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ON THE ESTRADA INDEX OF POINT ATTACHING STRICT
k-QUASTI TREE GRAPHS

MOHAMMAD A. IRANMANESH! AND RAZIYEH NEJATI?

ABSTRACT. Let G = (V, E) be a finite and simple graph with A1, Ao, ..., A, as its

eigenvalues. The Estrada index of G is EE(G) = Y., e*i. For a positive integer k,

a connected graph G is called strict k-quasi tree if there exists a set U of vertices of
size k such that G\ U is a tree and this is as small as possible with this property. In
this paper, we define point attaching strict k-quasi tree graphs and obtain the graph
with minimum Estrada index among point attaching strict k-quasi tree graphs with
k even cycles.

1. INTRODUCTION

Let G = (V(G), E(G)) be a finite and simple graph of order n, where by V(G) and
E(G) we denote the set of vertices and edges, respectively. Let A(G) be the adjacency
matrix of G, and \j, \s, ..., A, be its eigenvalues. The Estrada index of G is defined
as

FE(G) =", ¢eM.

which was first proposed by Estrada in 2000 [6]. We refer reader to [7,8, 15, 16]
for multiple applications of Estrada index in various fields, for example in network
science and biochemistry. The results for trees can be found in [3,10,13,19]. Gutman
approximated the Estrada index of cycles and paths in [9]. The unicyclic graphs
with maximum and minimum Estrada index have been determined in [5]. Recently,
the Esrada index of the cactus graphs in which every block is a triangle, has been
characterized in [11,12].

A connected graph G is called quasi tree if there exists vy € V(G) such that G\ {vo}
is a tree. Lu in [14] has determined the Randié¢ index of quasi trees. The Harary index

Key words and phrases. Estrada Index, quasi tree graph, point attaching Strict k-quasi tree graph
2010 Mathematics Subject Classification. Primary: 05C35. Secondary: 05C50.

Received: February 20, 2018.

Accepted: March 14, 2018.

165



166 M. A. IRANMANESH AND R. NEJATI

of quasi tree graphs and generalized quasi tree graphs are presented in [18]. A strict
k-quasi tree graph G is a connected graph which is not a tree, and k is the smallest
positive integer such that there exists a k-element subset U of vertices for which G'\ U
is a tree.

Let G be a connected graph constructed from pairwise disjoint connected graphs
G, G, ..., Gy as follows: select a vertex of G1,, a vertex of (G5,, and identify these
two vertices. Then continue in this manner inductively. More precisely, suppose that
we have already used G1, G, ..., G; in the construction, where 2 < i < d — 1. Then
select a vertex in the already constructed graph (which may in particular be one of
the already selected vertices) and a vertex G;,1; and identify these two vertices. Note
that the graph G constructed in this way has a tree-like structure, the G;’s being
its building stones. We will briefly say that G is obtained by point attaching from
G1,Gs, ..., Gq and that G;’s are the primary subgraphs of G [4].

A graph G is said to be point attaching strict k-quasi, if it is constructed from
primary subgraphs G, G, ..., G4 where each primary subgraph G; is a strict k;-quasi
tree graph for each 1 <i < d, and k = X% | k;.

In this paper we study the Estrada index of point attaching strict k-quasi graphs.

2. PRELIMINARIES

For £ € NU {0}, let So(G) = ", A\ be the £ spectral moment of G, which is
equal to the number of closed walks of length ¢ in G [2]. For every graph G, we have
So(G) =n, S1(G) = C, S3(G) = 2m, S3(G) = 6D, and S,(G) =23, d? — 2m + 8Q,
where n, C, m, D, Q denote the number of vertices, the number of loops, the number
of edges, the number of triangles and the number of quadrangles in GG, respectively and
d; = d;(G) is the degree of vertex v; in G [2]. Bearing in mind the Taylor expansion
of e*, we have the following equation for the Estrada index of graph G,

n . n 0o )\f 00 S G
(2.1) EB(G) =3 e" =33 5 =3 fé, )
i=1 i=1¢=0 ~ £=0 '

It follows from Equation 2.1 that FE(G) is a strictly monotonously increasing function
of S¢(G). Let G; and Gs be two graphs. If S,(G1) < S¢(G2) holds for all positive
integer ¢, then FE(G,) < EE(Gy). Moreover, if the strict inequality Sy(G1) < S¢(Gs)
holds for at least one value ¢y, > 0, then FE(G,) < EE(G>).

