+r-j}{i}(a b)^{\lfloor(n+r-i-j) / 2\rfloor}$ different ways. Similarly,
we have $a^{\xi(n+r-i-j)}\binom{n+r-i}{j}(a b)^{\lfloor(n+r-i-j) / 2\rfloor}$ different ways to tile the right side. Thus, the possible tilings have cardinality $a(a b)^{\xi(n+r-i-j)}\binom{n+r-i}{j}(a b)^{2\lfloor(n+r-i-j) / 2\rfloor}$. Summing over $i+j \geq r$, we get

$$
\begin{aligned}
& a \sum_{r \leq i+j \leq n+r}(a b)^{\xi(n+r-i-j)}\binom{n+r-j}{i}\binom{n+r-i}{j}(a b)^{2\lfloor(n+r-i-j) / 2\rfloor} \\
= & a \sum_{k=r}^{n+r} \sum_{i+j=k}(a b)^{\xi(n+r-k)}\binom{n+r-j}{i}\binom{n+r-i}{j}(a b)^{2\lfloor(n+r-k) / 2\rfloor} \\
= & a \sum_{k=r}^{n+r} \sum_{j=0}^{k}(a b)^{\xi(n+r-k)}\binom{n+r-j}{k-j}\binom{n+r-k+j}{j}(a b)^{2\lfloor(n+r-k) / 2\rfloor} .
\end{aligned}
$$

For $a=b=1$, we get the following identity.
Corollary 2.1. For $n, r \geq 0$, the following identity holds

$$
\begin{equation*}
F_{2 n+2}^{(r)}=\sum_{k=r}^{n+r} \sum_{j=0}^{k}\binom{n+r-j}{k-j}\binom{n+r-k+j}{j} . \tag{2.3}
\end{equation*}
$$

From the explicit formulas (1.8) and (2.1), we state the bi-periodic hyper-Fibonacci sequence in terms of the bi-periodic Fibonacci sequence and binomial sum.

Theorem 2.4. Let $n \geq 0$ and $r \geq 1$ be integers, then we have

$$
\begin{equation*}
q_{n+1}^{(r)}=q_{n+1+2 r}-a^{\xi(n)} \sum_{k=0}^{r-1}\binom{n+2 r-k}{k}(a b)^{\lfloor n / 2\rfloor+r-k} . \tag{2.4}
\end{equation*}
$$

Note that, if we take $a=b=1$, we get the following identity, see [3],

$$
F_{n+1}^{(r)}=F_{n+1+2 r}-\sum_{k=0}^{r-1}\binom{n+2 r-k}{k} .
$$

Theorem 2.5. For $n, r \geq 1$, we have

$$
\begin{equation*}
q_{n+1}^{(r)}=q_{n-1}+\sum_{k=0}^{r} a^{\xi(n)} b^{\xi(n+1)} q_{n}^{(k)} . \tag{2.5}
\end{equation*}
$$

Proof. There exists $q_{n+1}^{(r)}$ ways to tile a board of length $n+2 r$ containing at least $r$ dominoes. Consider the number of dominoes at the end of each tiling. If tiling ends in at least $r$ dominoes, then the final $r$ dominoes cover cells $n+1$ through $n+2 r$, while the remaining tilings can be done in $q_{n+1}$ ways. On the other hand, if tilings ends in exactly $r-k$ dominoes for some $1 \leq k \leq r$, preceded by a square at position $n+2 k$ and contribute $a^{\xi(n)} b^{\xi(n+1)}$ to the weight, then the remaining $(n-1+2 k)$-board can be tiled with at least $k$ dominoes in $q_{n}^{(k)}$ ways. The result follows from the sum of over $k$, i.e.,

$$
q_{n+1}^{(r)}=q_{n+1}+\sum_{k=1}^{r} a^{\xi(n)} b^{\xi(n+1)} q_{n}^{(k)}=q_{n-1}+\sum_{k=0}^{r} a^{\xi(n)} b^{\xi(n+1)} q_{n}^{(k)} .
$$

