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APPROXIMATE SOLUTION OF BRATU DIFFERENTIAL
EQUATIONS USING TRIGONOMETRIC BASIC FUNCTIONS

BAHRAM AGHELI

Abstract. In this paper, I have proposed a method for finding an approximate
function for Bratu differential equations (BDEs), in which trigonometric basic func-
tions are used. First, by defining trigonometric basic functions, I define the values
of the transformation function in relation to trigonometric basis functions (TBFs).
Following that, the approximate function is defined as a linear combination of trigono-
metric base functions and values of transform function which is named trigonometric
transform method (TTM), and the convergence of the method is also presented. To
get an approximate solution function with discrete derivatives of the solution func-
tion, we have determined the approximate solution function which satisfies in the
Bratu differential equations (BDEs). In the end, the algorithm of the method is
elaborated with several examples. In one example, I have presented an absolute
error comparison of some approximate methods.

1. Introduction

A problem of the non-linear eigenvalue problem in n dimensions is the Bratu
differential equations (BDEs) as follows [13]

(1.1)
n∑
i=1

(
∂

∂ ti

)2

Φ (t1, t2, . . . , tn) + λ exp(Φ (t1, t2, . . . , tn)) = 0,

in which |xi| ≤ 1 for i = 1, 2, . . . , n, with the following boundary conditions as |xi| = 1,
(1.2) Φ (t1, t2, . . . , tn) = 0.

The main objective in this paper is to offer a simple method in which it is possible
to apply trigonometric transform method (TTM) to tackle with the one-dimensional
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(1D) BDEs of the following form
u′′(t) + λ exp(u(t)) = 0, 0 < t ≤ T,(1.3)

u(0) = u0, ut(0) = u′0,(1.4)
where λ > 0 and t ∈ R are constant functions (see [12,23]).

The analytic solution for BDEs is presented as follows:

u(t) = log
cosh

(
φ
2

(
t− 1

2

))
cosh

(
φ
4

)
−2

,

in which φ is the solution of φ =
√

2λ cosh
(
φ
4

)
(see [12, 23]). Whereas λε =

3.513830719, the BDEs has
• one solutions when λ = λε;
• two solutions if λ < λε;
• no solution when λ > λε.

Researchers and scholars are requested to check papers that have been introduced
to get a better grasp of thoroughgoing introduction about BDEs and its history
in [10,18].

On the importance and motivation for Bratu differential equation, it should noted
that it has a key role in many of the physical phenomena, chemical models and other
sciences. Such applications include the model of thermal reaction process, the fuel
ignition model of the thermal combustion theory, the Chandrasekhar model of the
expansion of the universe, the radiative heat transfer nanotechnology and the chemical
reaction theory (see [9, 10,12,18]).

As another instance, mathematical modeling in chemistry for the electro-spinning
process is related to BDEs via thermo-electro-hydrodynamics balance equations.
Colantoni and his co-author in [5] represented a model that is the mono-dimensional
Bratu equation as follows:
(1.5) u′′(t)− λ exp(u(t)) = 0,

featuring λ = 18E2(I−r2k E)2

ρ2 r4 , in which
• r is the radius of the jet at axial coordinate X in the Figure 1;
• I is the electrical current intensity;
• E is the electric area in the axial direction;
• ρ is the material density;
• k is a fixed value which is only dependent on temperature with regard to
incompressible polymer.

Many researchers have used numerical methods for the purpose of solving the BDEs.
We can refer to a number of familiar methods, including Homotopic perturbation
method [8], Finite difference [19], Optimal homotopy asymptotic method [6], Wavelet
method [17], Laplace transform decomposition method [15], B-splines method [4],
Variational iteration technique [7], Adomian decomposition method [23], Differential



BRATU DIFFERENTIAL EQUATIONS 205

Figure 1. Electro-spinning process setup.

quadrature method [21], Lie-group shooting method [1], Reproducing kernel Hilbert
space method [2], Pseudo-spectral collocation method [3] and [11,12,14,16,22].

