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ON THE ESTRADA INDEX OF POINT ATTACHING STRICT
k-QUASI TREE GRAPHS

MOHAMMAD A. IRANMANESH1 AND RAZIYEH NEJATI2

Abstract. Let G = (V,E) be a finite and simple graph with λ1, λ2, . . . , λn as its
eigenvalues. The Estrada index of G is EE(G) =

∑n
i=1 e

λi . For a positive integer k,
a connected graph G is called strict k-quasi tree if there exists a set U of vertices of
size k such that G \U is a tree and this is as small as possible with this property. In
this paper, we define point attaching strict k-quasi tree graphs and obtain the graph
with minimum Estrada index among point attaching strict k-quasi tree graphs with
k even cycles.

1. Introduction

Let G = (V (G), E(G)) be a finite and simple graph of order n, where by V (G) and
E(G) we denote the set of vertices and edges, respectively. Let A(G) be the adjacency
matrix of G, and λ1, λ2, . . . , λn be its eigenvalues. The Estrada index of G is defined
as

EE(G) = ∑n
i=1 e

λi .
which was first proposed by Estrada in 2000 [6]. We refer reader to [7, 8, 15, 16]
for multiple applications of Estrada index in various fields, for example in network
science and biochemistry. The results for trees can be found in [3,10,13,19]. Gutman
approximated the Estrada index of cycles and paths in [9]. The unicyclic graphs
with maximum and minimum Estrada index have been determined in [5]. Recently,
the Esrada index of the cactus graphs in which every block is a triangle, has been
characterized in [11,12].

A connected graph G is called quasi tree if there exists v0 ∈ V (G) such that G\{v0}
is a tree. Lu in [14] has determined the Randić index of quasi trees. The Harary index
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of quasi tree graphs and generalized quasi tree graphs are presented in [18]. A strict
k-quasi tree graph G is a connected graph which is not a tree, and k is the smallest
positive integer such that there exists a k-element subset U of vertices for which G\U
is a tree.

Let G be a connected graph constructed from pairwise disjoint connected graphs
G1, G2, . . . , Gd as follows: select a vertex of G1,, a vertex of G2,, and identify these
two vertices. Then continue in this manner inductively. More precisely, suppose that
we have already used G1, G2, . . . , Gi in the construction, where 2 ≤ i ≤ d− 1. Then
select a vertex in the already constructed graph (which may in particular be one of
the already selected vertices) and a vertex Gi+1; and identify these two vertices. Note
that the graph G constructed in this way has a tree-like structure, the Gi’s being
its building stones. We will briefly say that G is obtained by point attaching from
G1, G2, . . . , Gd and that Gi’s are the primary subgraphs of G [4].

A graph G is said to be point attaching strict k-quasi, if it is constructed from
primary subgraphs G1, G2, . . . , Gd where each primary subgraph Gi is a strict ki-quasi
tree graph for each 1 ≤ i ≤ d, and k = ∑d

i=1 ki.
In this paper we study the Estrada index of point attaching strict k-quasi graphs.

2. Preliminaries

For ` ∈ N ∪ {0}, let S`(G) = ∑n
i=1 λ

`
i be the `th spectral moment of G, which is

equal to the number of closed walks of length ` in G [2]. For every graph G, we have
S0(G) = n, S1(G) = C, S2(G) = 2m,S3(G) = 6D, and S4(G) = 2∑n

i=1 d
2
i − 2m+ 8Q,

where n,C,m,D,Q denote the number of vertices, the number of loops, the number
of edges, the number of triangles and the number of quadrangles in G, respectively and
di = di(G) is the degree of vertex vi in G [2]. Bearing in mind the Taylor expansion
of ex, we have the following equation for the Estrada index of graph G,

(2.1) EE(G) =
n∑
i=1

eλi =
n∑
i=1

∞∑
`=0

λ`i
`! =

∞∑
`=0

S`(G)
`! .

It follows from Equation 2.1 that EE(G) is a strictly monotonously increasing function
of S`(G). Let G1 and G2 be two graphs. If S`(G1) ≤ S`(G2) holds for all positive
integer `, then EE(G1) ≤ EE(G2). Moreover, if the strict inequality S`(G1) < S`(G2)
holds for at least one value `0 ≥ 0, then EE(G1) < EE(G2).

Recall that a sequence a0, a1, . . . , an of numbers is said to be unimodal if for some
0 ≤ i ≤ n we have a0 ≤ a1 ≤ · · · ≤ ai ≥ ai+1 ≥ · · · ≥ an, and this sequence is called
symmetric if ai = an−i for 0 ≤ i ≤ n [17]. Thus a symmetric unimodal sequence
a0, a1, . . . , an has its maximum at the middle term (n even) or middle two terms (n
odd). Let A be the adjacency matrix of the graph G. It is well-known that the
entry(A`)i,j represents the number of walks of length ` from vertex vi to vertex vj [1].
Obviously, (A`)i,j = (A`)j,i for undirected graphs.

Throughout this paper, Γ(k) is a point attaching strict k-quasi tree graph with k
even cycles (see Figure 1) and M`(G) denotes the set of closed walks of length ` in G,
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and we show that among all point attaching strict k-quasi tree graphs with k even
cycles, Γ(k) is the graph with minimum Estrada index.