Note that, if we take $a=b=x$, we get the following hyper-Fibonacci identity.
Corollary 2.2. For $n, r \geq 1$, we have

$$
\begin{equation*}
F_{n+1}^{(r)}(x)=F_{n-1}(x)+\sum_{k=0}^{r} x F_{n}^{(k)}(x) . \tag{2.6}
\end{equation*}
$$

For $a=b=1$, we obtain the following identity, see [2],

$$
F_{n+1}^{(r)}=F_{n-1}+\sum_{k=0}^{r} F_{n}^{(k)} .
$$

In the following theorem, we give the recurrence relation of the bi-periodic hyperFibonacci sequence.

Theorem 2.6. For $n \geq 0$ and $r \geq 2$, we have

$$
\begin{equation*}
q_{n+2}^{(r)}=a b q_{n}^{(r)}+2 q_{n+2}^{(r-1)}-q_{n+2}^{(r-2)} . \tag{2.7}
\end{equation*}
$$

Proof. We will construct a 3-to-1 correspondence between the following two sets.

- The set of all tiled $(n+2 r-1)$-boards with at least $r$ dominoes. There are $q_{n}^{(r)}$ ways.
- The set of all tiled $(n+2 r+1)$-boards with at least $r$ dominoes and $(n+2 r-3)$ boards with at least $r-1$ dominoes. There are $q_{n+2}^{(r)}+q_{n}^{(r-1)}$ ways.
Consider an arbitrary tiling $T$ of length $n+2 r-1$, we can do the following.

1. Add two squares at the end of $T$ to get an $(n+2 r+1)$-board ending in a square. Then there are $a b q_{n}^{(r)}$ ways.
2. Add a domino at the end of $T$ to get an $(n+2 r+1)$-board ending in a domino. Then there are $q_{n+2}^{(r-1)}$ ways.
3. Condition on whether $T$ ends in a square or a domino.
i. Suppose $T$ ends in a square, then insert a domino immediately to the left of the square to creates $(n+2 r+1)$-board ending in a square. Then there are $a^{\xi(n+1)} b^{\xi(n)} q_{n+1}^{(r-1)}$ ways to do it.
ii. Suppose $T$ ends in a domino, we remove the domino to get an $(n+2 r-2)$ board. Then there are $q_{n}^{(r-1)}$ ways.
So, we conclude that

$$
\begin{aligned}
q_{n+2}^{(r)}+q_{n}^{(r-1)} & =a b q_{n}^{(r)}+q_{n+2}^{(r-1)}+a^{\xi(n+1)} b^{\xi(n)} q_{n+1}^{(r-1)}+q_{n}^{(r-1)} \\
& =a b q_{n}^{(r)}+2 q_{n+2}^{(r-1)}+q_{n}^{(r-1)}-q_{n+2}^{(r-2)} .
\end{aligned}
$$

Therefore

$$
q_{n+2}^{(r)}=a b q_{n}^{(r)}+2 q_{n+2}^{(r-1)}-q_{n+2}^{(r-2)} .
$$

Note that, if we take $a=b=1$, we get the following hyper-Fibonacci identity.

Corollary 2.3. For $n \geq 0$ and $r \geq 2$, we have

$$
\begin{equation*}
F_{n+2}^{(r)}=F_{n}^{(r)}+2 F_{n+2}^{(r-1)}-F_{n+2}^{(r-2)} . \tag{2.8}
\end{equation*}
$$

The following theorem gives the nonhomogeneous recurrence relation for the biperiodic hyper-Fibonacci sequence.

