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INEQUALITIES FOR THE POLAR DERIVATIVE OF A
POLYNOMIAL WITH RESTRICTED ZEROS

AHMAD ZIREH1 AND MAHMOOD BIDKHAM2

Abstract. For a polynomial p(z) of degree n, we consider an operator Dα which
map a polynomial p(z) into Dαp(z) := (α−z)p′(z)+np(z) with respect to α. It was
proved by Liman et al. [A. Liman, R. N. Mohapatra and W. M. Shah, Inequalities
for the Polar Derivative of a Polynomial, Complex Analysis and Operator Theory,
2010] that if p(z) has no zeros in |z| < 1 then for all α, β ∈ C with |α| ≥ 1, |β| ≤ 1
and |z| = 1,∣∣∣∣zDαp(z) + nβ

|α| − 1

2
p(z)

∣∣∣∣ ≤n2
{[∣∣∣∣α+ β

|α| − 1

2

∣∣∣∣+ ∣∣∣∣z + β
|α| − 1

2

∣∣∣∣]max
|z|=1

|p(z)|

−
[∣∣∣∣α+ β

|α| − 1

2

∣∣∣∣− ∣∣∣∣z + β
|α| − 1

2

∣∣∣∣] min
|z|=1

|p(z)|

}
.

In this paper we extend above inequality for the polynomials having no zeros in
|z| < 1, except s-fold zeros at the origin. Our result generalize certain well-known
polynomial inequalities.

1. Introduction and Statement of Results

According to a well known result as Bernstein’s inequality on the derivative of a
polynomial p(z) of degree n, we have

(1.1) max
|z|=1
|p′(z)| ≤ nmax

|z|=1
|p(z)|.

The result is best possible and equality holds for a polynomial having all its zeros at
the origin (see [13] and [4]). The inequality (1.1) can be sharpened, by considering
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the class of polynomials having no zeros in |z| < 1. In fact, P. Erdős conjectured and
later Lax [10] proved that if p(z) 6= 0 in |z| < 1, then (1.1) can be replaced by

max
|z|=1
|p′(z)| ≤ n

2
max
|z|=1
|p(z)|.(1.2)

As a refinement of (1.2), Aziz and Dawood [1] proved that if p(z) is a polynomial of
degree n having no zeros in |z| < 1, then

max
|z|=1
|p′(z)| ≤ n

2

{
max
|z|=1
|p(z)| −min

|z|=1
|p(z)|

}
.(1.3)

As an improvement of inequality (1.3) Dewan and Hans [7] proved that if p(z) is
a polynomial of degree n having no zeros in |z| < 1, then for any complex number β
with |β| ≤ 1 and |z| = 1,∣∣∣∣zp′(z) + nβ

2
p(z)

∣∣∣∣ ≤n2
{(∣∣∣∣1 + β

2

∣∣∣∣+ ∣∣∣∣β2
∣∣∣∣)max
|z|=1
|p(z)|

−
(∣∣∣∣1 + β

2

∣∣∣∣− ∣∣∣∣β2
∣∣∣∣)min
|z|=1
|p(z)|

}
.(1.4)

Let α be a complex number. For a polynomial p(z) of degree n, Dαp(z), the polar
derivative of p(z) is defined as

Dαp(z) = np(z) + (α− z)p′(z).

It is easy to see that Dαp(z) is a polynomial of degree at most n− 1 and that Dαp(z)
generalizes the ordinary derivative in the sense that

lim
α→∞

[
Dαp(z)

α

]
= p′(z).