3. The Number of Closed Walks of Length ` in Γ(k)

Let M`(k(c− 1), i) denote the set of closed walks of length ` starting at the vertex
vi in Γ(k) with k even cycles of length c and |M`(k(c− 1), i)| = S`(k(c− 1), i) denote
the number of closed walks of length ` starting at the vertex vi in Γ(k) (see Figure 1).
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Figure 1. The graph Γ(k).

Lemma 3.1. The map ϕ : V (Γ(k)) −→ V (Γ(k)), given by ϕ(vi) = vk(c−1)−i is an
automorphism.

Proof. One can easily see that ϕ is bijective. Let vertices vi and vj be adjacent. Then
by definition of ϕ, we have the following cases.

(i) ϕ(v0) = vk(c−1) and ϕ(vk(c−1)) = v0.
(ii) i = t(c − 1), 0 < t < k. In this case vj ∈ {vi−1, vi−2, vi+1, vi+2}. Hence,

k(c − 1) − i = k(c − 1) − t(c − 1) = (k − t)(c − 1). This implies that
ϕ(vi) = v(k−t)(c−1).

We will only prove the case vj = vi−1. A similar argument can be used
for other cases. If vj = vi−1, then k(c − 1) − j = k(c − 1) − t(c − 1) + 1 =
(k − t)(c− 1) + 1. Hence ϕ(vj) = v(k−t)(c−1)+1 which is adjacent to ϕ(vi).

(iii) i = t(c − 1) + s, 0 < t 6 k − 1, 1 6 s 6 c − 2. In this case vj ∈ {vi−2, vi+2}.
Hence, k(c− 1)− j = k(c− 1)− t(c− 1)− s = (k− t)(c− 1)− s. This implies
that ϕ(vi) = v(k−t)(c−1)−s.

If vj = vi−2, then k(c− 1)− t(c− 1)− s+ 2 = (k− t)(c− 1)− s+ 2. Hence,
ϕ(vj) = v(k−t)(c−1)−s+2 which is adjacent to ϕ(vi). The proof for case vj = vi+2
is similar. �

Corollary 3.1. Let A be the adjacency matrix of the point attaching strict k-quasi
tree graph Γ(k). Then (A`)i,j = (A`)k(c−1)−i,k(c−1)−j for 0 6 i, j 6 k(c− 1).

Proof. This is an immediate consequence of Lemma 3.1. �
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Lemma 3.2. If k > 2 and t are integers and 0 6 t 6 c− 2, then:

S`(k(c− 1), t) ≤ S`(k(c− 1), t+ (c− 1))

≤ · · · ≤ S`

(
k(c− 1), t+

([
k

2

]
− 1

)
(c− 1)

)

≤ S`

(
k(c− 1), t+

[
k

2

]
(c− 1)

)
,

where ` ≥ c− 1. If ` ≥ [k2 ], then strict inequalities hold.

Proof. We prove every diagonal and the main diagonal of the matrix A` are unimodal.
By Lemma 3.1, (A`)t,j = (A`)k(c−1)−t,k(c−1)−j. So we only need to show that the
diagonals paralleling to the main diagonal increase for t+ j 6 k(c− 1).

By induction on integer `, we will show that for every j 6 k(c− 1) where t + j +
2c− 2 6 k(c− 1), we have:

(A`)t+c−1,j+c−1 > (A`)t,j.
By the definition of Γ(k) we have At,j = 1 if and only if At+c−1,j+c−1 = 1. Therefore,
the result is hold for ` = 1. Assume that the result holds for integer `. There are four
cases as follows.
Case 1: t, j ≡ 0 (mod (c− 1)).

Since the set of walks of length ` + 1 from vt to vj is in bijective correspondence
with the set of walks of length ` from vt to vh adjacent to vj, so

(A`+1)t+c−1,j+c−1 =(A`)t+c−1,j+c−2 + (A`)t+c−1,j+c−3 + (A`)t+c−1,j+c

+ (A`)t+c−1,j+c+1,

(A`+1)t,j =(A`)t,j−1 + (A`)t,j−2 + (A`)t,j+1 + (A`)t,j+2.

By the induction hypothesis, we have the following results:
(A`)t+c−1,j+c−2 ≥(A`)t,j−1,

(A`)t+c−1,j+c ≥(A`)t,j+1, for t+ j + 2 ≤ k(c− 1),
(A`)t+c−1,j+c−3 ≥(A`)t,j−2,

(A`)t+c−1,j+c+1 ≥(A`)t,j+2, for t+ j + 2 ≤ k(c− 1).

Hence, we have (A`+1)t+c−1,j+c−1 ≥ (A`+1)t,j. In addition we will show that for
` ≥ [k(c− 1)/2] the strict inequalities hold.

For the strict inequality, let 1 ≤ r ≤ k be a fixed number, we consider two rows
r(c− 1) and (r − 1)(c− 1), j ≤ k(c− 1). Then

(A`+1)r(c−1),c−1 = (A`)r(c−1),c−2 + (A`)r(c−1),c−3 + (A`)r(c−1),c + (A`)r(c−1),c+1

and
(A`+1)(r−1)(c−1),0 = (A`)(r−1)(c−1),1 + (A`)(r−1)(c−1),2.
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Note that, since Γ(k) is symmetric we have,
(A`)r(c−1),c−2 =(A`)r(c−1),c−3 > 0,

(A`)r(c−1),c =(A`)r(c−1),c+1 > 0,
(A`)r(c−1),1 =(A`)r(c−1),2 > 0,

for ` ≥ r(c− 1). So,
(A`+1)r(c−1),c−1 = 2(A`)r(c−1),c−2 + 2(A`)r(c−1),c+1

and
(A`+1)(r−1)(c−1),0 = 2(A`)(r−1)(c−1),2.