Theorem 2.7. For $n, r \geq 1$, we have

$$
\begin{equation*}
q_{n+1}^{(r)}=a^{\xi(n)} b^{\xi(n+1)} q_{n}^{(r)}+q_{n-1}^{(r)}+a^{\xi(n)}(a b)^{\lfloor n / 2\rfloor}\binom{n+r-1}{r-1} . \tag{2.9}
\end{equation*}
$$

Proof. There are $q_{n+1}^{(r)}$ ways to tile a $(n+2 r)$-board with at least $r$ dominoes. We consider the last tile in a tiling, which can be either a square or a domino. If the board ends in a square, then there are $b q_{n}^{(r)}$ ways to tile $(n+2 r-1)$-boards with at least $r$ dominoes for $n$ even and $a q_{n}^{(r)}$ ways to do it for $n$ odd. If the board ends in a domino, we separate the tilings into two disjoint sets $A$ and $B$. The set $A$ with exactly $r$ dominoes and the set $B$ whose contain tilings with at least $r+1$ dominoes. Having in mind that one domino is fixed, the tilings in the set $A$ has $n+r-1$ tiles with exactly $r-1$ dominoes, then by Lemma 2.1, we have $|A|=a^{\xi(n)}(a b)^{\lfloor n / 2\rfloor}\binom{n+r-1}{r-1}$. The tilings in the set $B$ are equivalent to the tilings of an ( $n+2 r-2$ )-boards with at least $r$ dominoes, i.e., $|B|=q_{n-1}^{(r)}$. Therefore,

$$
q_{n+1}^{(r)}=a^{\xi(n)} b^{\xi(n+1)} q_{n}^{(r)}+|A|+|B| .
$$

Note that, if we take $a=b=x$, we get the following hyper-Fibonacci identity, see [4],

$$
F_{n+1}^{(r)}(x)=x F_{n}^{(r)}(x)+F_{n-1}^{(r)}(x)+x^{n}\binom{n+r-1}{r-1} .
$$

Theorem 2.8. For $m, n \in \mathbb{N} \cup\{0\}$ with $m \leq r$, we have

$$
\begin{equation*}
q_{n+m}^{(r)}=\sum_{k=0}^{m} a^{\xi(n+m+1) \xi(n+k)} b^{\xi(n+m) \xi(n+k+1)}\binom{m}{k}(a b)^{\lfloor(m-k) / 2\rfloor} q_{n+k}^{(r-k)} . \tag{2.10}
\end{equation*}
$$

Proof. There exists $q_{n+m}^{(r)}$ ways to tile a board of length $(n+m+2 r-1)$ containing at least $r$ dominoes. Consider the number of dominoes among the first $m$ tiles. The $k$ dominoes can be placed among the first $m$ tiles in $\binom{m}{k}$ ways and the remaining tiles which consisting of squares, contribute $a^{\xi(n+m+1) \xi(n+k)} b^{\xi(n+m) \xi(n+k+1)}(a b)^{\lfloor(m-k) / 2\rfloor}$ to the weight. The remaining right board has a length of $n-1+2 r-k$, with at least $r-k$ dominos that can be tiled in $q_{n+k}^{(r-k)}$ ways. Summing over all possible $k$ completes the proof.

Note that, if we take $a=b=x$ and $m=r$, we get the following hyper-Fibonacci identity, see [4],

$$
F_{n+r}^{(r)}=\sum_{k=0}^{r}\binom{r}{k} x^{r-k} F_{n+k}^{(r-k)} .
$$

The bi-periodic hyper-Fibonacci sequence can be expressed in terms of the combinatorial sum of bi-periodic Fibonacci sequence.

Theorem 2.9. For $n, r \geq 1$, we have

$$
\begin{equation*}
q_{n}^{(r)}=\sum_{k=1}^{n} a^{\xi(n+1) \xi(k)} b^{\xi(n) \xi(k+1)}\binom{n+r-k-1}{r-1}(a b)^{\lfloor(n-k) / 2\rfloor} q_{k} . \tag{2.11}
\end{equation*}
$$

Proof. The left-hand side of this equality counts the number of ways to tile a board of length $n+2 r-1$ containing at least $r$ dominoes.

