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PICTURE FUZZY ORDERING AND D∗-BASED LATTICES

DJAZIA SAADI1 AND ABDELAZIZ AMROUNE1

Abstract. In this paper, some fundamental concepts related to fuzzy relations,
fuzzy lattices, intuitionistic fuzzy relations, and intuitionistic fuzzy lattices are
extended to the picture fuzzy setting. Also, the structure of the set D∗ of membership
values of the picture fuzzy set that plays the role of a prototype for the picture fuzzy
set was studied, and some of its basic properties were discussed. Furthermore, we
have introduced the concepts of picture fuzzy filters in a crisp lattice, crisp filters in
a picture fuzzy lattice, and picture fuzzy filters in a picture fuzzy lattice, and some
of their properties, subtle differences, and extensions in terms of picture fuzzy sets
are proved. As well as giving many characterizations of picture fuzzy filters in a
picture fuzzy lattice. Finally, we present the necessary and sufficient requirements
for a picture fuzzy subset to be a picture fuzzy prime filter.

1. Introduction

Many problems in daily life contain various levels of uncertainty. Since existing
standard mathematical tools may not model such uncertainties, new ones are needed.
Fuzzy sets [35] and intuitionistic fuzzy sets [9], were introduced to deal with uncer-
tainty, are some of the well-known mathematical tools for the aforesaid purpose.

Zadeh introduced the ideas of fuzzy sets and fuzzy relations initially, followed by
Goguen [26, 35, 36]. Many authors have investigated various approaches to fuzzy
lattices, fuzzy filters, and related concepts, see [2–5,19,33]. Birkhoff introduced filters
in 1935 [12] and Cartan in 1937 [17,18]. They are basic in algebra and play a major
role in the study of fuzzy logic. From a logical perspective, filters correspond to
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collections of provable formulae. The filters theory, which has numerous applications
in mathematics such as logic and topology, seems to have received more attention in
recent years. In [32], Venugopalan presented the idea of a fuzzy ordered set (foset) and
defined the upper bound U(A) and lower bound L(A) of a set A. He also defined the
supremum and infimum of a set A. In 1990, Bo and Wangming proposed the ideas of
fuzzy sublattices and fuzzy ideals of a lattice [14]. As a fuzzy algebra, a fuzzy lattice
was defined by Ajmal and Thomas [2] and fuzzy sublattices were described by the
same authors. Using their α-cuts, Chon defined and characterized fuzzy lattices in
2009 and established several fundamental properties of fuzzy lattices [19]. Mezzomo
[28] used a fuzzy partial order relation to describe fuzzy lattices. Additionally, he
defined filters and α-filters of fuzzy lattices and he used their α-cuts to describe them.

In 1983, Atanassov first introduced intuitionistic fuzzy sets (IFSs) to address the
issue of non-membership [8]. This concept was followed by the introduction in 1984,
of a generalized intuitionistic fuzzy set, known as ”intuitionistic L-fuzzy set“ [11]. It
has been shown to be particularly useful for dealing with ambiguity. Based on the
intuitionistic fuzzy set concept of Atanassov, Burillo and Bustince [15] introduced the
notion of intuitionistic fuzzy relation. Specifically, they presented the intuitionistic
fuzzy order relation as a logical extension of the fuzzy order relation introduced by
Zadeh [36] before. Many authors have studied the concept of intuitionistic fuzzy
order, intuitionistic fuzzy lattice, intuitionistic fuzzy filter and intuitionistic fuzzy
ideal [2, 6, 31,37].

Although these sets can model many problems, there are much more problems
and uncertainties in real life that they fail to model. For instance, in voting for an
election, the decisions of the electorate may be split into three types: yes, no, and
abstain. To model this problem and the problems similar to it, Cuong and Kreinovich
put forward in 2013 [21] a new concept called ”picture fuzzy sets“. This idea is an
intriguing development of both ”fuzzy sets“ and ”intuitionistic fuzzy sets“. The idea of
an element’s positive, negative, and neutral membership degrees with a sum less than
or equal to one is the main contribution of Cuong Bui Cong and Vladik Kreinovich.
This gives an unusual but great idea of what a mathematician and a lot of logic are
like.

Not only does the resulting notion have a beautiful mathematical structure with
connections to various fields of mathematics, but it also has a broad range of ap-
plications outside mathematics, for example in decision-making [7, 25, 34], Medical
Diagnosis [23], investment risk [13] and other applications [1, 30].

The picture fuzzy set is one of the most reliable techniques to handle the uncertain-
ties in the data throughout the decision-making process, where an intuitionistic fuzzy
set may not yield satisfactory outcomes. It is an effective mathematical tool for deal-
ing with uncertain real-life issues. It can function extremely effectively in ambiguous
situations that call for responses of the yes, no, abstain, and rejection types. Fetanat
and Tayebi are doing research to try to combine a new decision support system (DSS)
with a picture fuzzy set based combined compromise solution (PFS-CoCoSo) [24].
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Since D∗ is a complete lattice, it is possible to use membership degrees with more
freedom by interpreting picture fuzzy sets as D∗-fuzzy sets.

The rest of this paper is structured as follows. Section 2 presents some essential
concepts relevant to fuzzy sets, intuitionistic fuzzy set theory, picture fuzzy sets, and
the structure set D∗ (the set of membership values of a picture fuzzy set). In Section 3,
we define the picture fuzzy relation and study its main properties. Section 4 extends
the notion of fuzzy lattices and intuitionistic fuzzy lattices studied in [19] to picture
fuzzy cases. As a consequence, we extend some results of [19] to picture fuzzy cases.
Section 5 introduces the concept of a picture fuzzy sub-lattice, a picture fuzzy filter in
a lattice. We achieve this by generalizing some existing notions and results in Zadeh’s
fuzzy sets and Antanssov’s intuitionistic fuzzy sets (see [2–5,33]) to the picture fuzzy
case. In Section 6, we extend the notion of a crisp filter and fuzzy filter in a fuzzy
lattice [29] to a crisp filter and a picture fuzzy filter in a picture fuzzy lattice and we
give more characterizations of them. Section 7 focuses on prime filters and picture
fuzzy prime filters of a picture fuzzy lattice. Finally, we present some concluding
remarks in Section 7.