By the induction hypothesis, the following inequality holds:
(A`)r(c−1),c+1 ≥ (A`)(r−1)(c−1),2.

Thus, we have the strict inequality (A`+1)r(c−1),c−1 > (A`+1)(r−1)(c−1),0. This causes
the chain of strict inequalities

(A`+2)r(c−1),2(c−1) > (A`+2)(r−1)(c−1),c−1,

(A`+3)r(c−1),3(c−1) > (A`+3)(r−1)(c−1),2(c−1).

Finally, we have

(A`+(k−r+1))r(c−1),(k−r+1)(c−1) > (A`+(k−r+1))(r−1)(c−1),(k−r)(c−1).

Case 2: t ≡ 0 (mod (c − 1)) and j 6≡ 0 (mod (c − 1)). Let j ≡ 1 (mod (c − 1)).
Then

(A`+1)t+c−1,j+c−1 =(A`)t+c−1,j+c−2 + (A`)t+c−1,j+c+1,

(A`+1)t,j =(A`)t,j−1 + (A`)t,j+2.

Similarly, by the induction hypothesis, we have
(A`)t+c−1,j+c−2 ≥ (A`)t,j−1,

(A`)t+c−1,j+c+1 ≥ (A`)t,j+2, for t+ j + 2 ≤ k(c− 1).

Hence, we have (A`+1)t+c−1,j+c−1 ≥ (A`+1)t,j.
In addition for the strict inequality, let 1 ≤ r ≤ k be a fixed number, we consider

two rows r(c− 1) and (r − 1)(c− 1). Then
(A`+1)r(c−1),c =(A`)r(c−1),c−1 + (A`)r(c−1),c+2 = (A`−1)r(c−1),c−2

+ (A`−1)r(c−1),c−3 + (A`−1)r(c−1),c + (A`−1)r(c−1),c+1 + (A`)r(c−1),c+2

and
(A`+1)(r−1)(c−1),1 =(A`)(r−1)(c−1),0 + (A`)(r−1)(c−1),3

=(A`−1)(r−1)(c−1),1 + (A`−1)(r−1)(c−1),2 + (A`)(r−1)(c−1),3.
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Note that, since Γ(k) is symmetric we have,
(A`−1)r(c−1),c−2 =(A`−1)r(c−1),c−3 > 0,

(A`−1)r(c−1),c =(A`−1)r(c−1),c+1 > 0,
(A`−1)r(c−1),1 =(A`−1)r(c−1),2 > 0,

for ` ≥ r(c− 1).
So,

(A`+1)r(c−1),c = 2(A`−1)r(c−1),c−2 + 2(A`−1)r(c−1),c + (A`)r(c−1),c+2

and
(A`+1)(r−1)(c−1),1 = 2(A`−1)(r−1)(c−1),1 + (A`)(r−1)(c−1),3.

By the induction hypothesis, the following inequalities hold:
(A`−1)r(c−1),c ≥ (A`−1)(r−1)(c−1),1, (A`)r(c−1),c+2 ≥ (A`)(r−1)(c−1),3.

Thus, we have the strict inequality (A`+1)r(c−1),c > (A`+1)(r−1)(c−1),1. This causes
the chain of strict inequalities

(A`+2)r(c−1),2(c−1)+1 > (A`+2)(r−1)(c−1),c,

(A`+3)r(c−1),3(c−1)+1 > (A`+3)(r−1)(c−1),2(c−1)+1.

Finally, we have
(A`+k−r)r(c−1),(k−r+1)(c−1)+1 > (A`+k−r)(r−1)(c−1),(k−r)(c−1)+1.

A similar argument can be used for the cases j ≡ {2, 3, . . . , c− 2} (mod (c− 1)) .
Case 3: t 6≡ 0 (mod (c − 1)) and j ≡ 0 (mod (c − 1)). Let t ≡ 1 (mod (c − 1)).
Then
(A`+1)t+c−1,j+c−1 =(A`)t+c−1,j+c−2 + (A`)t+c−1,j+c−3 + (A`)t+c−1,j+c + (A`)t+c−1,j+c+1,

(A`+1)t,j =(A`)t,j−1 + (A`)t,j−2 + (A`)t,j+1 + (A`)t,j+2.

By the induction hypothesis, we have:
(A`)t+c−1,j+c−2 ≥(A`)t,j−1,

(A`)t+c−1,j+c ≥(A`)t,j+1, for t+ j + 1 6 k(c− 1),
(A`)t+c−1,j+c−3 ≥(A`)t,j−2,

(A`)t+c−1,j+c+1 ≥(A`)t,j+2, for t+ j + 2 6 k(c− 1).
Hence, we have (A`+1)t+c−1,j+c−1 ≥ (A`+1)t,j.