The right-hand side is obtained by conditioning on the location of the $r$ th domino. Suppose that the $r$ th domino occupies cell $k$ and $k+1(1 \leq k \leq n)$ (from the right). The left part is a tiling of some section of length $k-1$ which can be done in $q_{k}$ ways. The rigth part is a tiling of the remaining portion of length $n+2 r-2-k$ (i.e., cells $k+2$ through $n+2 r-1$ ) with exactly $r-1$ dominos, which can be done in a $a^{\xi(n+1) \xi(k)} b^{\xi(n) \xi(k+1)}\binom{n+r-k-1}{r-1}(a b)^{\lfloor(n-k) / 2\rfloor}$ ways (according to the parity of the numbers $n$ and $k$ ). The result follows from considering the sum of all possible locations of the $r^{\text {th }}$ domino.

Note that, if we take $a=b=x$, we get the following hyper-Fibonacci identity, see [4],

$$
F_{n}^{(r)}(x)=\sum_{k=1}^{n} x^{n-k}\binom{n+r-k-1}{r-1} F_{k}(x) .
$$

In the following theorem, we give the alternating binomial sum of the bi-periodic hyper-Fibonacci numbers.

Theorem 2.10. For $r, m, n \in \mathbb{N} \cup\{0\}$ with $m \leq r$, we have

$$
\begin{equation*}
\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} q_{n+m}^{(r-j)}=a^{\xi(n) \xi(m)} b^{\xi(n+1) \xi(m)}(a b)^{\lfloor m / 2\rfloor} q_{n}^{(r)} \tag{2.12}
\end{equation*}
$$

Proof. We proceed by induction on $m \leq r$. For $m=1$ and $m=2$, we get (1.10) and Theorem 2.6, respectively. Suppose that the result holds for all $i \leq m$. Then we can prove it for $m+1$

$$
\begin{aligned}
\sum_{j=0}^{m+1}(-1)^{j}\binom{m+1}{j} q_{n+m+1}^{(r-j)} & =\sum_{j=0}^{m+1}(-1)^{j}\left(\binom{m}{j}+\binom{m}{j-1}\right) q_{n+m+1}^{(r-j)} \\
& =\sum_{j \geq 0}(-1)^{j}\binom{m}{j} q_{n+m+1}^{(r-j)}-\sum_{j \geq 0}(-1)^{j}\binom{m}{j} q_{n+m+1}^{(r-j-1)} .
\end{aligned}
$$

From (1.10), we obtain

$$
\begin{aligned}
\sum_{j=0}^{m+1}(-1)^{j}\binom{m+1}{j} q_{n+m+1}^{(r-j)} & =\sum_{j \geq 0}(-1)^{j}\binom{m}{j} a^{\xi(n+m)} b^{\xi(n+m+1)} q_{n+m}^{(r-j)} \\
& =a^{\xi(n+m)} b^{\xi(n+m+1)} a^{\xi(n) \xi(m)} b^{\xi(n+1) \xi(m)}(a b)^{\lfloor m / 2\rfloor} q_{n}^{(r)}
\end{aligned}
$$

Using $\xi(n+m)=\xi(n)+\xi(m)-2 \xi(n) \xi(m)$ and $\lfloor m / 2\rfloor=\lfloor(m+1) / 2\rfloor-\xi(m)$, we get

$$
\sum_{j=0}^{m+1}(-1)^{j}\binom{m+1}{j} q_{n+m+1}^{(r-j)}=a^{\xi(n) \xi(m+1)} b^{\xi(n+1) \xi(m+1)}(a b)^{\lfloor(m+1) / 2\rfloor} q_{n}^{(r)}
$$

Therefore, the identity is valid for all $m \leq r$.
Note that, for $a=b=x$, we get the following result.
Corollary 2.4. The following equality holds for any nonnegative integers $r \geq m$

$$
\begin{equation*}
\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} F_{n+m}^{(r-j)}=x^{m} F_{n}^{(r)} . \tag{2.13}
\end{equation*}
$$

The bi-periodic Fibonacci sequence can be expressed in terms of the bi-periodic hyper-Fibonacci sequence.