This paper is organized as what follows: in Section 2, discretization of the derivative
is given. In Section 3, we have expressed the trigonometric Basic functions (TBFs).
In Section 4, a description of the new approach that is named trigonometric transform
method (TTM) is presented. Some numerical examples are offered in Section 5. And
conclusions are drawn in Section 6.

2. Discretization of the Derivative

In this section, we introduce discretization of the derivative of a function. The
approximation of derivatives by forward differences is one of the most basic tools
in finite difference methods for the approximate solution of differential equations,
especially initial value problems. The n-th order forward difference is given by

u(n)(t) ≈ 1
hn

n∑
i=0

(−1)i
(
n

i

)
u ((n− i)h+ t) , n ∈ N.

Depending on the application, the spacing h may be a variable or a fixed. In this
paper, we consider τ = tj+1 − tj and tj = a+ j τ for j = 0, 1, 2, . . . . For second order
derivative we have:

u′′(tk+1) ≈
1
h2 (u(tj+1)− 2u(tj) + u(tj−1)),(2.1)

in which u(t0) and u′(t0) are known and u(t−1) = u(0)− τ ut(0).

3. Trigonometric Basic Functions (TBFs)

In this section, we introduce the trigonometric basis functions and properties that
are used in the main sections of the paper to approximate the function of the solution.

Definition 3.1. Presuming that for n ≥ 1, a = t0 < t1 < · · · < tn−1 < tn = b be
specified nodes, we express that basic functions T0, T1, . . . , Tn are defined on [a, b]
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with their trigonometric functions T0(t), T1(t), . . . , Tn(t), as follows:

T0(t) =
{

0.5
(
1 + cos π

h0
(t− t0)

)
, t0 ≤ t ≤ t1,

0, otherwise,

Tk(t) =


0.5

(
1 + cos π

hk−1
(t− tk)

)
, tk−1 ≤ t ≤ tk,

0.5
(
1 + cos π

hk
(t− tk)

)
, tk ≤ t ≤ tk+1, k = 1, 2, 3, . . . , n− 1,

0, otherwise,
(3.1)

Tn(t) =
{

0.5
(
1 + cos π

hn−1
(t− tn)

)
, tn−1 ≤ t ≤ tn,

0, otherwise,
in which hk = tk+1 − tk for k = 0, 1, . . . , n− 1.

Remark 3.1. The trigonometric functions introduced in Definition 3.1 are the trigono-
metric basis functions (TBFs) in which the following properties are satisfied.

(1) Tk of [a, b] to [0, 1] is continuous,
n∑
k=0

Tk(t) = 1 for all t ∈ [a, b] and Tk(tk) = 1,
k = 0, 1, 2, . . . , n.

(2) Tk(t) = 0 if t /∈ (tk−1, tk+1), for k = 1, 2, . . . , n− 1, T0(t) = 0 if t /∈ (t0, t1) and
Tn(t) = 0 if t /∈ (tn−1, tn).

(3) On subinterval [tk−1, tk+1] for k = 1, 2, . . . , n−1, Tk(t), certainly is an increasing
function on [tk−1, tk] and decreasing function on [tk, tk+1]. Basic functions are
called uniform as long as tk+1 − tk = h = b−a

n
and two additional properties

coincide.
(4) Tk(tk − t) = Tk(tk + t), for all t ∈ [0, h] and k = 1, 2, . . . , n− 1;
(5) Tk(t) = Tk−1(t − h) and Tk+1(t) = Tk(t − h), for k = 1, 2, . . . , n − 1 and

t ∈ [tk, tk+1].

Lemma 3.1 ([20]). Consider n ≥ 2, T0, T1, . . . , Tn, be the TBFs which builds on [a, b].
Therefore,

(3.2)
∫ t1

t0
T1(t)dt =

∫ tn

tn−1
Tn(t)dt = h

2
and

(3.3)
∫ tk+1

tk−1
Tk(t)dt = h,

for k = 1, 2, . . . , n− 1, in which h is the distance between each of the two neighboring
nodes.