For the strict inequality, let 1 ≤ r ≤ k be a fixed number, for two rows r(c− 1) + 1
and (r − 1)(c− 1) + 1 we have
(A`+1)r(c−1)+1,c−1 = (A`)r(c−1)+1,c−2 + (A`)r(c−1)+1,c−3 + (A`)r(c−1)+1,c + (A`)r(c−1)+1,c+1

and
(A`+1)(r−1)(c−1)+1,0 = (A`)(r−1)(c−1)+1,1 + (A`)(r−1)(c−1)+1,2.
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Note that since Γ(k) is symmetric we have
(A`)r(c−1)+1,c−2 =(A`)r(c−1)+1,c−3 > 0,

(A`)r(c−1)+1,c =(A`)r(c−1)+1,c+1 > 0,
(A`)r(c−1)+1,1 =(A`)r(c−1)+1,2 > 0,

for ` ≥ r(c− 1).
So,

(A`+1)r(c−1)+1,c−1 = 2(A`)r(c−1)+1,c−2 + 2(A`)r(c−1)+1,c+1

and
(A`+1)(r−1)(c−1)+1,0 = 2(A`)(r−1)(c−1)+1,2.

By the induction hypothesis, the following inequality holds:
(A`)r(c−1)+1,c+1 ≥ (A`)(r−1)(c−1)+1,2.

Thus, we have the strict inequality (A`+1)r(c−1)+1,c−1 > (A`+1)(r−1)(c−1)+1,0. This
causes the chain of strict inequalities

(A`+2)r(c−1)+1,2(c−1) > (A`+2)(r−1)(c−1)+1,c−1,

(A`+3)r(c−1)+1,3(c−1) > (A`+3)(r−1)(c−1)+1,2(c−1).

Finally, we have:
(A`+(k−r+1))r(c−1)+1,(k−r+1)(c−1)−1 > (A`+(k−r+1))(r−1)(c−1)+1,(k−r)(c−1)−1.

A similar argument can be used for the cases t ≡ {2, 3, . . . , c− 2} (mod (c− 1)).
Case 4: t 6≡ 0 (mod (c− 1)) and j ≡ 1 (mod (c− 1)). Let t ≡ 1 (mod (c− 1)), we
have

(A`+1)t+c−1,j+c−1 =(A`)t+c−1,j+c−2 + (A`)t+c−1,j+c+1,

(A`+1)t,j =(A`)t,j−1 + (A`)t,j+2.

By the induction hypothesis, the following inequality holds:
(A`)t+c−1,j+c−2 ≥ (A`)t,j−1, (A`)t+c−1,j+c+1 ≥ (A`)t,j+2.

Hence, we have (A`)t+c−1,j+c−1 ≥ (A`)t,j. For the strict inequality, let 1 ≤ r ≤ k be
a fixed number, we consider two rows r(c− 1) + 1 and (r − 1)(c− 1) + 1. Then

(A`+1)r(c−1)+1,c =(A`)r(c−1)+1,c−1 + (A`)r(c−1)+1,c+2

=(A`−1)r(c−1)+1,c−2 + (A`−1)r(c−1)+1,c−3 + (A`−1)r(c−1)+1,c

+ (A`−1)r(c−1)+1,c+1 + (A`)r(c−1)+1,c+2

and
(A`+1)(r−1)(c−1)+1,1 =(A`)(r−1)(c−1)+1,0 + (A`)(r−1)(c−1)+1,3

=(A`−1)(r−1)(c−1)+1,1 + (A`−1)(r−1)(c−1)+1,2 + (A`)(r−1)(c−1)+1,3.
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Note that since Γ(k) is symmetric, (A`−1)r(c−1)+1,c−2 = (A`−1)r(c−1)+1,c−3 > 0,
(A`−1)r(c−1)+1,c = (A`−1)r(c−1)+1,c+1 > 0 and (A`−1)r(c−1)+1,1 = (A`−1)r(c−1)+1,2 > 0,
for ` ≥ r(c− 1). So,

(A`+1)r(c−1)+1,c = 2(A`−1)r(c−1)+1,c−2 + 2(A`−1)r(c−1)+1,c + (A`)r(c−1)+1,c+2

and

(A`+1)(r−1)(c−1)+1,1 = 2(A`−1)(r−1)(c−1)+1,1 + (A`)(r−1)(c−1)+1,3.

By the induction hypothesis, the following inequalities hold:

(A`−1)r(c−1)+1,c > (A`−1)(r−1)(c−1)+1,1, (A`)r(c−1)+1,c+2 > (A`)(r−1)(c−1)+1,3.

Thus, we have the strict inequality (A`+1)r(c−1)+1,c > (A`+1)(r−1)(c−1)+1,1. This causes
the chain of strict inequalities

(A`+2)r(c−1)+1,2(c−1)+1 > (A`+2)(r−1)(c−1)+1,c,

(A`+3)r(c−1)+1,3(c−1)+1 > (A`+3)(r−1)(c−1)+1,2(c−1)+1.

Finally,

(A`+k−r)r(c−1)+1,(k−r+1)(c−1)+1 > (A`+k−r)(r−1)(c−1)+1,(k−r)(c−1)+1.

A similar argument can be used for t ≡ r ∈ {2, 3, . . . , c− 2} (mod (c− 1)). �

The number of closed walks of length ` starting at the vertex vt is equal to the
entry (t, t) in matrix A`. Therefore,

S`(k(c− 1), t+ (c− 1)) = (A`)t+(c−1),t+(c−1).

By the induction hypothesis, we conclude that S`(k(c − 1), t + (r − 1)(c − 1)) ≤
S`(k(c − 1), t + r(c − 1)) for all 0 ≤ t ≤ c − 1 and r ≤ [k2 ](c − 1). Hence the strict
inequality holds when ` ≥ [k2 ].