Theorem 2.11. For $r, m \in \mathbb{N} \cup\{0\}$, we have

$$
\begin{equation*}
q_{m+1}=\sum_{k=0}^{m}\binom{r}{k}(-1)^{k} a^{\xi(k) \xi(m)} b^{\xi(k) \xi(m+1)}(a b)^{\lfloor k / 2\rfloor} q_{m+1-k}^{(r)} \tag{2.14}
\end{equation*}
$$

Proof. We proceed by induction on $m$. This is true for $m=0$. Suppose that the result holds for all $i \leq m$. Then we can prove it for $m+1$. From (1.10), we get

$$
\begin{aligned}
q_{m+2}= & a^{\xi(m+1)} b^{\xi(m)} q_{m+1}+q_{m} \\
= & a^{\xi(m+1)} b^{\xi(m)} \sum_{k=0}^{m}\binom{r}{k}(-1)^{k} a^{\xi(k) \xi(m)} b^{\xi(k) \xi(m+1)}(a b)^{\lfloor k / 2\rfloor} q_{m+1-k}^{(r)} \\
& +\sum_{k=0}^{m-1}\binom{r}{k}(-1)^{k} a^{\xi(k) \xi(m+1)} b^{\xi(k) \xi(m)}(a b)^{\lfloor k / 2\rfloor} q_{m-k}^{(r)} .
\end{aligned}
$$

Using $\xi(m+1)=\xi(m-k+1)+\xi(k) \xi(m+1)-\xi(k) \xi(m)$ and $\xi(m)=\xi(m-k)+$ $\xi(k) \xi(m)-\xi(k) \xi(m+1)$ we get $\xi(k) \xi(m)+\xi(m+1)=\xi(k) \xi(m+1)+\xi(m-k+1)$ and $\xi(k) \xi(m+1)+\xi(m)=\xi(k) \xi(m)+\xi(m-k)$. Therefore, we have

$$
\begin{aligned}
q_{m+2}= & \sum_{k=0}^{m}\binom{r}{k}(-1)^{k} a^{\xi(k) \xi(m+1)+\xi(m-k+1)} b^{\xi(k) \xi(m)+\xi(m-k)}(a b)^{\lfloor k / 2\rfloor} q_{m+1-k}^{(r)} \\
& +\sum_{k=0}^{m-1}\binom{r}{k}(-1)^{k} a^{\xi(k) \xi(m+1)} b^{\xi(k) \xi(m)}(a b)^{\lfloor k / 2\rfloor} q_{m-k}^{(r)} \\
= & \sum_{k \geq 0}\binom{r}{k}(-1)^{k} a^{\xi(k) \xi(m+1)} b^{\xi(k) \xi(m)}(a b)^{\lfloor k / 2\rfloor}\left(a^{\xi(m-k+1)} b^{\xi(m-k)} q_{m+1-k}^{(r)}+q_{m-k}^{(r)}\right) \\
= & \sum_{k=0}^{m+1}\binom{r}{k}(-1)^{k} a^{\xi(k) \xi(m+1)} b^{\xi(k) \xi(m)}(a b)^{\lfloor k / 2\rfloor} q_{m+2-k}^{(r)} .
\end{aligned}
$$

Note that, for $a=b=x$, we get the following result.

Corollary 2.5. The following equality holds for any integers $r, m \geq 0$

$$
\begin{equation*}
F_{m+1}(x)=\sum_{k=0}^{m}\binom{r}{k}(-1)^{k} x^{k} F_{m+1-k}^{(r)}(x) . \tag{2.15}
\end{equation*}
$$

## 3. Generating Function

We start by establishing the relationship between the bi-periodic hyper-Fibonacci sequence and the hyper-Fibonacci polynomials.