For the polar derivative Dαp(z), Aziz and Shah [2] proved that if p(z) having all its
zeros in |z| ≤ 1, then

|Dαp(z)| ≥ n|α||z|n−1 min
|z|=1
|p(z)|, |z| ≥ 1,(1.5)

and as an extension to inequality (1.3) they proved that if p(z) is a polynomial of
degree n having no zeros in |z| < 1, then for every complex number α with |α| ≥ 1,

max
|z|=1
|Dαp(z)| ≤

n

2

{
(|α|+ 1)max

|z|=1
|p(z)| − (|α| − 1)min

|z|=1
|p(z)|

}
.(1.6)

Recently Dewan et al. [9] generalized the inequality (1.6) to the polynomial of the form
p(z) = a0 +

∑n
ν=t aνz

ν , 1 ≤ t ≤ n, and proved if p(z) = a0 +
∑n

ν=t aνz
ν , 1 ≤ t ≤ n, is

a polynomial of degree n having no zeros in |z| < k, k ≥ 1 then for |α| ≥ 1,

max
|z|=1
|Dαp(z)| ≤

n

1 + s0

{
(|α|+ s0)max

|z|=1
|p(z)| − (|α| − 1) min

|z|=k
|p(z)|

}
,(1.7)
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where

s0 = kt+1

{(
t
n

) |at|
|a0|−mk

t−1 + 1(
t
n

) |at|
|a0|−mk

t+1 + 1

}
,

and m = min|z|=k |p(z)|.
As a generalization of the inequality (1.7), Bidkham et al. [5] proved, if p(z) =

a0 +
∑n

ν=µ aνz
ν , 1 ≤ µ ≤ n, is a polynomial of degree n having no zeros in |z| < k,

k ≥ 1 then for 0 < r ≤ R ≤ k and |α| ≥ R,

max
|z|=R

|Dαp(z)| ≤
n

1 + s′0

{(
|α|
R

+ s′0

)
exp

{
n

∫ R

r

Atdt

}
max
|z|=r
|p(z)|

+(s′0 + 1−
(
|α|
R

+ s′0

)
exp

{
n

∫ R

r

Atdt

}
min
|z|=k
|p(z)|

}
,

where

At =

(
µ
n

) |aµ|
|a0|−mk

µ+1tµ−1 + tµ

tµ+1 + kµ+1 +
(
µ
n

) ( |aµ|
|a0|−m

)
(kµ+1tµ + k2µt)

,

s′0 =

(
k

R

)µ+1
{ (

µ
n

) |aµ|
|a0|−mRk

µ−1 + 1(
µ
n

) |aµ|
R(|a0|−m)

kµ+1 + 1

}
,

and m = min|z|=k |p(z)|.
As an improvement and generalization to the inequalities (1.6) and (1.4), Liman

et al. [11] proved that if p(z) is a polynomial of degree n having no zeros in |z| < 1,
then for all α, β with |α| ≥ 1, |β| ≤ 1 and |z| = 1,

∣∣∣∣zDαp(z) + nβ
|α| − 1

2
p(z)

∣∣∣∣ ≤n2
{(∣∣∣∣α + β

|α| − 1

2

∣∣∣∣+ ∣∣∣∣z + β
|α| − 1

2

∣∣∣∣)max
|z|=1
|p(z)|

−
(∣∣∣∣α + β

|α| − 1

2

∣∣∣∣− ∣∣∣∣z + β
|α| − 1

2

∣∣∣∣)min
|z|=1
|p(z)|

}
.

(1.8)

In this paper, we first obtain the following generalization of polynomial inequality
(1.5), as follows:

Theorem 1.1. Let p(z) be a polynomial of degree n, having all its zeros in |z| ≤ 1,
with s-fold zeros at the origin, then

(1.9)
∣∣∣∣zDαp(z) + β

(n+ s)(|α| − 1)

2
p(z)

∣∣∣∣ ≥ ∣∣∣∣nα + β
(n+ s)(|α| − 1)

2

∣∣∣∣ |z|nmin
|z|=1
|p(z)|,

for every real or complex numbers β, α with |β| ≤ 1, |α| ≥ 1 and |z| ≥ 1. The result
is best possible and equality holds for the polynomials p(z) = azn.