Definition 3.2. Let f be a function belonging to C[a, b] and Ti, i = 0, 1, . . . , n, be
the TBFs which buildup on [a, b]. We define the Fk that is the transform of function
f on [a, b] with respect to basic functions Tk given by

(3.4) Fk =
∫ b
a f(t)Tk(t)dt∫ b
a Tk(t)dt

, k = 0, 1, 2, . . . , n.
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Definition 3.3. Let f be a function belonging to C[a, b] and Ti, i = 0, 1, . . . , n, be
the TBFs which buildup on [a, b] and Fk be transform of function f on [a, b] with
respect to basic functions Tk. Then

fn(t) =
n∑
k=0

FkTk(t)

is approximate of function f on [a, b] with respect to TBFs.

Theorem 3.1 (Convergence). Let f be a uniformly continuous function on [a, b].
Thus, for any ε > 0, there exists nε such that for all n ≥ nε

(3.5) |f(t)− fnε(t)| < ε.

Proof. f is a uniformly continuous function on [a, b]. Therefore,
(∀ε > 0) (∃δ = δ(ε)) (|x− t| < δ ⇒ |f(x)− f(t)| < ε (0 < δ < ε)).

For all ε > 0, we have

|f(t)− fn(t)| =
∣∣∣∣∣
n∑
i=0

Ti(t)f(t)−
n∑
i=0

FiTi(t)
∣∣∣∣∣ ≤

n∑
i=0

Ti(t) |f(t)− Fi| < ε.

It is sufficient to show that |f(t)− Fi| < ε. Let x, t ∈ [xi−1, xi+1], i = 1, 2, . . . , n− 1,
so that we can evaluate

|f(x)− Fi| =
∣∣∣∣∣f(x)−

∫ b
a f(t)Ti(t)dt∫ b
a Ti(t)dt

∣∣∣∣∣ ≤
∫ xi+1
xi−1

Ti(t) |f(x)− f(t)| dt∫ xi+1
xi−1

Ti(t)dt
< ε,

if and only if
δ < 2h < ε or h <

ε

2 .

Regarding h = b−a
n
, it is sufficient that nε > 2(b−a)

ε
. �

For description of fractional derivative, we have the following proposition.

Proposition 3.1. With substituting fn(t) =
n∑
k=0

Fk Tk(t) in (2.1), we will have the
next equation for k = 0, 1, 2, . . . , n− 1:

f ′′n(tk+1) ≈
1
h2 (Fj+1 − 2Fj + Fj−1).(3.6)

4. Description of the New Approach

Let solution of (1.3) be continuous on [0, b]. To gain approximate solution of u(x),
we divide [0, b] to n equal partition with step length τ :

(4.1) t0 = 0, ti = t0 + iτ, i = 0, 1, . . . , n, τ = b

n
.

Considering the trigonometric functions with regard to Definition 3.1 on [0, b] and
Definition 3.3, we can gain approximate function u(x) by un(x) =

n∑
k=0

Uk Tk(t). It is
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evident that for calculating un(t), t ∈ [0, b], we should calculate Uk, k = 0, 1, 2, . . . , n.
In order to gain the approximate solution of the problem (1.3), un(t) for points
t0, t1, . . . , tn must be satisfied in (1.3). Due to the boundary conditions (1.4), un(t0) :=
u(t0) = u0 and for other points t1, t2, . . . , tn, we have

u′′n(tk+1) + λ exp(un(tk+1)) = 0, k = 0, 1, 2, . . . , n− 1,(4.2)
in which m− 1 < ρ ≤ m and m ∈ Z+.

Using (3.6) and (4.2) converts to the following form for k = 0, 1, 2 . . . , n− 1:
1
h2 (Uk+1 − 2Uk + Uk−1) + λ exp(Un(tk+1)) = 0,(4.3)

where U0 = u(0) and U−1 = u(0)− u′(0) are known initial conditions.
Now, using the boundary condition, we can calculate U1, U2, . . . , Un by the obtained

recursive equation (4.3) and then gain the approximate solution u(t) ≈ un(t) for (1.3).
In order to gain approximation of BDEs, an algorithm by this method is offered in

the subsequent algorithm.
Algorithm 1: An algorithm for approximation of BDEs
Step 1: Input n and b.
Step 2: Set τ ← b

n
.