2. Preliminaries

This section provides a brief introduction to fuzzy sets, intuitionistic fuzzy sets and
picture fuzzy sets.
Definition 2.1 ([35]). Suppose that X is a non-empty set. A fuzzy set E in X is
given by E = {(x, µE (x)) | x ∈ X} , with µE : X → [0, 1] represents the degree of
membership of x in E.
Definition 2.2 ([9]). Suppose that X is a non-empty set. An intuitionistic fuzzy
set E on X is given by E = {〈x, µE (x) , νE (x)〉 | x ∈ X} , with µE : X → [0, 1] and
νE : X → [0, 1] denote respectively the degree of membership and the degree of
non-membership of x in E. The functions µE and νE should satisfy the condition:
µE (x) + νE (x) ≤ 1, for any x ∈ X.

Many authors have discussed related concepts such as fuzzy relations, intuitionistic
fuzzy relations, fuzzy lattices, intuitionistic fuzzy lattices, etc. (see [2–5,9, 10,16,19,
26,29,33,35,36]).
Definition 2.3 ([21]). Suppose thatX is a non-empty set. A picture fuzzy set E onX
is given by E = {〈x, µE (x) , ηE (x) , νE (x)〉 | x ∈ X} , where µE (x) , ηE (x) , νE (x) ∈
[0, 1] denote respectively the degree of positive membership of x in E, degree of neutral
membership of x in E and degree of negative membership of x in E. µE, ηE and νE
satisfy the condition µE (x) + ηE (x) + νE (x) ≤ 1, for any x ∈ X.

The quantity π (x) = 1− (µE (x) + ηE (x) + νE (x)) is called the degree of refusal
membership of x in E.

According to [20,27], consider the set D∗ defined by:
D∗ =

{
a = (a1, a2, a3) ∈ [0, 1]3 | a1 + a2 + a3 ≤ 1

}
.
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This set plays the role of a prototype of a picture fuzzy set, and the study of this set
allows us to perform picture fuzzy sets operations using these of D∗.

Note that for a ∈ D∗, a1, a2 and a3 refer to the first, second and third components
of a, i.e., a = (a1, a2, a3).

Obviously, for each picture fuzzy subset E = {〈x, µE (x) , ηE (x) , νE (x)〉 | x ∈ X} ,
corresponds to a D∗-fuzzy subset, i.e., a mapping E : X → D∗ given by E (x) =
(µE (x) , ηE (x) , νE (x)) ∈ D∗.

Definition 2.4 ([20, 27]). For all a, b ∈ D∗, we define the order relation � on D∗ by
a � b if and only if (a1 < b1 and a3 ≥ b3) or (a1 = b1 and a3 > b3) or (a1 = b1 and
a3 = b3 and a2 ≤ b2) , for all a, b ∈ D∗.
Note that (D∗,�) is a bounded lattice with top element 1D∗ = (1, 0, 0) and bottom

element 0D∗ = (0, 0, 1) . And for each a, b ∈ D∗, af b and ag b are given by

af b =


a, if a � b,

b, if b � a,

(a1 ∧ b1, 1− (a1 ∧ b1)− (a3 ∨ b3), a3 ∨ b3) , otherwise,

ag b =


b, if a � b,

a, if b � a,

(a1 ∨ b1, 0, a3 ∧ b3) , otherwise.

Concerning this definition it is worth pointing out the following aspect.
• If a1 6= 0, then a3 6= 1.
• a = (a1, a2, a3) � 0D∗ equivalent (a1 > 0) or (a2 > 0) or (a1 = 0 and a3 < 1) .
• The components of non-comparable elements a, b ∈ D∗ verify that (a1 > b1
and a3 > b3) or (a1 < b1 and a3 < b3). We write a ‖ b.

Following that, we will discuss some fundamental properties for the order of D∗ that
will be useful in the sequel.

Proposition 2.1. Let a, b, c, d ∈ D∗. Then,
(1) af b � a, af b � b;
(2) a � ag b, b � ag b;
(3) af b � ag b;
(4) a � 0D∗ and b � 0D∗ if and only if af b � 0D∗;
(5) a � c and b � c if and only if af b � c;
(6) a � 0D∗ or b � 0D∗ if and only if ag b � 0D∗;
(7) if a � c or b � c, then ag b � c;
(8) a � c and b � c if and only if ag b � c;
(9) if b � c, then ag b � ag c and af b � af c;
(10) (ag b)f (cg d) � (af c)g (af d)g (bf c)g (bf d).

Proof. Let a = (a1, a2, a3) , b = (b1, b2, b3) ∈ D∗.
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(4) Suppose that a � 0D∗ , b � 0D∗ . Then,

af b =


a, if a � b,

b, if b � a,

(a1 ∧ b1, 1− a1 ∧ b1 − a3 ∨ b3, a3 ∨ b3) , otherwise.
The result is clear if a f b = a or a f b = b, it remains to prove that the
property is true in the case af b = (a1 ∧ b1, 1− a1 ∧ b1 − a3 ∨ b3, a3 ∨ b3) .

Since a � 0D∗ and b � 0D∗ , it follows that
a1 > 0 and a3 < 1 (1)
or
a1 = 0 and a3 < 1 (2)

and


b1 > 0 and b3 < 1 (3)
or
b1 = 0 and b3 < 1 (4) .

Then we distinguish four cases.
Case 01: If we have (1) and (3), i.e., (a1 > 0 and a3 < 1) and (b1 > 0 and
b3 < 1), then a1 ∧ b1 > 0 and a3 ∨ b3 < 1. It follows that af b � 0D∗ .

Case 02: If we have (1) and (4), i.e., (a1 > 0 and a3 < 1) and (b1 = 0 and
b3 < 1), then a1 ∧ b1 = 0 and a3 ∨ b3 < 1. It follows that af b � 0D∗ .