If we take s = 0 in Theorem 1.1, we have
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Corollary 1.1. If p(z) is a polynomial of degree n, having all its zeros in |z| ≤ 1,
then for |β| ≤ 1, |α| ≥ 1 and |z| ≥ 1, we have

(1.10)
∣∣∣∣zDαp(z) + nβ

|α| − 1

2
p(z)

∣∣∣∣ ≥ n

∣∣∣∣α + β
|α| − 1

2

∣∣∣∣ |z|nmin
|z|=1
|p(z)|.

For β = 0 the inequality (1.10) reduces to inequality (1.5).
Next by using Theorem 1.1, we generalize the inequality (1.8).

Theorem 1.2. Let p(z) be a polynomial of degree n does not vanish in |z| < 1, except
s-fold zeros at the origin, then for all α, β ∈ C with |α| ≥ 1, |β| ≤ 1 and |z| = 1, we
have ∣∣∣∣zDαp(z) + β

(n+ s)(|α| − 1)

2
p(z)

∣∣∣∣
≤1

2

[{∣∣∣∣nα+β (n+s)(|α|−1)2

∣∣∣∣+∣∣∣∣(n−s)z + sα + β
(n+s)(|α|−1)

2

∣∣∣∣}max
|z|=1
|p(z)|

−
{∣∣∣∣nα+β (n+s)(|α|−1)2

∣∣∣∣−∣∣∣∣(n−s)z + sα + β
(n+s)(|α|−1)

2

∣∣∣∣}min
|z|=1
|p(z)|

]
.(1.11)

If we take s = 0 in Theorem 1.2, then the inequality (1.11) reduces to the inequality
(1.8).

Theorem 1.2 simplifies to the following result by taking β = 0.

Corollary 1.2. Let p(z) be a polynomial of degree n does not vanish in |z| < 1, except
s-fold zeros at the origin, then for any α ∈ C with |α| ≥ 1 and |z| = 1, we have

|Dαp(z)| ≤
1

2

{
n|α|+ |(n−s)z + sα|)max

|z|=1
|p(z)|−(n|α|−|(n−s)z + sα|)min

|z|=1
|p(z)|

}
.

Dividing two sides of inequality (1.11) by |α| and letting |α| → ∞, we have the
following generalization of the inequality (1.4).

Corollary 1.3. Let p(z) be a polynomial of degree n, having no zeros in |z| < 1,
except s-fold zeros at the origin, then for any β ∈ C with |β| ≤ 1, and |z| = 1 we have∣∣∣∣zp′(z) + β(n+ s)

2
p(z)

∣∣∣∣ ≤1

2

{(∣∣∣∣n+ β
n+ s

2

∣∣∣∣+ ∣∣∣∣s+ β
n+ s

2

∣∣∣∣)max
|z|=1
|p(z)|

−
(∣∣∣∣n+ β

n+ s

2

∣∣∣∣− ∣∣∣∣s+ β
n+ s

2

∣∣∣∣)min
|z|=1
|p(z)|

}
.

2. Lemmas

For the proofs of these theorems, we need the following lemmas. The first lemma
is due to Laguerre [12].

Lemma 2.1. If all the zeros of an nth degree polynomial p(z) lie in a circular region
C and w is any zero of Dαp(z), then at most one of the points w and α may lie
outside C.
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Lemma 2.2. Let p(z) is a polynomial of degree n, has no zero in |z| < 1, then on
|z| = 1,

|p′(z)| ≤ |q′(z)|,

where q(z) = znp(1/z).

The above lemma is due to Chan and Malik [6].

Lemma 2.3. If p(z) is a polynomial of degree n, having all its zeros in the closed
disk |z| ≤ 1, then on |z| = 1,

|q′(z)| ≤ |p′(z)|,

where q(z) = znp(1/z).