Recall that a sequence aq, aq, ..., a, of numbers is said to be unimodal if for some
0<i<nwehaveay<a; <---<a; > a1 > -+ > a,, and this sequence is called
symmetric if a; = a,—; for 0 < i < n [17]. Thus a symmetric unimodal sequence
ap, ay, ..., a, has its maximum at the middle term (n even) or middle two terms (n
odd). Let A be the adjacency matrix of the graph G. It is well-known that the
entry(A%); ; represents the number of walks of length ¢ from vertex v; to vertex v; [1].
Obviously, (A%);; = (A*);, for undirected graphs.

Throughout this paper, I'(k) is a point attaching strict k-quasi tree graph with k
even cycles (see Figure 1) and M,(G) denotes the set of closed walks of length ¢ in G,
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and we show that among all point attaching strict k-quasi tree graphs with k even
cycles, I'(k) is the graph with minimum Estrada index.

3. THE NUMBER OF CLOSED WALKS OF LENGTH /¢ IN I'(k)

Let My(k(c —1),4) denote the set of closed walks of length ¢ starting at the vertex
v; in I'(k) with & even cycles of length ¢ and |My(k(c —1),i)| = S¢(k(c —1),7) denote
the number of closed walks of length ¢ starting at the vertex v; in I'(k) (see Figure 1).

U1 U3 VUe—5 UVe—3 Ve Ucq2 U2(c=1)-3 V2(c—1)-1
Vo
Ve—1 V2(c—1)
V2 vy Ueed Vo2 Vel Ver3  Vo(e—1)-4 V2(c—1)-2 Y(k=1)(c=1)+2

FIGURE 1. The graph I'(k).

Lemma 3.1. The map ¢ : V(I'(k)) — V(I'(k)), given by o(v;) = Uge—1)—i @5 an
automorphism.

Proof. One can easily see that ¢ is bijective. Let vertices v; and v; be adjacent. Then
by definition of ¢, we have the following cases.

(i) ¢(vo) = Vi(e—1) and @(Vi(e—1)) = Vo.

(i) i = t(c—1), 0 < t < k. In this case v; € {vi_1,vi—2,Vit1,viy2}. Hence,
k(c—1) —i = k(c—1) —t(c—1) = (k —t)(c —1). This implies that
©(Vi) = V(k—t)(c—1)-

We will only prove the case v; = v;—;. A similar argument can be used
for other cases. If v; = v;_y, then k(c —1) —j =k(c—1) —t(c—1)+1 =
(k —t)(c — 1) + 1. Hence ¢(v;) = V(a—t)c—1)+1 Which is adjacent to ¢(v;).

(ili) i =tlc—1)+s,0<t<k—1,1<s<c—2 In this case v; € {v;_9,vis2}.
Hence, k(c—1)—j=k(c—1)—t(c—1)—s = (k—t)(c—1) —s. This implies
that QO(UZ-) = U(k—t)(c—l)—s-

If v; =v;_o, then k(c—1) —t(c—1)—s+2=(k—1t)(c—1) — s+ 2. Hence,
©(v5) = V(k—t)(c—1)—s+2 Which is adjacent to ¢(v;). The proof for case v; = vijo
is similar. U

Corollary 3.1. Let A be the adjacency matrix of the point attaching strict k-quasi
tree graph T'(k). Then (A%);; = (A k(e—1)—ik(e—1)—j for 0 <i,j < k(c—1).

Proof. This is an immediate consequence of Lemma 3.1. O
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Lemma 3.2. Ifk > 2 and t are integers and 0 < t < ¢ — 2, then:
Se(k(c—1),t) < Sp(k(c—1),t+ (c—1))

<. <8 (k:(c—l),t%—qﬂ —1) (c—1)>

k
<5 (k’(c— 1),t+ l2] (c— 1)) ,
where £ > c—1. If { > [g], then strict inequalities hold.