Case 03: If we have (2) and (3), i.e., (a1 = 0 and a3 < 1) and (b1 > 0 and
b3 < 1), then a1 ∧ b1 = 0 and a3 ∨ b3 < 1. It follows that af b � 0D∗ .

Case 04: If we have (2) and (4), i.e., (a1 = 0 and a3 < 1) and (b1 = 0 and
b3 < 1), then a1 ∧ b1 = 0 and a3 ∨ b3 < 1. It follows that af b � 0D∗ .

Conversely, suppose that afb � 0D∗ and a = 0D∗ . Then afb = 0D∗fb = 0D∗ ,
for each b ∈ D∗. This is a contradiction. Thus, a f b � 0D∗ implies a � 0D∗

and b � 0D∗ .
(6) Suppose that a � 0D∗ . Since ag b � a, then ag b � 0D∗ .

Conversely, suppose that a g b � 0D∗ , a = 0D∗ and b = 0D∗ . Then, a g b =
0D∗ g 0D∗ = 0D∗ . This is a contradiction. Thus, ag b � 0D∗ implies a � 0D∗ or
b � 0D∗ .

The fact that D∗ is a lattice, the rest of the properties are clear. �

3. Picture Fuzzy Relations

Here, we recall the definition of a picture fuzzy relation and investigate its main
properties. We denote by D∗

0 = D∗ − {0D∗}.

Definition 3.1 ([20]). Suppose that X is a non-empty set. A picture fuzzy relation
R : X ×X → D∗ is defined by R (x, y) = (µR (x, y) , ηR (x, y) , νR (x, y)) , for all x, y ∈
X, where µR : X ×X → [0, 1] , ηR : X ×X → [0, 1] and νR : X ×X → [0, 1] satisfying
the condition 0 ≤ µR (x, y) + ηR (x, y) + νR (x, y) ≤ 1, for every (x, y) ∈ X ×X.

In the sequel, PFR(X) denotes the set of all the picture fuzzy relations on X.

Definition 3.2. Suppose that X is a non-empty set and R,P ∈ PFR(X). Using
Definition 2.4, we can define the following.
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(i) The picture fuzzy inclusion by R ⊆ P if and only if, for all x, y ∈ X,
(µR (x, y) , ηR (x, y) , νR (x, y)) � (µP (x, y) , ηP (x, y) , νP (x, y)) .

(ii) The picture fuzzy intersection R∩P by (R ∩ P) (x, y) = R (x, y)fP (x, y), for
all x, y ∈ X.

(iii) The picture fuzzy union R ∪ P by (R ∪ P) (x, y) = R (x, y) g P (x, y), for all
x, y ∈ X.

(iv) The support of R by S(R) = {(x, y) ∈ X2 | R(x, y) � 0D∗} .
(v) The kernel of R by ker(R) = {(x, y) ∈ X2 | R(x, y) = 1D∗} .
(vi) For all α ∈ D∗

0, we define the α-cut of R by Rα = {(x, y) ∈ X2 | R (x, y) � α} .

Definition 3.3. Suppose that X is a non-empty set and R ∈ PFR(X). We say that
R is

(i) reflexive if and only if R (x, x) = (1, 0, 0) for all x ∈ X;
(ii) perfect antisymmetric, if for every x, y ∈ X with x 6= y and R (x, y) � 0D∗ ,

then R (y, x) = 0D∗ ;
(iii) transitive if and only if for all x, y, z ∈ X, R (x, z) � R (x, y)f R (y, z) .

Remark 3.1. The following statement is equivalent to the definition of perfect anti-
symmetry: for all x, y ∈ X, if R(x, y) � 0D∗ and R(y, x) � 0D∗ , then x = y.

Definition 3.4. Suppose that X is a non-empty set and R ∈ PFR(X). Then, R is
called a picture fuzzy ordering, or a partial picture fuzzy ordering, if it is reflexive,
perfect antisymmetric and transitive.

A picture fuzzy poset (PF-poset, for short) is a set with a picture fuzzy partial
order relation.

Example 3.1. Let X = {x1, x2, x3} and let R ∈ PFR(X) be given by
R x1 x2 x3
x1 (1.00, 0.00, 0.00) (0.30, 0.00, 0.00) (0.00, 0.00, 1.00)
x2 (0.00, 0.00, 1.00) (1.00, 0.00, 0.00) (0.00, 0.00, 1.00)
x3 (0.00, 0.30, 0.20) (0.00, 0.00, 0.00) (1.00, 0.00, 0.00)

.

It is obvious that (X,R) is a picture fuzzy ordering.

Definition 3.5. A picture fuzzy ordering R is linear (or total) onX if for any x, y ∈ X,
either R (x, y) � 0D∗ or R (y, x) � 0D∗ .

A linearly PF-poset (X,R) or a picture fuzzy chain is a PF-poset (X,R) in which
R is linear.

Lemma 3.1. Suppose that X is a non-empty set and R ∈ PFR(X). If R is a picture
fuzzy ordering relation on X, then S(R) and ker (R) are order relations on X.

Proof. Suppose that (X,R) is a PF-poset. The reflexivity of S(R) is direct. Since
R (x, x) = (1, 0, 0) � 0D∗ for all x ∈ X, then (x, x) ∈ S(R).

For the antisymmetry, suppose that (x, y) , (y, x) ∈ S(R), i.e., R (x, y) � 0D∗ and
R (y, x) � 0D∗ . Then, from the perfect antisymmetric of R, we obtain x = y.
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Concerning the transitivity, suppose that (x, y), (y, z) ∈ S(R), that is, R (x, y) � 0D∗

and R (y, z) � 0D∗ . Since R (x, z) � R (x, y)f R (y, z) , using Proposition 2.1 (4), we
obtain R (x, z) � 0D∗ for all x, z ∈ X, thus (x, z) ∈ S(R).

Therefore, S(R) is a partial order relation on X.
Similarly, we obtain the same result for ker (R) . �

Remark 3.2. The fact that S(R) is a partial order relation on X does not imply that
R is a picture fuzzy ordering relation on X.