Step 3: Locate tk ← k τ, k = 0, 1, 2, . . . , n.
Step 4: Choose TBFs Tk(t) toward k = 0, 1, 2, . . . , n.
Step 5: Set recursive equations

1
h2 (Uk+1 − 2Uk + Uk−1) + λ exp(Un(tk+1)) = 0,

where U0 = u(0) and U−1 = u(0)− τu′(0).
Step 6: Calculate every Uk, k = 1, 2, . . . , n, of an equation of degree one.
Step 7: The approximate solution is

un(t) ≈
n∑
k=0

UkTk(t).

5. Examples

Now that it is easier to understand trigonometric transform, a number of examples
will be given in this section and then will be calculated. These examples include BDEs.
In all these examples, software Mathematica 11 has been used for calculations and
graphs.

Example 5.1. We propose the BDEs for the first example [23]:
u′′(t)− 2 exp(u(t)) = 0, 0 ≤ t ≤ 1,(5.1)

with the precise solution u(t) = log((cos t)−2) and the primary conditions:
u(0) = 0, u′(0) = 0.(5.2)
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Following the TTM, according to what was formulated and presented in section 4 for
(5.1)–(5.2), we can calculate U1, U2, . . . , Un, and then gain the approximate solution
un(t) of (5.1).

In Table 1, we can see the estimated solutions for Eq.(5.1), which is derived for
various values of n applying TTM. Also, the estimated and approximate solutions are
illustrate in Figure 2.

Table 1. Approximate result of Example 5.1 with various values of n.

TTM
t n = 50 n = 500 n = 1000 n = 1500 Exact

0.0 0.0 0.0 0.0 0.0 0.0
0.2 0.0543317 0.0407728 0.0404703 0.0402949 0.0402695
0.4 0.193714 0.165493 0.164871 0.164416 0.164458
0.6 0.42896 0.385508 0.384559 0.383323 0.38393
0.8 0.799043 0.725417 0.723832 0.722438 0.722781

Figure 2. Figure for Example 5.1 exact and the approximation solutions.

Noteworthy in the values obtained in the Table 1 is that by increasing the amount
n, a more accurate answer for (5.1) can be achieved.

Example 5.2. Consider the BDEs for the second example [23]:
u′′(t) + π2 exp(−u(t)) = 0, 0 ≤ t ≤ 1,(5.3)

given that the primary conditions:
u(0) = 0, u′(0) = π.(5.4)

The unknown coefficient U1, U2, . . . , Un with due attention to the TTM, according
to Section 4 for (5.3)–(5.4) are calculated.

In Table 2 and in Figure 3, we can view the precise and approximate answers for
n = 1500 through applying TTM.

The approximate solution obtained by the proposed method corresponds to the
precise solution u(t) = log(1 + sin(πt)).

In Figure 3, we can see the estimated solutions toward n = 1500, which is derived
for various value of t applying TTM.
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Table 2. Approximate result of example 5.2.

t TTM Exact Absolute Error Relative Error
0.2 0.462127 0.46234 212.789 ×10−6 460.455 ×10−6

0.4 0.66794 0.668371 430.849 ×10−6 645.042 ×10−6

0.6 0.667754 0.668371 616.549 ×10−6 923.317 ×10−6

0.8 0.46142 0.46234 920.306 ×10−6 1.99451 ×10−3

Figure 3. Comparison of the approximate solution (5.3) with exact
solution for n = 1500.

Example 5.3. We offer the BDEs for the third example [23]:
u′′(t)− π2 exp(u(t)) = 0, 0 ≤ t ≤ 1,(5.5)

including the primary conditions:
u(0) = 0, u′(0) = −π.(5.6)

It can be seen in Table 3 and Figure 4 that solving equations with approximate
expression is calculated and displayed for n = 1500 and various values of t.