Proof. We prove every diagonal and the main diagonal of the matrix A¢ are unimodal.
By Lemma 3.1, (A%):; = (A)ke—1)—tk(e-1)—j- S0 we only need to show that the
diagonals paralleling to the main diagonal increase for t 4+ j < k(c — 1).

By induction on integer ¢, we will show that for every j < k(¢ — 1) where t + j +
2¢ —2 < k(¢ — 1), we have:

(Ag)t-f-c—l,j-‘rc—l = (Ae)m*

By the definition of I'(k) we have A, ; = 1 if and only if A; .1 j1.—1 = 1. Therefore,
the result is hold for £ = 1. Assume that the result holds for integer ¢. There are four
cases as follows.
Case 1: t,7 =0 (mod (¢ —1)).

Since the set of walks of length ¢ + 1 from v; to v; is in bijective correspondence
with the set of walks of length ¢ from v; to v, adjacent to v;, so

(A€+1)t+cfl,j+cfl :(Ag)t+cfl,j+cf2 + (Ae)t+c71,j+c73 + (AZ)tJrC*Lj‘FC
+ (A" tremtjrests
(A5 =(A) g1+ (A g0 + (A)rg1 + (Ao,
By the induction hypothesis, we have the following results:

(A 4ot je—2 = (A% o1,
(AY e 1jre (At jy1, fort+5+2<k(c—1),

(A iemtjre—s =(A)rj-2,

(Aot jrers >(Aijeo, fort+j+2 < k(c—1).

Hence, we have (A“™); e 111 > (A1), In addition we will show that for
¢ > [k(c — 1)/2] the strict inequalities hold.

For the strict inequality, let 1 < r < k be a fixed number, we consider two rows
r(c—=1)and (r—1)(c—1), 7 < k(c—1). Then

(AK—H)r(cfl),cfl == (Ae)r(cfl),072 + (Ag)r(cfl),cfi’; + (Ag)r(cfl),c + (Ae)r(cfl),chl

and

(A" 1ye—1)0 = (A -1y ey1 + (A 1) e-1)2-
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Note that, since I'(k) is symmetric we have,
(Ag)r(c—l),c—Q :(Az)r(c—l),c—?) > 07
(Ag)r(c—l),c :<A£)T‘(C—1),C+1 > 07
(Ae)r(c—l),l :<A£)T(C—1),2 > 07
for ¢ > r(c—1). So,
(A“_l)r(c—l),c—l - 2(A€>r(c—1),c—2 + Q(Ae)r(c—l)ﬁ—i-l
and
(A o110 = 2(A) oy e-1).2-
By the induction hypothesis, the following inequality holds:
(A e1yer1 > (A 1y(em1) -

Thus, we have the strict inequality (A“l),n(c,l),c,l > (A£+1)(r,1)(c,1)70. This causes
the chain of strict inequalities

(AZ—FQ)T(cfl),Q(cfl) > (A£+2)(r71)(c71),c717
(A)re-n 3 > (A7) ope-n2ee-)-
Finally, we have

(A£+(k—r+1)> Aé+(k—r+1))

r(e=1),(k—r+1)(c—1) > ( (r=1)(c—1),(k=r)(c—1)-

Case 2: t =0 (mod (¢c—1)) and j # 0 (mod (¢ —1)). Let j =1 (mod (¢ — 1)).
Then

(Aot jre1 =(Aipe1jre2 + (A )themtjtets
(A =(A) 1+ (A)jpa-
Similarly, by the induction hypothesis, we have
(A remt ez = (A% o1,
(Az>t+c_1,j+c+1 Z (Ae)t,j_i_g, for t+] + 2 S k(C - ].)

Hence, we have (A" 1 1e1 > (A1),
In addition for the strict inequality, let 1 < r < k be a fixed number, we consider
two rows r(c — 1) and (r — 1)(¢ — 1). Then