Proof. Since p(z) has all its zeros in |z| ≤ 1, therefore q(z) has no zero in |z| < 1.
Now applying Lemma 2.2 to the polynomial q(z) and the result follows. �

The following lemma is due to Aziz and Shah [3].

Lemma 2.4. If p(z) is a polynomial of degree n, having all its zeros in the closed
disk |z| ≤ 1, with s-fold zeros at the origin, then

|p′(z)| ≥ n+ s

2
|p(z)|, |z| = 1.

Lemma 2.5. If p(z) is a polynomial of degree n, having all its zeros in the closed
disk |z| ≤ 1, with s-fold zeros at the origin, then for all real or complex number α with
|α| ≥ 1 and |z| = 1, we have

|Dαp(z)| ≥
(n+ s)(|α| − 1)

2
|p(z)|.

The above lemma is due to K. K. Dewan and A. Mir [8].

Lemma 2.6. If p(z) is a polynomial of degree n with s-fold zeros at the origin, then
for all α, β ∈ C with |β| ≤ 1, |α| ≥ 1 and |z| = 1, we have∣∣∣∣zDαp(z) + β

(n+ s)(|α| − 1)

2
p(z)

∣∣∣∣ ≤ ∣∣∣∣nα + β
(n+ s)(|α| − 1)

2

∣∣∣∣max
|z|=1
|p(z)|.(2.1)

Proof. LetM = max|z|=1 |p(z)|, if |λ| < 1, then |λp(z)| < |Mzn| for |z| = 1. Therefore
it follows by Rouche’s Theorem that the polynomial G(z) =Mzn − λp(z) has all its
zeros in |z| < 1 with s-fold zeros at the origin. By using Lemma 2.5, to the polynomial
G(z), we have for every real or complex number α with |α| ≥ 1 and for |z| = 1,

|zDαG(z)| ≥
(n+ s)(|α| − 1)

2
|G(z)|,

or

|nαMzn − λzDαp(z)| ≥
(n+ s)(|α| − 1)

2
|Mzn − λp(z)|.



118 A. ZIREH AND M. BIDKHAM

On the other hand by Lemma 2.1 all the zeros of DαG(z) = nαMzn−1 − λDαp(z)
lie in |z| < 1, where |α| ≥ 1. Therefore for any β with |β| ≤ 1, Rouche’s Theorem
implies that all the zeros of

nαMzn − λzDαp(z) + β
(n+ s)(|α| − 1)

2
(Mzn − λp(z)),

lie in |z| < 1. This conclude that the polynomial

T (z) =

(
nα + β

(n+ s)(|α| − 1)

2

)
Mzn − λ

(
zDαp(z) + β

(n+ s)(|α| − 1)

2
p(z)

)
,

(2.2)

will have no zeros in |z| ≥ 1. This implies that for every β with |β| < 1 and |z| = 1,∣∣∣∣zDαp(z) + β
(n+ s)(|α| − 1)

2
p(z)

∣∣∣∣ ≤ ∣∣∣∣nα + β
(n+ s)(|α| − 1)

2

∣∣∣∣M.(2.3)

If the inequality (2.3) is not true, then there is a point z = z0 with |z0| ≥ 1, such that∣∣∣∣nα + β
(n+ s)(|α| − 1)

2

∣∣∣∣M <

∣∣∣∣z0Dαp(z0) + β
(n+ s)(|α| − 1)

2
p(z0)

∣∣∣∣ .
Take

λ =

(
nα + β (n+s)(|α|−1)

2

)
M

z0Dαp(z0) + β (n+s)(|α|−1)
2

p(z0)
,

then |λ| < 1 and with this choice of λ, we have T (z0) = 0 for |z0| ≥ 1, from (2.2).
But this contradicts the fact that T (z) 6= 0 for |z| ≥ 1. For β with |β| = 1, inequality
(2.3) follows by continuity. This completes the proof of Lemma 2.6. �

Lemma 2.7. If p(z) is a polynomial of degree n with s-fold zeros at the origin, then
for all α, β ∈ C with |β| ≤ 1, |α| ≥ 1 and |z| = 1, we have∣∣∣∣zDαp(z) + β

(n+ s)(|α| − 1)

2
p(z)

∣∣∣∣+ ∣∣∣∣zDαQ(z) + β
(n+ s)(|α| − 1)

2
Q(z)

∣∣∣∣
≤
{∣∣∣∣nα + β

(n+ s)(|α| − 1)

2

∣∣∣∣+ ∣∣∣∣(n− s)z + sα + β
(n+ s)(|α| − 1)

2

∣∣∣∣}max
|z|=1
|p(z)|,

where Q(z) = zn+sp(1/z).

Proof. Let M = max|z|=1 |p(z)|. For λ with |λ| > 1, it follows by Rouche’s Theorem
that the polynomial G(z) = p(z)− λMzs has no zeros in |z| < 1, except s-fold zeros
at the origin. Consequently the polynomial

H(z) = zn+sG (1/z),

has all its zeros in |z| ≤ 1 with s-fold zeros at the origin, also |G(z)| = |H(z)| for
|z| = 1. Since all the zeros of H(z) lie in |z| ≤ 1, therefore, for δ with |δ| > 1, by
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Rouche’s Theorem all the zeros of G(z) + δH(z) lie in |z| ≤ 1. Hence by Lemma 2.5
for every α with |α| ≥ 1, and |z| = 1, we have

(n+ s)(|α| − 1)

2
|G(z) + δH(z)| ≤ |zDα(G(z) + δH(z))|.

Now using a similar argument as used in the proof of Lemma 2.6, we get for every
real or complex number β with |β| ≤ 1 and |z| ≥ 1,∣∣∣∣zDαG(z) + β

(n+ s)(|α| − 1)

2
G(z)

∣∣∣∣ ≤ ∣∣∣∣zDαH(z) + β
(n+ s)(|α| − 1)

2
H(z)

∣∣∣∣ .(2.4)

Therefore by the equalities

H(z) = zn+sG (1/z) = zn+sp (1/z)− λMzn = Q(z)− λMzn,

or
H(z) = Q(z)− λMzn,

and substitute for G(z) and H(z) in (2.4) we get∣∣∣∣(zDαp(z) + β
(n+ s)(|α| − 1)

2
p(z)

)
−λ
(
(n− s)z + sα + β

(n+ s)(|α| − 1)

2

)
Mzs

∣∣∣∣
≤
∣∣∣∣(zDαQ(z) + β

(n+ s)(|α| − 1)

2
Q(z)

)
− λ

(
nα + β

(n+ s)(|α| − 1)

2

)
Mzn

∣∣∣∣ .
This implies∣∣∣∣zDαp(z) + β

(n+ s)(|α| − 1)

2
p(z)

∣∣∣∣− ∣∣∣∣(n− s)z + sα + β
(n+ s)(|α| − 1)

2

∣∣∣∣ |λMzs|

≤
∣∣∣∣(zDαQ(z)+β

(n+ s)(|α| − 1)

2
Q(z)

)
− λ
(
nα + β

(n+ s)(|α| − 1)

2

)
Mzn

∣∣∣∣.(2.5)

As |p(z)| = |Q(z)| for |z| = 1, i.e., max|z|=1 |p(z)| = max|z|=1 |Q(z)| =M , by using
Lemma 2.6 for Q(z), we obtain for |z| = 1,∣∣∣∣zDαQ(z) + β

(n+ s)(|α| − 1)

2
Q(z)

∣∣∣∣ < |λ| ∣∣∣∣nα + β
(n+ s)(|α| − 1)

2

∣∣∣∣M.