Table 3. Approximate result of Example 5.3.

t TTM Exact Absolute Error Relative Error
0.2 0.451242 0.451272 30.7122 ×10−6 68.0615 ×10−6

0.4 -0.227657 -0.226202 1.45505 ×10−3 6.39141 ×10−3

0.6 -0.576992 -0.573173 3.81849 ×10−3 6.61792×10−3

0.8 -0.699629 -0.69232 7.30951 ×10−3 10.4477 ×10−3

In Table 4, we can see the estimated solutions toward n = 1500, which is derived
for various values of t applying TTM.

Toward n = 1500, the solution that we have gained is in accordance with the precise
solution u(t) = log

(
1

1−sin(1−πt)

)
.

Example 5.4. Consider the BDEs [1]:
u′′(t) + 2 exp(u(t)) = 0, 0 ≤ t ≤ 1,(5.7)

supposing that the primary conditions:
u(0) = 0, u′(0) = 0.(5.8)
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Table 4. Absolute error comparison of Example 5.4.

T
T
M

t
B
N
M

N
PS

LT
M

D
M

B
SM

LG
SM

SC
M

n=
15

00
0.
1

1.
91
×

10
−

14
9.
71
×

10
−

9
2.
13
×

10
−

3
1.
52
×

10
−

2
1.
72
×

10
−

5
4.
03
41
6
×

10
−

6
6:
88
×

10
−

4
0

0.
3

1.
17
×

10
−

13
1.
98
×

10
−

8
6.
19
×

10
−

3
5.
89
×

10
−

3
4.
49
×

10
−

5
5.
22
12
2
×

10
−

6
8:
21
×

10
−

4
16
9.
62
4×

10
−

6

0.
5

1.
88
×

10
−

13
2.
60
×

10
−

8
9.
60
×

10
−

3
6.
98
×

10
−

3
5.
56
×

10
−

5
1.
45
54
×

10
−

8
8:
60
×

10
−

4
34
1.
41
7
×

10
−

6

0.
7

1.
16
×

10
−

13
1.
98
×

10
−

8
1.
19
×

10
−

3
5.
89
×

10
−

3
4.
49
×

10
−

5
5.
19
45
5
×

10
−

6
8:
21
×

10
−

4
42
4.
58
7
×

10
−

6

0.
9

1.
90
×

10
−

14
9.
71
×

10
−

9
1.
09
×

10
−

3
1.
52
×

10
−

3
1.
72
×

10
−

5
4.
01
34
5
×

10
−

6
6:
88
×

10
−

4
44
5.
89
9
×

10
−

6



212 B. AGHELI

Figure 4. Comparison of the approximate solution (5.5) with exact
solution for n = 1500.

The unknown coefficient U1, U2, . . . , Un, with due attention to the TTM, according
to Section 4 for (5.7)–(5.8) are calculated.

Table 4 illustrates an absolute error comparison of the TTM and approximate
methods: Block Nyström method (BNM) [12], Non-polynomial spline (NPS) [11],
Laplace transform method (LTM) [18], Decomposition method (DM) [16], B-splines
method (BSM) [4], Lie-group shooting method (LGSM) [1] and Sinc-collocation
method (SCM).

In Figure 5, we can see the estimated solutions toward n = 1500, which is derived
for various value of t applying TTM.

Figure 5. Comparison of the approximate solution (5.7) with exact
solution for n = 1500.

Noteworthy in the values obtained in the last column Table 4 is that by increasing
the amount n, a more accurate answer for (5.7) can be achieved.

6. Conclusion

I have proposed a method for finding an approximate function of Bratu differential
equations (BDEs), in which TTM are used. All examples with absolute and relative
errors show that we have favorably applied trigonometric transform method TTM
to obtain approximate solution of the BDEs. The obtained solutions that are very
close analytical solutions indicate that a little iteration of TTM will result in some
useful solutions. As the result seems necessary from the authors’ point of view, the
suggested technique has the potentials to be practical in solving other similar ordinary
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differential equations of integer orders and partial differential equations of non integer
orders.
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