(Aé+1)r(c—1),c :(A€>r(c—1),c—1 + (A€>r(c—1)yc+2 = (Ae_l)r(c_l)ﬁ_g
+ (AT emne-3 + (AT riemne + (AT Dre1yem1 + (A rem1), et
and
(A" -1 =(A)-1e-n0 + (A)r-1e-123
(A" e + (A D eo1yen 2 + (A)e-1ye1)3-
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Note that, since I'(k) is symmetric we have,
(A etz =(A)em1)em3 > 0,
(A" -1y =AY e1y,e41 > 0,
(A =11 =(A"Dpe—ny2 > 0,

for £ > r(c—1).
So,

(AeJrl)r(c—l),c = 2<A£71)r(c—1),0—2 + 2(/4@71)7"(0—1),0 + (Ag)r(c—l),c+2
and
(A" —nye-11 = 2(A D o= + (A) = 1)e=1) 3-
By the induction hypothesis, the following inequalities hold:
(A" rem1ye = (A o=y (A remyer2 = (A o 1)(em1) -

Thus, we have the strict inequality (A“™),(c—1)c > (A“)—1)-1)1. This causes
the chain of strict inequalities

(A) cmny 2141 > (AT) o1y em1).e0
(A ey ae-141 > (AT 1y e-1)20c-1)41-
Finally, we have
(A7) e hmri D141 > (AT ) o0y o), () (=11
A similar argument can be used for the cases j = {2,3,...,¢— 2} (mod (¢—1)) .
Case 3: t Z 0 (mod (c—1)) and 7 = 0 (mod (¢ —1)). Let £t = 1 (mod (¢ — 1)).
Then
(A et jremt =(Aigemtjre—2 + (A tremtjre—s + (Ao 1g4e + (A trem1jrests
(AT =(A -1+ (A g2 + (A g1 + (A1 40-
By the induction hypothesis, we have:
(A et ez >(Arj0,
(A e 1jre 2(A) 1, for t+j+1 < k(e —1),
(A temtjre—s =(A)rjo2,
(Ae)t+c_1,j+c+1 Z(Ae)t,jw, fort+j+2<k(c—1).

Hence, we have (A1) o 1 j4e1 > (AT,
For the strict inequality, let 1 < r < k be a fixed number, for two rows r(c — 1) 4+ 1
and (r — 1)(c — 1) + 1 we have

(A€+1)r(c—1)+1,c—1 — (A€>r(c—1)+l,c—2 + (Ae>r(c—1)+l,c—3 + (Ae)r(c—l)—‘rl,c + (Aé)r(c—l)—‘rl,c—&—l

and

(A“—l)(rfl)(cfl)Jrl,O = (Ae)(rfl)(cfl)+1,1 + (AZ)(rfl)(cfl)+1,2~
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Note that since I'(k) is symmetric we have
(Ae)r(c—l)—i-l,c—Z :<A£)T(C—1)+LC—3 > 07
(A£>r(cfl)+1,c :(Ag)r(cfl)+1,c+l > 07
(Az)r(cfl)+1,1 :(Ae)r(cfl)+1,2 > 0,
for £ > r(c—1).
So,
(A“_l)r(cfl)Jrl,cfl = 2(Az)r(cfl)+1,072 + 2<A£)r(cfl)+l,c+l
and
A+ — 904"
(A7) =D e=1)41,0 = 2(A7) r—1)(c=1)+1,2-
By the induction hypothesis, the following inequality holds:
(Ae)r(cfl)Jrl,chl > (Ag)(rfl)(cfl)+1,2-
Thus, we have the strict inequality (A™™), 141,01 > (A7) o—1yc-1)+10. This
causes the chain of strict inequalities
(A2 e nt120e-1) > (AT o1y e-1) 41,015
(A2 emny41,3-1) > (A7) o e-1+1,2-1)-
Finally, we have:

(Aé+(k—r+1)) A£+(k—r+1))

r(e—1)+1,(k—r41)(e—1)—1 > ( (r—1)(c=1)+1,(k—r)(c—1)—1-
A similar argument can be used for the cases t = {2,3,...,¢— 2} (mod (c—1)).
Case 4: t 20 (mod (¢c—1)) and j =1 (mod (¢ —1)). Let t =1 (mod (c— 1)), we
have
(A€+1)t+c—1,j+c—1 :(Ae)t+c—1,j+c—2 + (Ag)t—l—c—l,j—&-c—&—l»
(AT =(A) 051 + (A1 j42-

By the induction hypothesis, the following inequality holds:

(Aere-tgbe-2 > (AVejo1, (ADere-1giert = (A 0.