Example 3.2. Let X = a, b. Consider the relation R defined on X by
R a b
a (0.10, 0.30, 0.00) (0.00, 0.00, 1.00)
b (0.00, 0.00, 1.00) (0.50, 0.03, 0.20)

, its support is given by
S(R) a b
a 1 0
b 0 1

.

It is not difficult to see that S(R) is a partial order relation on X but R is not a
picture fuzzy ordering relation on X.

Proposition 3.1. Suppose that X is a non-empty set and R ∈ PFR(X). R is a
picture fuzzy ordering relation if and only if all cuts Rα are order relations on X, for
any α ∈ D∗

0.

Proof. Let α ∈ D∗
0. Suppose (X,R) is a PF-poset and let x ∈ X. Since R (x, x) =

(1, 0, 0) , then R (x, x) � α, for all α ∈ D∗
0, so (x, x) ∈ Rα. Thus Rα is reflexive.

Suppose that (x, y), (y, x) ∈ Rα, then R (x, y) � α and R (y, x) � α. This implies
that R (x, y) � 0D∗ and R (y, x) � 0D∗ . From the perfect antisymmetric of R, we
obtain x = y. Thus, Rα is antisymmetric.

Suppose that (x, y) ∈ Rα and (y, z) ∈ Rα. Then, R (x, y) � α and R (y, z) � α.
From the transitivity of R, we obtain R (x, z) � R (x, y)fR (y, z) � α, this implies

that (x, z) ∈ Rα. Thus, Rα is transitive.
Hence, if R is a picture fuzzy ordering relation, then all cuts Rα are order relations

on X.
Conversely, assume that for all α ∈ D∗

0, Rα is a partial ordering relation on X.
If α = 1D∗ ∈ D∗

0, then (x, x) ∈ R1D∗ for all x ∈ X, i.e., R (x, x) = 1D∗ . Thus, R is
reflexive.

Suppose that R (x, y) � 0D∗ and R (y, x) � 0D∗ . Then, there exist α, β ∈ D∗
0 such

that R (x, y) = α and R (y, x) = β. Put γ = α f β.
It is obvious that R (x, y) � γ and R (x, y) � γ, that is, (x, y) ∈ Rγ and (y, x) ∈ Rγ.

From the antisymmetry of Rγ we obtain x = y. Thus, R is perfect antisymmetric.
Let x, y, z ∈ X, and put α = R (x, y)f R (y, z) .
If α = 0D∗ , it is obvious that α = R (x, y)f R (y, z) � R (x, z) .
If α � 0D∗ , then we have R (x, y) � α and R (y, z) � α, that is, (x, y) ∈ Rα and

(y, z) ∈ Rα. Using the transitivity of Rα we obtain (x, z) ∈ Rα, i.e., R (x, z) � α =
R (x, y)f R (y, z) . Thus, R is transitive. Hence, R is a picture fuzzy ordering. �
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4. Picture Fuzzy Lattices

In the following, we first extend the notions of fuzzy lattice and intuitionistic fuzzy
lattice studied in [2–5,19,22,33], to picture fuzzy cases. As a consequence, we extend
some results in this direction.
Definition 4.1. Suppose that (X,R) is a PF-poset and E is a non-empty subset
of X. An element u ∈ X is an upper bound of E if for all x ∈ E, R(x, u) � 0D∗ .
An upper bound u0 of E is the least upper bound of E if for any upper bound u
of E,R(u0, u) � 0D∗ . An element l ∈ X is a lower bound of E if for all x ∈ E,
R(l, x) � 0D∗ . A lower bound l0 of E is the greatest lower bound of E if for any lower
bound l of E, R(l, l0) � 0D∗ .
x t y and x u y denote respectively the least upper bound and the greatest lower

bound of {x, y}.
Remark 4.1. Note that the least upper bound and the greatest lower bound of any
picture fuzzy subset are unique when they exist. (The uniqueness comes from the
perfect antisymmetry of R).
Definition 4.2. A PF-poset (X,R) is a picture fuzzy lattice (PFL, for short) if and
only if for all x, y ∈ X, x t y and x u y exist.
Example 4.1. In Example 3.1, (X,R) is a PFL. Indeed, x1 u x2 = x1, x1 u x3 = x3
and x2 u x3 = x3. Also, x1 t x2 = x2, x1 t x3 = x1 and x2 t x3 = x2.

The boundaries’ remainders are obtained using commutativity and idempotence.
The proofs of the following two propositions are straightforward.

Proposition 4.1. For a PFL (X,R), let x, y, z ∈ X. Then,
(1) R(x, x t y) � 0D∗ , R(y, x t y) � 0D∗ , R(x u y, x) � 0D∗ , R(x u y, y) � 0D∗;
(2) R(x, z) � 0D∗ and R(y, z) � 0D∗ implies R(x t y, z) � 0D∗;
(3) R(z, x) � 0D∗ and R (z, y) � 0D∗ implies R (z, x u y) � 0D∗;
(4) R(x, y) � 0D∗ if and only if x t y = y;
(5) R(x, y) � 0D∗ if and only if x u y = x;
(6) if R(y, z) � 0D∗, then R(x u y, x u z) � 0D∗ and R(x t y, x t z) � 0D∗ .

Proposition 4.2. For a PFL (X,R), let x, y, z ∈ X. Then,
(1) x t x = x, x u x = x;
(2) x t y = y t x, x u y = y u x;
(3) (x t y) t z = x t (y t z), (x u y) u z = x u (y u z);
(4) (x t y) u x = x, (x u y) t x = x.

We now turn to a characterization of the relationship between a PFL and its level
sets.
Proposition 4.3. For a PF-poset (X,R). If (X,Rα) are lattices for all α ∈ D∗

0, then
(X,R) is a PFL.
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Proof. For a PF-poset (X,R), assume that (X,Rα) are crisp lattices. Let α ∈ D∗
0.