4. The Minimum Estrada Index of Γ(k)

Let G′ be a point attaching strict k1-quasi tree graph of even length c and δ ∈ V (G′).
For k − k1 = k2, let G′(bk2

2 c, d
k2
2 e) be the graph obtained from G′ by attaching two

graphs Γ(bk2
2 c) and Γ(dk2

2 e) at δ.
Let N`(G′(bk2

2 c(c − 1), dk2
2 e(c − 1); δ) (respectively, N`(G′(bk2

2 c(c − 1) + c − 1,
dk2

2 e(c−1)−c+1); δ) be the set of (δ, δ)-walks of length ` in G′(bk2
2 c(c−1), dk2

2 e(c−1))
(respectively, G′(bk2

2 c(c − 1) + c − 1, dk2
2 e(c − 1) − c + 1) starting and ending at the

edges or only one edge in G′ and let N ′`(G′(bk2
2 c(c− 1), dk2

2 e(c− 1)); δ) (respectively,
N ′`(G′(bk2

2 c(c−1)+c−1, dk2
2 e(c−1)−c+1); δ)) be the set of (δ, δ)-walks of length ` in

G′(bk2
2 c(c−1), dk2

2 e(c−1)) (respectively, G′(bk2
2 c(c−1)+c−1, dk2

2 e(c−1)−c+1) start-
ing and ending at the edges or only one edge in union Γ(bk2

2 c)∪ Γ(dk2
2 e) (respectively,

Γ(bk2
2 c+ 1) ∪ Γ(dk2

2 e − 1)).



ON THE ESTRADA INDEX OF POINT ATTACHING STRICT k-QUASI TREE GRAPHS 173

In the following let G′(bk2
2 c(c−1), dk2

2 e(c−1)) := G(1) and let G′(bk2
2 c(c−1)+c−1,

dk2
2 e(c − 1) − c + 1) := G(2). By our definition, both graphs Γ(bk2

2 c) ∪ Γ(dk2
2 e) and

Γ(bk2
2 c+ 1) ∪ Γ(dk2

2 e − 1) are isomorphic to Γ(k2), so they are denoted by Γ(k2).
Lemma 4.1. If bk2

2 c ≥ 1, then for positive integer `,
(i) |N`(G′(2); δ)| ≤ |N`(G′(1)); δ)|;
(ii) |N ′`(G′(2); δ)| ≤ |N ′`(G′(1)); δ)|.

Proof. Let ω ∈ N`(G′(2); δ), we may decompose ω into maximal sections in union
Γ(bk2

2 c+ 1) ∪ Γ(dk2
2 e − 1) or in G′. Each of them is one of the following types.

(Type 1): a (δ, δ)- walk in union Γ(bk2
2 c+ 1) ∪ Γ(dk2

2 e − 1).
(Type 2): a walk in G′(2) with all edges in G′.
Similarly, we may decompose any ω ∈ N`(G′(1); δ) into maximal sections in G′ or

in union Γ(bk2
2 c) ∪ Γ(dk2

2 e). Each of them is one of the following types.
(Type 3): a (δ, δ)- walk in union Γ(bk2

2 c) ∪ Γ(dk2
2 e).

(Type 4): a walk in G′(1) with all edges in G′.
Next, for any ω ∈ N`(G′(2); δ), we can replace the even indices by the odd indices

that are in front of each other see Figure 2. Hence, from now on, ω is a (δ, δ)- walk with

v0

v0

v1

v2

v3

v4

G′

δ

δv1 v3

v4v2

G′

I

vc−5 vc−3

vc−1

vc−4 vc−2

va(c−1)−1

va(c−1)−4

va(c−1)−2

va(c−1)

va(c−1)+1

va(c−1)+2

v(a+1)(c−1)

v(a+1)(c−1)−1

v(a+1)(c−1)−2

vk2(c−1)−1

vk2(c−1)−2

vk2(c−1)

vk2(c−1)

vk2(c−1)−2

vk2(c−1)−1

v(a+1)(c−1)−1

v(a+1)(c−1)

v(a+1)(c−1)−2

va(c−1)+1

va(c−1)

vc−5 vc−3

vc−1

vc−2vc−4
va(c−1)+2

v(a−1)(c−1)

v(a−1)(c−1)

va(c−1)−4

va(c−1)−2

va(c−1)−3

va(c−1)−3

va(c−1)−1

Figure 2. Transformation I.
only odd or even indices. So ω is a (δ, δ)- walk with odd indices. By Lemma 3.2 there
is an injection mapping ξ1

s′ that is a (δ, δ)- walk of length s′ in Γ(bk2
2 c+1)∪Γ(dk2

2 e−1)
into a (δ, δ)- walk of length s′ in Γ(bk2

2 c) ∪ Γ(dk2
2 e).

Let ω′ = ω1ω2ω3 · · · ∈ N`(Γ(k2)), where ωi is a walk of length s′i of type (1) or (2)
for i ≥ 1. Let ξ?(ω′) = ξ?(ω1)ξ?(ω2) · · · , where ξ?(ωi) = ξ1

s′
i
(ωi) and ξ?(ωi) = ωi if ωi
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is of type 2 so ξ?(ωi) for i ≥ 1 is of type 3 or 4 and thus ξ?(ω′) ∈ N`(G′(1)). Thus
|N`(G′(2); δ)| 6 |N`(G′(1); δ)|. This prove (i). The proof for (ii) is similar. �

Theorem 4.1. If bk2
2 c ≥ 1, then S`(G′(2)) ≤ S`(G′(1)). For ` ≥ [k2

2 ](c−1), the strict
inequality holds.