Hence, we have (A% 1 1c1 > (A%, . For the strict inequality, let 1 <r < k be
a fixed number, we consider two rows r(¢c — 1) + 1 and (r — 1)(¢c — 1) + 1. Then

(A£+1)r(cfl)+1,c :(Ag)r(cfl)Jrl,cfl + (Ag)r(cfl)+1,c+2
=(A"emnire—2 + (A e + (AT e )41e
+ (Ae_l>r(c—1)+1,c+1 + (Az>r(c—1)+1,c+2
and
(A" -1 =(A) 1) e=1)41.0 + (A) rm1)(e1)41,3
:(Aefl)(r—1)(c—1)+1,1 + (AEil)('r—l)(c—l)—I—l,Q + (AE)(T—I)(C—I)—&-L?)-
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Note that since I'(k) is symmetric, (Ag_l)r(c_l)_FLC_Q = (Af_l)r(c_l)le,C_g > 0,
(A£71>r(c—1)+l,c = (Aeil)r(c—l)—i-l,c-l—l > (0 and (Aéil)r(c—l)-‘rl,l = (AEil)r(c—l)—&-l,Q > 07
for £ > r(c—1). So,

(A€+1)r(c—1)+l7c - 2(A’élz_l)r(c—l)—ﬁ—l,c—2 + 2(A€_1)r(c—1)+1,c + (A€>r(c—1)+1,c+2

and

(A€+1)(T—1)(c—1)+1,1 = 2(Agfl)(r—1)(c—1)+1,1 + (AZ)(T—I)(C—1)+1,3'
By the induction hypothesis, the following inequalities hold:

(Ag_l)r(c—l)—i-l,c = (Az_l)(r—l)(c—l)—i-l,la (Az>r(c—1)+1,c+2 P (AZ)(T—l)(c—l)—i—l,?)-

Thus, we have the strict inequality (A“™),c—1)41,c > (A —1yc—1)41,1. This causes
the chain of strict inequalities

(A2) ey 2001 > (AT oy emy41,es
(Ae+3)7“(c—1)+1,3(c—1)+1 > (AHS)(r—l)(c—1)+1,2(c—1)+1-

Finally,

(A et tert ) e-1 > (A7) e DL (hr)e-1) 1
A similar argument can be used for t =r € {2,3,...,¢—2} (mod (¢ —1)). O

The number of closed walks of length ¢ starting at the vertex v; is equal to the
entry (¢,t) in matrix A*. Therefore,

Se(k(c—=1),t+ (¢ = 1)) = (A1) at(e1)-
By the induction hypothesis, we conclude that Sy(k(c —1),t+ (r — 1)(c — 1)) <
Se(k(c—1),t+r(c—1)) forall 0 < ¢t < c—1and r < [£](c — 1). Hence the strict
inequality holds when ¢ > [£].

4. THE MINIMUM ESTRADA INDEX OF I'(k)

Let G’ be a point attaching strict k1-quasi tree graph of even length c and 6 € V(G').
For k — ki = ks, let G'([%2],[*%2]) be the graph obtained from G’ by attaching two
graphs I'([ %) and I'([% ]) at 0.

Let Ng(G/(LkQJ(C - 1) [%27(c = 1);6) (vespectively, No(G'(|%](c — 1) + ¢ — 1,
[%£2](c—1) —c+1); ) be the set of (4, §)-walks of length £ in G'(| %2 J(c 1), [%27(c— 1))
(respectively, G'([%2](c — 1) + ¢ — 1, [%](c — 1) — ¢ + 1) starting and endmg at the
edges or only one edge in G’ and let Né(G’(L%J (c—1),[%7(c —1));0) (respectively,
Né(G’(L%J (c=1)+c—1,[%](c—1) —c+1);0)) be the set of (8, §)-walks of length £ in
G'([%2](c—1),[%](c—1)) (respectively, G'([%2](c—1)+c—1,[2](c—1) —c+1) start-
ing and ending at the edges or only one edge in union I'(| £ J) UT([%]) (respectively,

D(L]+ 1) U] -1).
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In the following let G'(| %2 |(c—1), [%](c—1)) := G(1) and let G'(| % | (c—
[£2](c = 1) — ¢+ 1) :== G(2). By our definition, both graphs I'(| £ J) IN{}
(L%?j +1u F((%ﬂ — 1) are isomorphic to I'(ks), so they are denoted by I’

Lemma 4.1. If |22] > 1, then for positive integer (,
(i) [Ne(G'(2);0)] < [Ne(G'(1));0)];

(i) [No(G'(2);0)] < [N)(G'(1));0)].
Proof. Let w € NZ(G’ (2);9), we may decompose w into maximal sections in union
(%] + 1)Ul ([%2] —1) or in G’. Each of them is one of the following types.