For all x, y ∈ X, there exists u0 ∈ X, such that (x, u0) ∈ Rα, (y, u0) ∈ Rα, and
(u0, u) ∈ Rα, for every upper bound u of {x, y} . Then, there exists u0 such that
R (x, u0) � 0D∗ , R (y, u0) � 0D∗ and R (u0, u) � 0D∗ for all upper bound u of {x, y} .
Hence there exists a least upper bound u0 of {x, y} on (X,R) . In a similar way, there
exists a greatest lower bound l0 of {x, y} on (X,R) . Thus, (X,R) is a PFL. �

Remark 4.2. If (X,R) is a PFL, then (X,Rα) may not be a crisp lattice. Indeed.

Example 4.2. Let (X,R) be a PFL, where X = {a, b, c, d} and R defined by the
following table

R a b c d
a (1.00, 0.00, 0.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00)
b (0.30, 0.00, 0.40) (1.00, 0.00, 0.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00)
c (0.50, 0.20, 0.10) (0.00, 0.00, 1.00) (1.00, 0.00, 0.00) (0.00, 0.00, 1.00)
d (0.70, 0.00, 0.20) (0.4., 0.10, 0.50) (0.10, 0.00, 0.60) (1.00, 0.00, 0.00)

.

Consider the relation R(0.5,0.2,0.3)
R(0.5,0.2,0.3) a b c d

a 1 0 0 0
b 0 1 0 0
c 1 0 1 0
d 1 0 0 1 .

(X,R0.5,0.2,0.3) is a poset.
It is not difficult to see that {b, c} has neither the least upper bound nor the greatest

lower bound. So, (X,R0.5,0.2,0.3) is a poset but not a crisp lattice.

5. Picture Fuzzy Filters in a Lattice

This section introduces picture fuzzy sub-lattice and picture fuzzy filter in a crisp
lattice by inspiring those of fuzzy and intuitionistic fuzzy case. We accomplish this
by generalizing some existing results in the Zadeh’s fuzzy sets and Antanssov’s intu-
itionistic fuzzy sets (see [2–5,33]) to the picture fuzzy case.

In the following, the symbol � indicates the picture fuzzy ordering defined on the
set D∗ as seen in Definition 2.4 and � is its dual.

Definition 5.1. For a crisp lattice (X,6,∧,∨), let E be a picture fuzzy subset on
X. Then, E is called a picture fuzzy sublattice of (X,6,∧,∨), if for all x, y ∈ X

(i) E (x ∧ y) � E (x)f E (y);
(ii) E (x ∨ y) � E (x)f E (y).

Example 5.1. Let X = {a, b, c, d, e, f} and let (X,6) be the lattice given by the
following table and represented by the given Hasse diagram .
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R a b c d e f
a 1 1 1 1 1 1
b 0 1 0 1 0 1
c 0 0 1 1 1 1
d 0 0 0 1 0 1
e 0 0 0 0 1 1
f 0 0 0 0 0 1 a

b c
d e
f

The picture fuzzy subset E defined on X by
X E (x)
a (0.10, 0.50, 0.40)
b (0.20, 0.10, 0.40)
c (0.10, 0.20, 0.30)
d (0.20, 0.00, 0.40)
e (0.10, 0.20, 0.30)
f (0.40, 0.40, 0.10)

is a picture fuzzy sublattice of (X,6) .

Definition 5.2. Let (X,≤,∧,∨) be a crisp lattice. A picture fuzzy subset E of X is
called a picture fuzzy filter (PFF, for short) of X, if for all x, y ∈ X

(i) E (x ∧ y) � E (x)f E (y) ;
(ii) E (x ∨ y) � E (x)g E (y) .

Example 5.2. Consider the lattice (X,6) given in Example 5.1. The picture fuzzy

subset E on X defined by

X E (x)
a (0.00, 0.00, 1.00)
b (0.00, 0.00, 1.00)
c (0.10, 0.30, 0.50)
d (0.10, 0.20, 0.40)
e (0.10, 0.30, 0.50)
f (0.40, 0.10, 0.30)

is a PFF of (X,6) .

Remark 5.1. Every PFF is a picture fuzzy sublattice. However, the opposite is not
correct.

Example 5.3. The PFF E given in Example 5.2 is a picture fuzzy sublattice.
But the picture fuzzy sublattice E given in Example 5.1 is not a PFF, since

E (c ∨ b) = (0.2, 0, 0.4), E (c)g E (b) = (0.2, 0, 0.3) and (0.2, 0, 0.4) � (0.2, 0, 0.3) .

Proposition 5.1. Let (X,≤) be a crisp lattice. If E,F are PFFs (resp. sublattices)
of (X,6), then E ∩ F is also a PFF (resp. sublattice) of (X,6).

Proof. Let E and F be two PFFs of (X,6) .
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We have (E ∩ F ) (x) = E (x)f F (x). Then,
(E ∩ F ) (x ∧ y) = E (x ∧ y)f F (x ∧ y)

� (E (x)f E (y))f (F (x)f F (y))
= (E (x)f F (x))f (E (y)f F (y))
= (E ∩ F ) (x)f (E ∩ F ) (y) ,

(E ∩ F ) (x ∨ y) = E (x ∨ y)f F (x ∨ y)
� (E (x)g E (y))f (F (x)g F (y))
� (E (x)f F (x))g (E (x)f F (y))
g (E (y)f F (x))g (E (y)f F (y))
� (E (x)f F (x))g (E (y)f F (y))
= (E ∩ F ) (x)g (E ∩ F ) (y) .

Hence, E ∩ F is a PFFs of (X,6) .
The same argument can be applied to the picture fuzzy sublattice case. �

Remark 5.2. The union of two PFFs (resp. sublattices) of (X,6) need not be a PFF
(resp. sublattice) of (X,6) .

Example 5.4. Consider the lattice (X,6) given in Example 5.1. Let E be the PFF
given in Example 5.2 and consider the PFF E∗ on X by

X E∗ (x)
a (0.00, 0.00, 1.00)
b (0.10, 0.40, 0.50)
c (0.00, 0.00, 1.00)
d (0.30, 0.10, 0.40)
e (0.00, 0.00, 1.00)
f (0.30, 0.20, 0.40)

.