Lemma 3.1. For $n, r \geq 0$, we have

$$
\begin{equation*}
q_{n}^{(r)}=\frac{1}{2}\left(\left(1+\sqrt{\frac{a}{b}}\right)-(-1)^{n}\left(1-\sqrt{\frac{a}{b}}\right)\right) F_{n}^{(r)}(\sqrt{a b}) . \tag{3.1}
\end{equation*}
$$

Proof. Using (1.4), (2.1) and $\lfloor n / 2\rfloor=(n-\xi(n)) / 2$, we have

$$
\begin{aligned}
q_{n}^{(r)} & =a^{\xi(n-1)} \sum_{k=r}^{\lfloor(n-1) / 2\rfloor+r}\binom{n-1+2 r-k}{k}(a b)^{(n-1-\xi(n-1)) / 2+r-k} \\
& =\left(\frac{a}{\sqrt{a b}}\right)^{\xi(n-1)} \sum_{k=r}^{\lfloor(n-1) / 2\rfloor+r}\binom{n-1+2 r-k}{k}(\sqrt{a b})^{n-1+2 r-2 k} \\
& =\left(\sqrt{\frac{a}{b}}\right)^{\xi(n-1)} \sum_{k=r}^{\lfloor(n-1) / 2\rfloor+r}\binom{n-1+2 r-k}{k}(\sqrt{a b})^{n-1+2 r-2 k} \\
& =\frac{\left(1+\sqrt{\frac{a}{b}}\right)-(-1)^{n}\left(1-\sqrt{\frac{a}{b}}\right)}{2} \sum_{k=r}^{\lfloor(n-1) / 2\rfloor+r}\binom{n-1+2 r-k}{k}(\sqrt{a b})^{n-1+2 r-2 k} .
\end{aligned}
$$

Theorem 3.1. The generating function of the bi-periodic hyper-Fibonacci sequence is given by

$$
\begin{aligned}
& \sum_{n \geq 0} q_{n}^{(r)} z^{n}= \\
& z \frac{\left(1+\sqrt{\frac{a}{b}}\right)\left(1+\sqrt{a b} z-z^{2}\right)(1+\sqrt{a b} z)^{r}+\left(1-\sqrt{\frac{a}{b}}\right)\left(1-\sqrt{a b} z-z^{2}\right)(1-\sqrt{a b} z)^{r}}{2\left(1-(a b+2) z^{2}+z^{4}\right)\left(1-a b z^{2}\right)^{r}} .
\end{aligned}
$$

Proof. Using Lemma 3.1 and (1.5), we get

$$
\begin{aligned}
\sum_{n \geq 0} q_{n}^{(r)} z^{n}= & \frac{1}{2}\left(1+\sqrt{\frac{a}{b}}\right) \sum_{n \geq 0} F_{n}^{(r)}(\sqrt{a b}) z^{n}-\frac{1}{2}\left(1-\sqrt{\frac{a}{b}}\right) \sum_{n \geq 0} F_{n}^{(r)}(\sqrt{a b})(-z)^{n} \\
= & \frac{1}{2}\left(1+\sqrt{\frac{a}{b}}\right) \frac{z}{\left(1-\sqrt{a b} z-z^{2}\right)(1-\sqrt{a b} z)^{r}} \\
& -\frac{1}{2}\left(1-\sqrt{\frac{a}{b}}\right) \frac{-z}{\left(1+\sqrt{a b} z-z^{2}\right)(1+\sqrt{a b} z)^{r}},
\end{aligned}
$$

which gives the desired result.

Note that, if we take $r=0$, we obtain the generating function of the bi-periodic Fibonacci sequence (1.7). If we take $a=b=x$, we obtain the generating function of hyper-Fibonacci polynomials (1.5) with $y=1$.