(Type 1): a (9, ) walk in union (%] + 1) UT([%] — 1).

(Type 2): a walk in G'(2) with all edges in G.

Similarly, we may decompose any w € Ny(G'(1); ) into maximal sections in G’ or
in union I'([ % |) UT([%]). Each of them is one of the following types.

(Type 3): a (,6)- Walk in union T'([ %2 ) UT([%]).

(Type 4): a walk in G’(1) with all edges in G'.

Next, for any w € N;(G'(2);0), we can replace the even indices by the odd indices
that are in front of each other see Figure 2. Hence, from now on, w is a (4, §)- walk with

1)4c—
%W)and
().

[ V(a+1)(c—1)-1 vk‘z(C*l)*l
Yo U(a+1)( > <
U Va(c-1)-2 Va(c—1)+2 V(a+1)(c—1)— 'ng(c—l)72
1
U1 Va(c—1)-3 Va(c—1)+1 'Ukz —1)-1
Va(c—1)- U(a+1 (e=N-1
) Ula—1)(c=1)  Va(e-1 V(at1)(c~ Uky(e—1
Va(c—1)—4
Vy Uy Veed  Ve—2 Vg(e—1)—2 lale=1)+2 Y(a+1)(c— Vky(c—1)—

FIGURE 2. Transformation .

only odd or even indices. So w is a (6, d)- walk with odd indices. By Lemma 3.2 there
is an injection mapping &} that is a (6, 6)- walk of length s’ in T'(| £ | + 1) UT([%2] —1)
into a (4, 6)- walk of length s’ in T'(| %2 |) UT([2]).

Let W' = wywows - - - € Ny(I'(kq)), where w; is a walk of length s of type (1) or (2)
for i > 1. Let £&(w') = & (w1){* (w2) - - -, where £*(w;) = 531; (w;) and & (w;) = w; if w;
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is of type 2 so £*(w;) for i > 1 is of type 3 or 4 and thus {*(w’) € N,(G'(1)). Thus
|Ne(G'(2);0)] < |Ne(G'(1);6)|. This prove (i). The proof for (ii) is similar. O

Theorem 4.1. If 52| > 1, then S,(G'(2)) < Si(G'(1)). For { > [2](c—1), the strict
inequality holds.

Proof. Let By and By be the sets of closed walks of length ¢ in G'(1) and G'(2)
respectively, containing some edges in G’. Then S,(G'(2)) = S,(I'(|%2]+ 1)Ul ([%2] -

1) +|Ba| and Sy(G'(1)) = Se(T(L%) ] UT([% 1)) +|Bil. Since I([%] +1)UT([%]-1)
and I'(| %2 ]) UT'([22]) are isomorphic to I'(kz), we only need to prove that |Bs| < | B
for all ¢ > 0. Let By and By be two subsets of B, for which every closed walk
starts at a vertex in V(I'([2] + 1) UT([%2] - 1)) and V(G’) — {6}, respectively. Then
|Bs| = |Ba1| + |Baa|. Let Bj; and Bijp be two subsets of B; for which every closed
walk starts at a vertex in V(I'([%2]) UT([%27)) and V(G') — {4}, respectively. Then
|B1| = [Bu| + [Bizl.

We may decompose any w € Bs; into three parts wywsws, where wy, w3 are walks in
I([%]41)UT([%2] —1) and w, is the longest walk of w in G'(2) starting and ending
at the edges or only one edge in G’. By the choice of wy, we have that ws is a (4, d)-
walk. Let Boj(w,l) = {w € Bgy : ws is a (§,0)- walk}. Thus |By| = |Bai(w, )] Let
Bii(w,l) ={w € By : we is a (§,0)-walk}. So |B11] = |Bii(w, )]

Let V(D([ 2] + 1) uT([%] — 1)) := V(2). Then

o= 2 s (3])er(5] )

01,03>0, £2>2

e arans, (v(|12] +)or (2] 1))

= Y. INL(G'(2);9)]
1+-Lo+El3=0
01,0320,02>2

< = s (r([5] <) or([5] )00
su(v([5] r)or([5] 1))
=2 we@onsis (v([5] r)or ([g]-1)0).