Proof. Let B1 and B2 be the sets of closed walks of length ` in G′(1) and G′(2)
respectively, containing some edges in G′. Then S`(G′(2)) = S`(Γ(bk2

2 c+1)∪Γ(dk2
2 e−

1))+ |B2| and S`(G′(1)) = S`(Γ(bk2
2 )c∪Γ(dk2

2 e))+ |B1|. Since Γ(bk2
2 c+1)∪Γ(dk2

2 e−1)
and Γ(bk2

2 c)∪Γ(dk2
2 e) are isomorphic to Γ(k2), we only need to prove that |B2| 6 |B1|

for all ` > 0. Let B21 and B22 be two subsets of B2 for which every closed walk
starts at a vertex in V (Γ(bk2

2 c+ 1)∪Γ(dk2
2 e− 1)) and V (G′)−{δ}, respectively. Then

|B2| = |B21| + |B22|. Let B11 and B12 be two subsets of B1 for which every closed
walk starts at a vertex in V (Γ(bk2

2 c) ∪ Γ(dk2
2 e)) and V (G′)− {δ}, respectively. Then

|B1| = |B11|+ |B12|.
We may decompose any ω ∈ B21 into three parts ω1ω2ω3, where ω1, ω3 are walks in

Γ(bk2
2 c+ 1)∪Γ(dk2

2 e− 1) and ω2 is the longest walk of ω in G′(2) starting and ending
at the edges or only one edge in G′. By the choice of ω2, we have that ω2 is a (δ, δ)-
walk. Let B21(ω, `) = {ω ∈ B21 : ω2 is a (δ, δ)- walk}. Thus |B21| = |B21(ω, `)|. Let
B11(ω, `) = {ω ∈ B11 : ω2 is a (δ, δ)-walk}. So |B11| = |B11(ω, `)|.

Let V (Γ(bk2
2 c+ 1) ∪ Γ(dk2

2 e − 1)) := V (2). Then

|B21(ω, `)| =
∑

`1+`2+`3=`
`1,`3≥0,`2≥2

∑
β∈V (2)

S`1

(
Γ
(⌊

k2

2

⌋
+ 1

)
∪ Γ

(⌈
k2

2

⌉
− 1

)
; β, δ

)

×|N`2(G′(2); δ)|S`3
(

Γ
(⌊

k2

2

⌋
+ 1

)
∪ Γ

(⌈
k2

2

⌉
− 1

)
; δ, β

)
=

∑
`1+`2+`3=`
`1,`3>0,`2>2

|N`2(G′(2); δ)|

×
∑

β∈V (2)
S`1

(
Γ
(⌊

k2

2

⌋
+ 1

)
∪ Γ

(⌈
k2

2

⌉
− 1

)
; β, δ

)

×S`3

(
Γ
(⌊

k2

2

⌋
+ 1

)
∪ Γ

(⌈
k2

2

⌉
− 1

)
; δ, β

)

=
∑

`1+`2+`3=`
`1,`3≥0,`2≥2

|N`2(G′(2); δ)|.S`1+`3

(
Γ
(⌊

k2

2

⌋
+ 1

)
∪ Γ

(⌈
k2

2

⌉
− 1

)
; δ
)
.

Similarly,

|B21(ω, `)| =
∑

`1+`2+`3=`
`1,`3>0,`2>2

|N`2(G′(1); δ)|S`1+`3

(
Γ
(⌊

k2

2

⌋
+ 1

)
∪ Γ

(⌈
k2

2

⌉
− 1

)
; δ
)
.
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By Lemma 4.1, we have |N`2(G′(2); δ)| ≤ |N`2(G′(1); δ)| for all positive integers `2 and
by Lemma 3.2, we have St(Γ(bk2

2 c + 1) ∪ Γ(dk2
2 e − 1)); δ) ≤ St(Γ(bk2

2 c) ∪ Γ(dk2
2 e); δ)

for all positive integers t. Thus |B21(ω, `)| ≤ |B11(ω, `)|. Note that this inequality is
strict for some positive integer `0 = t0 + c− 1 where t0 ≥ k2

2 . Also |B21| ≤ |B11| for
all positive integers `, and it is strict for some positive integer `0.

By a similar argument as above, we can prove that |B22| ≤ |B12|. Thus |B2| ≤ |B1|
for all positive integers `, and it is strict for some positive integer `0. �

Lemma 4.2. For all integer ` > c, k ≥ 2, we have

S`(k(c− 1), 2) ≤ S`(k(c− 1), 4) ≤ · · · ≤ S`(k(c− 1), c/2− 2), S`(k(c− 1), c/2).

Proof. First, we show that every diagonal parallel to the main diagonal and the main di-
agonal are unimodal. Let H be the subgraph of Γ(k) with vertex set
{v0, v1, . . . , vc − 1}. By Lemma 3.1, we only need to show that the diagonals parallel
to the main diagonal increase for s + j ≤ c − 1. Let s be an even integer. For the
odd integer the proof is similar. Using induction on integer `, we will prove that
(A`)s+2,j+2 ≥ (A`)s,j for all 0 ≤ s, j ≤ c− 2 with s+ j ≤ c− 1.