Then,
X (E ∪ E∗) (x)
a (0.00, 0.00, 1.00)
b (0.10, 0.40, 0.50)
c (0.10, 0.30, 0.50)
d (0.30, 0.10, 0.40)
e (0.10, 0.30, 0.50)
f (0.40, 0.10, 0.30)

.

Since (E ∪ E∗) (c ∧ b) = 0D∗ , (E ∪ E∗) (c)f(E ∪ E∗) (b) = (0.1, 0.3, 0.5) and (0, 0, 1)
� (0.1, 0.3, 0.5) , this implies that E ∪ E∗ is not a PFF.

Proposition 5.2. Let (X,≤) be a crisp lattice. If E is a PFF of (X,6), then S(E)
and ker (E) are crisp filters on (X,6).

Recall that S(E) = {x ∈ X | E(x) � 0D∗} , ker(E) = {x ∈ X | E(x) = 1D∗} .
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Proof. Suppose that E is a PFF of (X,6) .
(i) Let x ∈ S(E) and y ∈ X such that x 6 y, it follows that E (x) � 0D∗ and

x ∨ y = y. Since E (y) = E (x ∨ y) � E (x)g E (y) � 0D∗ , then y ∈ S(E).
(ii) Let x, y ∈ S(E). We prove that x∧ y ∈ S(E). x, y ∈ S(E) implies E (x) � 0D∗

and E (y) � 0D∗ . Since E (x ∧ y) � E (x)fE (y) , then according to Proposition
2.1(4), E (x ∧ y) � 0D∗ . Hence, x ∧ y ∈ S(E).

Similarly, we obtain the same result for ker (E) . �

Theorem 5.1. Let (X,≤) be a crisp lattice. A picture fuzzy subset E of X is a PFF
if and only if its α-cuts are filters of (X,6) for all α = (α1, α2, α3) ∈ D∗

0.

Proof. Suppose that E is a PFF on (X,6) and prove that Eα are filters of (X,6) ,
for all α ∈ D∗

0.

(i) Let x ∈ Eα and y ∈ X such that x 6 y. Then, E (x) � α and x ∨ y = y. It
follows that E (y) = E (x ∨ y) � E (x)g E (y) � α. Hence, y ∈ Eα.

(ii) Let x, y ∈ Eα. Then, it holds that E (x) � α and E (y) � α. Since E (x ∧ y) �
E (x)f E (y) � α, thus x ∧ y ∈ Eα.

Conversely, suppose that Eα are filters of (X,6), for all α ∈ D∗
0, and show that E

is a PFF on (X,6).
(i) Let x, y ∈ X and let α ∈ D∗

0. Put E (x) f E (y) = α. We have E (x) �
E (x)fE (y) = α and E (y) � E (x)fE (y) = α, that is, x, y ∈ Eα. Since Eα
is a filter, then x ∧ y ∈ Eα. This implies that E (x ∧ y) � α = E (x)f E (y) .

(ii) Let x, y ∈ X and let α, β ∈ D∗
0 such that E (x) = α and E (y) = β. Then

x ∈ Eα and y ∈ Eβ. Since Eα and Eβ are filters, it follow that x∨ y ∈ Eα and
x ∨ y ∈ Eβ, i.e., E (x ∨ y) � α and E (x ∨ y) � β.

Hence, E (x ∨ y) � α g β = E (x)g E (y) .
�

6. Filters in a Picture Fuzzy Lattice

This section extends the notion of a crisp filter and fuzzy filter in a fuzzy lattice
[29] to a crisp filter and a PFF in a PFL as well as providing more characterizations
of them.

Definition 6.1. For a PFL (X,R,u,t), let E be a non-empty subset of X. E is a
crisp filter on (X,R,u,t) if the following conditions are satisfied.
(F1) If x ∈ X, y ∈ E and R(y, x) � 0D∗ , then x ∈ E.
(F2) If x, y ∈ E, then x u y ∈ E.

Definition 6.2. For a PFL (X,R,u,t), let E be a picture fuzzy subset of X. E is
a PFF on (X,R,u,t) if it satisfies the following conditions:

(PFF1) E (x u y) � E (x)f E (y) , for all x, y ∈ X;
(PFF2) R (x, y) � 0D∗ implies E (x) � E (y) , for all x, y ∈ X.
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Proposition 6.1. Let (X,R) be a picture fuzzy lattice. If E and F are two PFFs of
(X,R) , then E ∩ F is a PFF of (X,R) .
Proof. Suppose that E and F are two PFFs of (X,R) . Then, for all x, y ∈ X,

(E ∩ F ) (x u y) = E (x u y)f F (x u y)
� (E (x)f E (y))f (F (x)f F (y))
= (E (x)f F (x))f (E (y)f F (y))
= (E ∩ F ) (x)f (E ∩ F ) (y) .

On the other hand, if R (x, y) � 0D∗ , then E (x) � E (y) and F (x) � F (y) , this
implies that E (x)f F (x) � E (y)f F (y) . That is, (E ∩ F ) (x) � (E ∩ F ) (y) . �

Remark 6.1. The union of two PFFs is not always a PFF, as demonstrated in the
following example.
Example 6.1. Let X = {0, a, b, 1} and assume that (X,R) is the lattice given by the
following table

R 0 a b 1
0 (1.00, 0.00, 0.00) (0.20, 0.30, 0.50) (0.30, 0.10, 0.50) (0.30, 0.00, 0.40)
a (0.00, 0.00, 1.00) (1.00, 0.00, 0.00) (0.00, 0.00, 1.00) (0.30, 0.00, 0.40)
b (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (1.00, 0.00, 0.00) (0.20, 0.30, 0.40)
1 (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (1.00, 0.00, 0.00)

.