Thus taking suitable choice of argument of λ, result is∣∣∣∣ (zDαQ(z) + β
(n+ s)(|α| − 1)

2
Q(z)

)
−λ
(
nα + β

(n+ s)(|α| − 1)

2

)
Mzn

∣∣∣∣
=|λ|

∣∣∣∣nα + β
(n+ s)(|α| − 1)

2

∣∣∣∣M − ∣∣∣∣zDαQ(z) + β
(n+ s)(|α| − 1)

2
Q(z)

∣∣∣∣ .(2.6)

By combining right hand side of (2.5) and (2.6) we get for |z| = 1 and |β| ≤ 1,∣∣∣∣zDαp(z) + β
(n+ s)(|α| − 1)

2
p(z)

∣∣∣∣− |λ| ∣∣∣∣(n− s)z + sα + β
(n+ s)(|α| − 1)

2

∣∣∣∣M
≤ |λ|

∣∣∣∣nα + β
(n+ s)(|α| − 1)

2

∣∣∣∣M − ∣∣∣∣zDαQ(z) + β
(n+ s)(|α| − 1)

2
Q(z)

∣∣∣∣ ,
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i.e., ∣∣∣∣zDαp(z) + β
(n+ s)(|α| − 1)

2
p(z)

∣∣∣∣+ ∣∣∣∣zDαQ(z) + β
(n+ s)(|α| − 1)

2
Q(z)

∣∣∣∣
≤ |λ|

{∣∣∣∣nα + β
(n+ s)(|α| − 1)

2

∣∣∣∣+ ∣∣∣∣(n− s)z + sα + β
(n+ s)(|α| − 1)

2

∣∣∣∣}M.

Taking |λ| → 1, we have∣∣∣∣zDαp(z) + β
(n+ s)(|α| − 1)

2
p(z)

∣∣∣∣+ ∣∣∣∣zDαQ(z) + β
(n+ s)(|α| − 1)

2
Q(z)

∣∣∣∣
≤
{∣∣∣∣nα + β

(n+ s)(|α| − 1)

2

∣∣∣∣+ ∣∣∣∣(n− s)z + sα + β
(n+ s)(|α| − 1)

2

∣∣∣∣}M.

This gives the result. �

The following lemma is due to Zireh [14].

Lemma 2.8. If p(z) =
∑n

ν=0 aνz
ν is a polynomial of degree n, having all its zeros in

|z| < k, (k > 0), then m < kn|an|, where m = min
|z|=k
|p(z)|.

3. Proof of the Theorems

Proof of Theorem 1.1. If p(z) has a zero on |z| = 1, then the inequality (1.9) is trivial.
Therefore we assume that p(z) has all its zeros in |z| < 1. Let m = min|z|=1 |p(z)|,
then m > 0 and |p(z)| ≥ m where |z| = 1. Therefore, for |λ| < 1, it follows by
Rouche’s Theorem and Lemma 2.8 that the polynomial G(z) = p(z) − λmzn is of
degree n and has all its zeros in |z| < 1 with s-fold zeros at the origin. By using
Lemma 2.1, DαG(z) = Dαp(z)−αλmnzn−1, has all its zeros in |z| < 1, where |α| ≥ 1.
Applying Lemma 2.5 to the polynomial G(z), yields

|zDαG(z)| ≥
(n+ s)(|α| − 1)

2
|G(z)|, |z| = 1.(3.1)

Since zDαG(z) has all its zeros in |z| < 1, by using Rouche’s Theorem, it can be easily
verifies from (3.1), that the polynomial

zDαG(z) + β
(n+ s)(|α| − 1)

2
G(z),

has all its zeros in |z| < 1, where |β| < 1.
Substituting for G(z), we conclude that the polynomial

T (z) =

(
zDαp(z) + β

(n+ s)(|α| − 1)

2
p(z)

)
− λmzn

(
nα + β

(n+ s)(|α| − 1)

2

)
,

(3.2)

will have no zeros in |z| ≥ 1. This implies for every β with |β| < 1 and |z| ≥ 1,∣∣∣∣zDαp(z) + β
(n+ s)(|α| − 1)