Note that by the definition of Γ(k), two vertices vs and vj are adjacent if and only
if vs+2 and vj+2 are adjacent.

We have the following cases.
Case 1: j ≡ 0 (mod 2) and j 6= 0. Then

(A`+1)s+2,j+2 =(A`)s+2,j + (A`)s+2,j+4,

(A`+1)s,j =(A`)s,j−2 + (A`)s,j+2.

By the induction hypothesis, we have the following results:

(A`)s+2,j ≥(A`)s,j−2,

(A`)s+2,j+4 ≥(A`)s,j+2, for s+ j + 4 ≤ c− 1.

Hence, we have (A`)s+2,j+2 ≥ (A`)s,j. Since, there is a closed walk of length c starting
from v0 which is not including the edge vcvc+1, the inequality is strict for ` > c.
Case 2: j ≡ 1 (mod 2). The proof is similar to Case 1. �

The number of closed walks of length ` starting at the even vertex vs is equal to
the entry (s, s) in matrix A`,

S`(c− 1, s) = (A`)s,s.

By induction hypothesis, we can conclude that S`(c− 1, s) ≤ S`(c− 1, s+ 2) for every
0 < s < c− 1. Note that the strict inequality holds when ` ≥ c

2 .
Let G be a point attaching strict k1-quasi tree graph of even length c and α ∈ V (G)

and let Cc be the cycle H of Γ(k) with k2 cycles where k1 + k2 = k. We decompose
Cc into two paths denote by P c

2
and Q c

2
, having common vertices in initial and final.

Let G( c2 ,
c
2) be the graph obtained from G by attaching P c

2
and Q c

2
at α in G.
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G

II

G(1) G(2)

v2 v4 v2 v4

α α

v0

v1
G

v0

v1

v c
2

v c
2
+1

v c
2
−2

v c
2
−1

vc−1

vc−2

vc−3

vc−4

vc−5

vc−2vc−4

vc−3vc−5

vc−1

Figure 3. Transformation II.

Let M`(G( c2 ,
c
2);α) (respectively M`(G( c2 + 2, c2 − 2);α)) be the set of (α, α)-walks

of length ` in G( c2 ,
c
2) (respectively G( c2 + 2, c2 − 2)) starting and ending at the edges

or only one edge in G and let M ′
`(G( c2 ,

c
2);α) (respectively M ′

`(G( c2 + 2, c2 − 2);α)) be
the set of (α, α)-walks of length ` in G( c2 ,

c
2) (respectively G( c2 + 2, c2 − 2)), starting

and ending at the edges or only one edge in P c
2
∪Q c

2
(respectively P c

2 +1 ∪Q c
2−1). In

the following let G( c2 ,
c
2) := G(1) and G( c2 + 2, c2 − 2) := G(2). By definition P c

2
∪Q c

2
and P c

2 +1 ∪Q c
2−1 are isomorphic to C1, so we denoted them by C1.

Lemma 4.3. Let c be an even integer. If ` ≥ c
2 , then

(i) |M`(G(2);α)| ≤ |M`(G(1));α)|;
(ii) |M ′

`(G(2);α)| ≤ |M ′
`(G(1));α)|.

Proof. Let ω ∈ M`(G(2);α), we may decompose ω into maximal sections in union
P c

2 +1 ∪Q c
2−1 or in G. Each of them is one of the following types.

(1) a (α, α)- walk in union P c
2 +1 ∪Q c

2−1.
(2) a walk in G(2) with all edges in G.
Similarly, we may decompose any ω ∈M`(G(1);α) into maximal sections in union

P c
2
∪Q c

2
or in G. Each of these maximal sections has one of the following types.

(3) a (α, α)-walk in union P c
2
∪Q c

2
.

(4) a walk in G(1) with all edges in G.
Next, since Γ(k) is symmetric, for any ω ∈ M`(G(2);α), we can replace the even

indices with the odd indices that are in front of each other see Figure 3. Hence,
from now on, ω is a (α, α)- walk with only odd or even indices. So without loss of
generality ω is a (α, α)-walk with only odd indices. By definition, two unions P c

2
∪Q c

2
and P c

2 +1 ∪ Q c
2−1 are isomorphic to C1 and by Lemma 4.2 there exists an injection

mapping η1
` from a (α, α)-walk of length ` in P c

2 +1∪Q c
2−1 into a (α, α)- walk of length

` in P c
2
∪ Q c

2
. Let ω = ω1ω2ω3 · · · ∈ M`(P c

2 +1 ∪ Q c
2−1), where ωi is a walk of length

`i of type (1) or (2) for i ≥ 1. Let η?(ω) = η?(ω1)η?(ω2) . . . where η?(ωi) = η1
`i

(ωi)
and η?(ωi) = ωi if ωi is type (2) so η?(ωi) for i ≥ 1 is of type (3) or (4) and thus
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η?(ω) ∈M`(G(1)). Thus, |M`(G(2);α)| ≤ |M`(G(1);α)|. This prove (i). The proof of
(ii) is similar. �

Theorem 4.2. Let c be an even integer. If c
2 ≥ 3, then S`(G(2)) ≤ S`(G(1)). For

` > c
2 , the strict inequality holds.