We define the two PFFs E1 and E2 on (X,R) by
X E1 (x) E2 (x)
0 (0.00, 0.00, 1.00) (0.00, 0.00, 1.00)
a (0.20, 0.40, 0.30) (0.00, 0.00, 1.00)
b (0.00, 0.00, 1.00) (0.10, 0.50, 0.20)
1 (0.30, 0.20, 0.20) (0.30, 0.20, 0.10)

.

Then,
X (E1 ∩ E2) (x) (E1 ∪ E2) (x)
0 (0.00, 0.00, 1.00) (0.00, 0.00, 1.00)
a (0.00, 0.00, 1.00) (0.20, 0.40, 0.30)
b (0.00, 0.00, 1.00) (0.10, 0.50, 0.20)
1 (0.30, 0.20, 0.20) (0.30, 0.20, 0.10)

.

It is obvious that E1 ∩ E2 is a PFF of (X,R), but E1 ∪ E2 is not a PFF. Indeed,
(E1 ∪ E2) (a u b) = 0D∗ , (E1 ∪ E2) (a) f (E1 ∪ E2) (b) = (0.1, 0.6, 0.3) and (0, 0, 1) �
(0.1, 0.6, 0.3) .
Proposition 6.2. For a PFL (X,R), let E be a picture fuzzy subset on X. If E is a
PFF of (X,R) , then S (E) and ker (E) are crisp filters of (X,R) .
Proof. Suppose that E is a PFF of (X,R) and let x, y ∈ X.
(F1) If x ∈ S (E) and R(x, y) � 0D∗ implies E (y) � E (x) � 0D∗ . Thus, y ∈ S (E) .
(F2) If x, y ∈ S (E), then E (x) � 0D∗ and E (y) � 0D∗ . Since E (x u y) � E (x) f

E (y) , according to Proposition 2.1 (4), E (x u y) � 0D∗ , i.e., x u y ∈ S (E) .
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Similarly, we obtain the same result for ker (E) . �

Proposition 6.3. For a PFL (X,R), let E be a picture fuzzy subset on X. E is a
PFF of (X,R) if and only if its α-cuts are crisp filters of (X,R).

Proof. Let x, y ∈ X and let α ∈ D∗
0. Suppose that E is a PFF of (X,R).

(F1) If x ∈ Eα and R (x, y) � 0D∗ , then E (x) � α and E(y) � E(x) � α. Hence,
y ∈ Eα.

(F2) If x, y ∈ Eα, then E(x) � α and E(y) � α, then E(xu y) � E(x)fE(y) � α,
That is, x u y ∈ Eα.

Conversely, suppose that Eα are crisp filters of (X,R) , for all α ∈ D∗
0.

(PFF1) Put E(x)fE(y) = β. It is obvious that, if E(x)fE(y) = 0D∗ , then E(xuy) �
E(x)f E(y). When β is greater than 0D∗ , we have E(x) � β and E(y) � β it
follows that x, y ∈ Eβ. Then xu y ∈ Eβ. Hence, E(xu y) � β = E(x)fE(y).

(PFF2) Suppose that R (x, y) � 0D∗ and put E (x) = γ. The case γ = 0D∗ is trivially.
When γ is greater than 0D∗ , then, x ∈ Eγ implies y ∈ Eγ. Hence, E(y) � γ =
E(x). �

Now, we give some characterizations of PFFs of a PFL.

Theorem 6.1. E is a PFF of a PFL (X,R) if and only if it satisfies (PFF1) and
(PFF3) E (x) � E (x u y)f E (y), for all x, y ∈ X.

Proof. Suppose that E is a PFF of (X,R). It suffices to prove (PFF3).
Since R (x u y, x) � 0D∗ , then according to (PFF1) and (PFF2), E(x) � E(xuy) �

E (x u y)f E (y) .
Conversely, suppose that (PFF1) and (PFF3) are satisfied. If R (x, y) � 0D∗ , then

x u y = x implies E(y) � E (x u y)f E (x) = E (x) . �

Theorem 6.2. E is a PFF of a PFL (X,R) if and only if it satisfies
(PFF4) R (x u y, z) � 0D∗ implies E (z) � E (x)f E (y), for all x, y, z ∈ X.

Proof. Let x, y, z ∈ X. Suppose that E is a PFF of (X,R).
If R (x u y, z) � 0D∗ , then according to (PFF1) and (PFF2), E (z) � E (x u y) �

E (x)f E (y) .
Conversely, suppose that (PFF4) is satisfied. Then the following hold.

(PFF1) Since R (x u y, x u y) � 0D∗ , then E (x u y) � E (x)f E (y).
(PFF2) If R (x, y) � 0D∗ , then R (x u x, y) � 0D∗ . It follows that E (y) � E (x)fE (x) ,

that is, E (y) � E (x) . �

Theorem 6.3. E is a PFF of a PFL (X,R) if and only if it satisfies (PFF1) and
(PFF5) E (x t y) � E (x), for all x, y ∈ X.

Proof. Let x, y ∈ X. Suppose that E is a PFF of (X,R). It suffices to prove (PFF5).
Since R (x, x t y) � 0D∗ , then E (x t y) � E (x) .
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Conversely, suppose that (PFF1) and (PFF5) are satisfied. If R (x, y) � 0D∗ , then
x t y = y. Hence, E (x) � E (x t y) = E (y) . �

Theorem 6.4. E is a PFF of a PFL (X,R) if and only if it satisfies
(PFF6) for all x, y ∈ X,E (x u y) = E (x)f E (y).
Proof. Suppose that E is a PFF of (X,R).