2
p(z)

∣∣∣∣ ≥ m|zn|
∣∣∣∣nα + β

(n+ s)(|α| − 1)

2

∣∣∣∣ .(3.3)
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If the inequality (3.3) is not true, then there is a point z = z0 with |z0| ≥ 1 such that∣∣∣∣z0Dαp(z0) + β
(n+ s)(|α| − 1)

2
p(z0)

∣∣∣∣ < m|zn0 |
∣∣∣∣nα + β

(n+ s)(|α| − 1)

2

∣∣∣∣ .
Take

λ =
z0Dαp(z0) + β (n+s)(|α|−1)

2
p(z0)

mzn0

(
nα + β (n+s)(|α|−1)

2

) ,

then |λ| < 1 and with this choice of λ, we have T (z0) = 0 for |z0| ≥ 1, from (3.2).
But this contradicts the fact that T (z) 6= 0 for |z| ≥ 1. For β with |β| = 1, inequality
(3.3) follows by continuity. This completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. Under the assumption of Theorem 1.2, we can write p(z) =
zsh(z), where the polynomial h(z) 6= 0 in |z| < 1, and thus if m = min|z|=1 |h(z)| =
min|z|=1 |p(z)|, then m ≤ |h(z)| for |z| ≤ 1. Now for λ with |λ| < 1, we have

|λm| < m ≤ |h(z)|,

where |z| = 1.
It follows by Rouche’s Theorem that the polynomial h(z) − λm has no zero in
|z| < 1. Hence the polynomial G(z) = zs(h(z)− λm) = p(z)− λmzs, has no zero in
|z| < 1 except s-fold zeros at the origin. Therefore the polynomial

H(z) = zn+sG(1/z) = Q(z)− λmzn,

will have all its zeros in |z| ≤ 1 with s-fold zeros at the origin, whereQ(z) = zn+sp(1/z).
Also |G(z)| = |H(z)| for |z| = 1.

Now, using a similar argument as used in the proof of Lemma 2.7 (inequality (2.4)),
for the polynomials H(z) and G(z), we have∣∣∣∣zDαG(z) + β

(n+ s)(|α| − 1)

2
G(z)

∣∣∣∣ ≤ ∣∣∣∣zDαH(z) + β
(n+ s)(|α| − 1)

2
H(z)

∣∣∣∣ ,
where |α| ≥ 1, |β| ≤ 1 and |z| = 1. Substituting for G(z) and H(z) in the above
inequality, we conclude that for every α, β, with |α| ≥ 1, |β| ≤ 1 and |z| = 1,∣∣∣∣zDαp(z)− λ((n− s)z + sα)mzs + β

(n+ s)(|α| − 1)

2
(p(z)− λmzs)

∣∣∣∣
≤
∣∣∣∣zDαQ(z)− λαnmzn + β

(n+ s)(|α| − 1)

2
(Q(z)− λmzn)

∣∣∣∣ ,
i.e., ∣∣∣∣zDαp(z)+β

(n+s)(|α|−1)
2

p(z)−λ
(
(n− s)z+sα+β (n+ s)(|α|−1)

2

)
mzs

∣∣∣∣
≤
∣∣∣∣zDαQ(z) + β

(n+ s)(|α| − 1)

2
Q(z)− λ

(
nα + β

(n+ s)(|α| − 1)

2

)
mzn

∣∣∣∣ .(3.4)
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Since all the zeros of Q(z) lie in |z| ≤ 1 with s-fold zeros at the origin, and |p(z)| =
|Q(z)| for |z| = 1, therefore by applying Theorem 1.1 to Q(z), we have∣∣∣∣zDαQ(z) + β

(n+ s)(|α| − 1)

2
Q(z)

∣∣∣∣ ≥ ∣∣∣∣nα + β
(n+ s)(|α| − 1)