Proof. Let A1 and A2 be two sets of closed walks of length ` in G(1) and G(2),
respectively, containing some edges in G. Then S`(G(2)) = S`(P c

2 +1 ∪ Q c
2−1) + |A2|

and S`(G(1)) = S`(P c
2
∪Q c

2
) + |A1|.

By our definition, P c
2
∪ Q c

2
and P c

2 +1 ∪ Q c
2−1 are isomorphic to C1, and we need

only to prove that |A2| ≤ |A1| for all ` ≥ 0.
Let A21 and A22 be two subsets of A2 for which every closed walk starts at a vertex

in V (P c
2 +1 ∪Q c

2−1) and in V (G)− {α}, respectively. Then |A2| = |A21|+ |A22|.
Let A11 and A12 be two subsets of A1 for which every closed walk starts at a vertex

in V (P c
2
∪Q c

2
) and in V (G)− {α}, respectively. Then |A1| = |A11|+ |A12|.

We may decompose any ω ∈ A21 into three sections ω1ω2ω3, where ω1, ω3 are
walks in P c

2 +1 ∪ Q c
2−1 and ω2 is the longest walk of ω in G(2) starting and ending

at the edges in G. By the choice of ω2, we have that ω2 is a (α, α)-walk. Let
A21(ω, `) = {ω ∈ A21 : ω2 is a (α, α)-walk}. So, we have |A21| = |A21(ω, `)|.

Let A11(ω, `) = {ω ∈ A11 : ω2 is a (α, α)-walk}. So, we have |A11| = |A11(ω, `)|.
Let V (P c

2 +1 ∪Q c
2−1) := V (1). Let t = |M`2(G(2);α)|. From this decomposition for

ω ∈ A21 and by the definition of A21(ω, `), we have

|A21(ω, `)| =
∑

`1+`2+`3=`
`1,`3>0,`2>2

∑
β∈V (1)

S`1(P c
2 +1 ∪Q c

2−1; β, α).t.S`3(P c
2 +1 ∪Q c

2−1;α, β)

=
∑

`1+`2+`3=`
`1,`3>0,`2>2

t.
∑

β∈V (1)
S`1(P c

2 +1 ∪Q c
2−1; β, α).S`3(P c

2 +1 ∪Q c
2−1;α, β)

=
∑

`1+`2+`3=`
`1,`3>0,`2>2

.t.S`1+`3(P c
2 +1 ∪Q c

2−1;α).

Similarly,
|A21(ω, `)| =

∑
`1+`2+`3=`
`1,`3>0,`2>2

|M`2(G(1);α)|.S`1+`3(P c
2
∪Q c

2
;α).

By Lemma 4.3, we have |M`2(G(2);α)| ≤ |M`2(G(1);α)| for all positive integers
`2 and by Lemma 4.2, we have St(P c

2 +1 ∪Q c
2−1;α) ≤ St(P c

2
∪Q c

2
;α) for all positive

integers t. Thus |A21(ω, `)| ≤ |A11(ω, `)|. Note that this inequality is strict for some
positive integer `0 = t0 +c−1 where t0 ≥ c

2 . Also |A21| ≤ |A11| for all positive integers
`, and it is strict for some positive integer `0.

By similar argument as above, we can prove that |A22| ≤ |A12|. Thus |A2| ≤ |A1|
for all positive integers `, and it is strict for some positive integer `0. �

Corollary 4.1. For graphs G(1) and G(2) we have EE(G(1)) > EE(G(2)).
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Proof. From Theorem 4.2, we have

EE(G(2)) =
∑
`≥0

S`(G(2))
(`)! <

∑
`≥0

S`(G(1))
(`)! = EE(G(1)). �

The transformation from G(1) to G(2), depicted in Figure 3, is called transformation
slowromancapi@ of G(1).
Corollary 4.2. For two graphs G′(1) and G′(2), we have EE(G′(1)) > EE(G′(2)).
Proof. By Theorem 4.1, we have

EE(G′(2)) =
∑
`≥0

S`(G′(2))
(`)! <

∑
`≥0

S`(G′(1))
(`)! = EE(G′(1)). �

The transformation from G′(1) to G′(2), depicted in Figure 2, is called transfor-
mation slowromancapi@ of G′(1). Transformation slowromancapiii@ is similar to
transformation slowromancapii@ which obtained by attaching α ∈ G at v0. There is a
closed walks inMc((c−1), 0) which is not including the edge vcvc+1. So there is a closed
walk in Mc((c− 1), 1) not in Mc((c− 1), 0). Hence, transformation slowromancapiii@
strictly decreases the Estrada index for ` ≥ c.

Let G be a point attaching strict k-quasi tree graph with k even cycles of length c,
obtained by attaching the subgraphs G1, G2, . . . , G∆

2
at u with the maximum degree ∆.

By using transformations slowromancapi@, slowromancapii@ and slowromancapiii@,
Gi s, (1 ≤ i ≤ ∆

2 ) can be changed into the graphs Γi s. These transformations change
G into G∗ which is obtained by attaching Γi s at u. Each application of transformation
strictly decreases its Estrada index. So we have EE(G∗) < EE(G). Finally repeatedly
applying transformation I, G∗ can be changed into the graph Γ(k) that is obtained
from ⋃∆

2
i=1 Γ(ki). So we have the following result.

Theorem 4.3. Let G be a point attaching strict k-quasi tree graph with k even cycles.
Then EE(Γ(k)) ≤ EE(G).
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