## References

[1] T. Amdeberhan, X. Chen, V. H. Moll and B. E. Sagan, Generalized Fibonacci polynomials and Fibonomial coefficients, Ann. Comb. 18(4) (2014), 541-562. https://doi.org/10.1007/ s00026-014-0242-9
[2] M. Bahşi, I. Mezö and S. Solak, A symmetric algorithm for hyper-Fibonacci and hyper-Lucas numbers, Ann. Math. Inform. 43 (2014), 19-27.
[3] H. Belbachir and A. Belkhir, Combinatorial expressions involving Fibonacci, hyper-Fibonacci, and incomplete Fibonacci numbers, J. Integer Seq. 17(4) (2014), Article ID 14.4.3.
[4] H. Belbachir and A. Belkhir, On generalized hyper-Fibonacci and incomplete Fibonacci polynomials in arithmetic progresions, S̃iauliai Math. Semin. 11(19) (2016), 1-12.
[5] H. Belbachir and F. Bencherif, On some properties of bivariate Fibonacci and Lucas polynomials, J. Integer Seq. 11(2) (2008), Article ID 08.2.6.
[6] A. T. Benjamin and J. J. Quinn, Proofs that Really Count: The Art of Combinatorial Proof, Volume 27, The Mathematical Associationof America, Washington, DC, 2003.
[7] A. T. Benjamin, J. J. Quinn and F. E. Su, Phased tilings and generalized Fibonacci identities, Fibonacci Quart. 38(3) (2000), 282-288.
[8] G. Bilgici, Two generalizations of Lucas sequence, Appl. Math. Comput. 245 (2014), 526-538. https://doi.org/10.1016/j.amc.2014.07.111
[9] N. N. Cao and F. Z. Zhao, Some properties of hyperfibonacci and hyperlucas numbers, J. Integer Seq. 13(8) (2010), Article ID 10.8.8, 1-11.
[10] A. Dil and I. Mezö, A symmetric algorithm for hyperharmonic and Fibonacci numbers, Appl. Math. Comput. 206(2) (2008), 942-951. https://doi.org/10.1016/j.amc.2008.10.013
[11] M. Edson, S. Lewis and O. Yayenie, The $k$-periodic Fibonacci sequence and extended Binet's formula, Integers 11(A32) (2011), 739-751. https://doi.org/10.1515/INTEG.2011. 056
[12] M. Edson and O. Yayenie, A new generalization of Fibonacci sequences and extended Binet's Formula, Integers 9(A48) (2009), 639-654. https://doi.org/10.1515/INTEG.2009. 051
[13] D. Panario, M. Sahin, and Q. Wan, A family of Fibonacci-like conditional sequences, Integers 13(A78) (2013). https://doi.org/10.1515/9783110298161.1042
[14] D. Panario, M. Sahin, Q. Wang and W. Webb, General conditional recurrences, Applied. Math. Comp. 243 (2014), 220-231. https://doi.org/10.1016/j.amc.2014.05.108
[15] J. L. Ramirez, Bi-periodic incomplete Fibonacci sequences, Ann. Math. Inform. 42 (2013), 83-92.
[16] E. Tan, Some properties of the bi-periodic Horadam sequences, Notes Number Theory Discrete Math. 23(4) (2017), 56-65.
[17] S. Uygun and E. Owusu, A new generalization of Jacobsthal numbers (Bi-Periodic Jacobsthal Sequences), J. Math. Anal. 7(5) (2016), 28-39. https://doi.org/10.9734/jamcs/2019/ v34i530226
[18] O. Yayenie, A note on generalized Fibonacci sequence, Appl. Math. Comput. 217(12) (2011), 5603-5611. https://doi.org/10.1016/j.amc.2010.12.038
${ }^{1}$ USTHB, Faculty of Mathematics, RECITS Laboratory,
Po. Box 32, El Alia 16111, Bab Ezzouar, Algiers, Algeria
${ }^{2}$ CERIST: Research Center on Scientific and Technical Information 05, Rue des 3 frères Aissou, Ben Aknoun, Algiers, Algeria
Email address: belaggounmanassil@gmail.com
Email address: hacenebelbachir@gmail.com


[^0]:    Key words and phrases. Hyper-Fibonacci numbers, bi-periodic Fibonacci numbers, bi-periodic hyper-Fibonacci numbers, generating function.

    2020 Mathematics Subject Classification. Primary: 11B39, 05A15. Secondary: 05A19.
    DOI
    Received: June 12, 2022.
    Accepted: October 08, 2022.