2

∣∣∣∣min
|z|=1
|Q(z)|

=

∣∣∣∣nα + β
(n+ s)(|α| − 1)

2

∣∣∣∣m.
Then for an appropriate choice of the argument of λ, we have∣∣∣∣zDαQ(z) + β

(n+ s)(|α| − 1)

2
Q(z)− λ

(
nα + β

(n+ s)(|α| − 1)

2

)
mzn

∣∣∣∣
=

∣∣∣∣zDαQ(z) + β
(n+ s)(|α| − 1)

2
Q(z)

∣∣∣∣− |λ| ∣∣∣∣nα + β
(n+ s)(|α| − 1)

2

∣∣∣∣m,(3.5)

where |z| = 1.
Then combining the right hand sides of (3.4) and (3.5), we can rewrite (3.4) as∣∣∣∣zDαp(z)+β

(n+s)(|α|−1)
2

p(z)

∣∣∣∣− |λ| ∣∣∣∣(n− s)z + sα + β
(n+s)(|α|−1)

2

∣∣∣∣m
≤
∣∣∣∣zDαQ(z) + β

(n+ s)(|α| − 1)

2
Q(z)

∣∣∣∣− |λ| ∣∣∣∣nα + β
(n+ s)(|α| − 1)

2

∣∣∣∣m,(3.6)

where |z| = 1.
Equivalently∣∣∣∣zDαp(z) + β

(n+ s)(|α| − 1)

2
p(z)

∣∣∣∣
≤
∣∣∣∣zDαQ(z) + β

(n+ s)(|α| − 1)

2
Q(z)

∣∣∣∣− |λ|{∣∣∣∣nα + β
(n+ s)(|α| − 1)

2

∣∣∣∣
−
∣∣∣∣(n− s)z + sα + β

(n+ s)(|α| − 1)

2

∣∣∣∣}m.
As |λ| → 1 we have∣∣∣∣zDαp(z) + β

(n+ s)(|α| − 1)

2
p(z)

∣∣∣∣
≤
∣∣∣∣zDαQ(z) + β

(n+ s)(|α| − 1)

2
Q(z)

∣∣∣∣−{∣∣∣∣nα + β
(n+ s)(|α| − 1)

2

∣∣∣∣
−
∣∣∣∣(n− s)z + sα + β

|α| − 1

2

∣∣∣∣}m.
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It implies for every real or complex number β with |β| ≤ 1 and |z| = 1,

2

∣∣∣∣zDαp(z) + β
(n+ s)(|α| − 1)

2
p(z)

∣∣∣∣
≤
∣∣∣∣zDαp(z) + β

(n+ s)(|α| − 1)

2
p(z)

∣∣∣∣+ ∣∣∣∣zDαQ(z) + β
(n+ s)(|α| − 1)

2
Q(z)

∣∣∣∣
−
{∣∣∣∣nα + β

(n+ s)(|α| − 1)

2

∣∣∣∣− ∣∣∣∣(n− s)z + sα + β
(n+ s)(|α| − 1)

2

∣∣∣∣}m.
This in conjunction with Lemma 2.7 gives for |β| ≤ 1 and |z| = 1,

2

∣∣∣∣zDαp(z) + β
(n+ s)(|α| − 1)

2
p(z)

∣∣∣∣
≤

{∣∣∣∣nα + β
(n+ s)(|α| − 1)

2

∣∣∣∣+ ∣∣∣∣(n− s)z + sα + β
(n+ s)(|α| − 1)

2

∣∣∣∣
}
max
|z|=1
|p(z)|

−

{∣∣∣∣nα + β
(n+ s)(|α| − 1)

2

∣∣∣∣− ∣∣∣∣(n− s)z + sα + β
(n+ s)(|α| − 1)

2

∣∣∣∣
}
min
|z|=1
|p(z)|.

The proof is complete. �
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