In view of the definition of a PFF, it suffices to show that E (x u y) � E (x)fE (y).
Let x, y ∈ X. Since R (x u y, x) � 0D∗ and R (x u y, y) � 0D∗ , then E (x u y) � E (x)

and E (x u y) � E (y) . Hence E (x u y) � E (x)f E (y).
Conversely, suppose that E (x u y) = E (x)f E (y), for all x, y ∈ X.
• E (x u y) = E (x)f E (y) implies (PFF1).
• If R (x, y) � 0D∗ , then xu y = x. Thus E (x) = E (x u y) = E (x)fE (y), that
is, E (x) � E (y). �

7. Picture Fuzzy Prime Filters in a Picture Fuzzy Lattice

Prime filters, as well as picture fuzzy prime filters of a PFL, are the topic of this
section’s discussion.
Definition 7.1. Suppose that (X,R,u,t) is a PFL and E is a crisp filter of (X,R).
Then E is called a crisp prime filter if for all x, y ∈ X, x t y ∈ E imply that x ∈ E
or y ∈ E.
Definition 7.2. Suppose that (X,R,u,t) is a PFL and E is a PFF of (X,R). E is
called a picture fuzzy prime filters (PFPF, for short) if for any x, y ∈ X, E(x t y) =
E(x)g E(y).
Remark 7.1. The intersection of two PFPFs of (X,R) does not be necessarily a PFPF
of (X,R).
Example 7.1. Consider the lattice (X,R) given in Example 6.1.

Let E1, E2 be two PFPFs on (X,R) defined by
X E1 (x) E2 (x)
0 (0.00, 0.00, 1.00) (0.00, 0.00, 1.00)
a (0.20, 0.40, 0.30) (0.00, 0.00, 1.00)
b (0.00, 0.00, 1.00) (0.10, 0.50, 0.20)
1 (0.20, 0.40, 0.30) (0.10, 0.50, 0.20)

.

Then,

X (E1 ∩ E2) (x)
0 (0.00, 0.00, 1.00)
a (0.00, 0.00, 1.00)
b (0.00, 0.00, 1.00)
1 (0.10, 0.60, 0.30)

.

It is easy to check that E1 ∩ E2 is a PFF. But (E1 ∩ E2) (a t b) = (E1 ∩ E2) (1) =
(0.10, 0.60, 0.30) . In the other hand, (E1 ∩ E2) (a)g(E1 ∩ E2) (b) = (0, 0, 1)g(0, 0, 1) =
(0, 0, 1) 6= (0.10, 0.60, 0.30). Hence, the PFF E1 ∩ E2 is not prime.
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Proposition 7.1. Suppose that (X,R) is a PFL. If E is a PFPF on (X,R), then
S (E) and ker (E) are crisp prime filters on (X,R).

Proof. Suppose that E is a PFPF on (X,R). From Proposition 6.2, it holds that
S (E) is a filter on (X,R). We then demonstrate that S (E) is prime.

Let x, y ∈ X. If x∨y ∈ S (E) , then E (x ∨ y) � 0D∗ . Since E(x∨y) = E(x)gE(y),
this implies from Proposition 2.1 (6) that E(x) � 0D∗ or E(y) � 0D∗ . Hence, either
x ∈ S (E) or y ∈ S (E) .

Similarly, we obtain the same result for ker(E). �

Theorem 7.1. Suppose that (X,R) is a PFL and let E be a picture fuzzy subset on
X. If for all α ∈ D∗

0, Eα are prime filters on (X,R) , then E is a PFPF on (X,R) .

Proof. Suppose that Eα are prime filters on (X,R) , for all α ∈ D∗
0. From Proposition

6.3, E is a PFF on (X,R). It remains to show the primality of E, i.e., for all x, y ∈ X,
E(x t y) = E(x)g E(y).

Put E(x t y) = α, then x t y ∈ Eα. Since Eα is a prime filter, this implies that
x ∈ Eα or y ∈ Eα. Hence, E(x)g E(y) � α = E(x t y).

In contrast, since R(x, xt y) � 0D∗ and R(y, xt y) � 0D∗ these imply from (PFF1)
that E(x) � E(x t y) and E(y) � E(x t y). Hence, E(x)g E(y) � E(x t y). �

Remark 7.2. Unlike the fuzzy case, the converse implication in Proposition 7.1 is not
true.

Example 7.2. Let (X,R) be the lattice given as follows
R 0 a b c 1
0 1D∗ (0.20, 0.01, 0.70) (0.40, 0.20, 0.30) (0.50, 0.10, 0.30) 1D∗

a 0D∗ 1D∗ (0.40, 0.10, 0.50) (0.10, 0.00, 0.60) (0.70, 0.00, 0.20)
b 0D∗ 0D∗ 1D∗ 0D∗ (0.30, 0.00, 0.40)
c 0D∗ 0D∗ 0D∗ 1D∗ (0.50, 0.20, 0.10)
1 0D∗ 0D∗ 0D∗ 0D∗ 1D∗

.

The following table represented two picture fuzzy subsets: E1 and its support, and
E2 and its kernel

X E1 (x) E2 (x) S(E1) (x) ker(E2) (x)
0 0D∗ 0D∗ 0 0
a (0.10, 0.60, 0.30) 0D∗ 1 0
b (0.10, 0.40, 0.10) (0.10, 0.30, 0.20) 1 0
c (0.20, 0.10, 0.30) 1D∗ 1 1
1 (0.20, 0.60, 0.10) 1D∗ 1 1

.

It is easy to see that S (E1) and ker (E2) are crisp prime filters on (X,R), but E1
and E2 are not PFPFs on (X,R).

8. Conclusion and Future Work

After refining the (D∗,�) laws associated with� so that D∗ is a complete lattice, and
investigating the algebraic structure of D∗ (A study made in a paper that will appear
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in TWS), it is customary to study picture fuzzy lattices, picture fuzzy sub-lattice and
picture fuzzy filter in a crisp lattice by inspiring those of fuzzy and intuitionistic fuzzy
case in this paper. Also, we have studied prime filters and picture fuzzy prime filters
of a picture fuzzy lattice.

In future work, we plan to characterize principal picture fuzzy filters (resp. picture
fuzzy ideals) on a picture fuzzy lattice. Also, we intend to introduce the notion for
picture fuzzy homomorphism and picture fuzzy isomorphism and do some picture
fuzzy isomorphism theorems of picture fuzzy lattices. In particular, we characterize
some quotients of picture fuzzy lattice classes by their picture fuzzy ideals. Also,
we study t-picture fuzzy lattices (picture fuzzy lattices w.r.t. a triangular norm) and
picture fuzzy t-filters.
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