£1,632>0,02 22

Similarly,

| Bay (w, 0)] = W;:M N, (G'(1):6)|St, 40 (r (V;J + 1) ur (Fﬂ - 1) ;5) .

01,0320,02>2
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By Lemma 4.1, we have | Ny, (G'(2);0)| < | Ny, (G'(1);6)| for all positive integers ¢ and
by Lemma 3.2, we have Sy(I'(|%2] + 1) UT([%] — 1));0) < S(I([%2]) UT([%7);4)
for all positive integers ¢t. Thus | By (w, )| < |Bi1(w, ¢)|. Note that this inequality is
strict for some positive integer {o = to + ¢ — 1 where tg > %2. Also |Ba;| < | By for
all positive integers ¢, and it is strict for some positive integer /.

By a similar argument as above, we can prove that |Bag| < |Biz|. Thus |Bs| < | By
for all positive integers ¢, and it is strict for some positive integer ¢,. O

Lemma 4.2. For all integer £ > ¢, k > 2, we have
Se(k(c—1),2) < Sp(k(c—1),4) <--- < Sp(k(c—1),¢/2 —2),S,(k(c—1),¢/2).

Proof. First, we show that every diagonal parallel to the main diagonal and the main di-
agonal are unimodal.  Let H be the subgraph of T'(k) with vertex set
{vo,v1,...,v. — 1}. By Lemma 3.1, we only need to show that the diagonals parallel
to the main diagonal increase for s + 7 < ¢ — 1. Let s be an even integer. For the
odd integer the proof is similar. Using induction on integer ¢, we will prove that
(AZ)S+2J+2 > (Aﬁ)s’j for all 0 < S,j <c—2 with s +] <c-—1.

Note that by the definition of I'(k), two vertices v, and v; are adjacent if and only
if vs49 and vj4 are adjacent.

We have the following cases.
Case 1: j =0 (mod 2) and j # 0. Then

(A g0 40 =(AY g2 + (A st2,544,
(AN =(A%s o2 + (A js2.

By the induction hypothesis, we have the following results:

(Az>s+2,j Z(Ae)s,j—zy
(Ag)s+2,j+4 Z(Ag)s,jJrQa fors+j+4<c—1

Hence, we have (A%)s4212 > (A)5,;. Since, there is a closed walk of length ¢ starting
from vy which is not including the edge v.v.;1, the inequality is strict for £ > c.
Case 2: j =1 (mod 2). The proof is similar to Case 1. O

The number of closed walks of length ¢ starting at the even vertex v, is equal to
the entry (s, s) in matrix A’

Se(c—1,s) = (Aé)svs.

By induction hypothesis, we can conclude that Sy(c —1,s) < Sy(c—1, s+ 2) for every
0 < s <c—1. Note that the strict inequality holds when ¢ > 7.

Let G be a point attaching strict k;1-quasi tree graph of even length ¢ and a € V(G)
and let C. be the cycle H of I'(k) with ks cycles where ky + ko = k. We decompose
C. into two paths denote by Pc and )¢, having common vertices in initial and final.

Let G(35, 5) be the graph obtained from G by attaching P: and Q¢ at a in G.
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11
—_—
v1 Ve—5 V-3 U1 Ve—5 Ve—3
’UE 12%,2
0 Ve—1 Vo Ve—
V9 V4 CESSI Ve—4  Uc—2 V9 | Ve—q Ve—2
G(1) G(2)

F1cURE 3. Transformation II.
Let M,(G(5,5); o) (respectively My (G(5 + 2,5 — 2);a)) be the set of (o, a)-walks
of length £ in G(5,5) (respectively G(5 + 2, § — 2)) starting and ending at the edges
or only one edge in G and let My(G(3, 5) ) (respectively My(G (5 +2,5 —2);a)) be
the set of (a, a)-walks of length £ in G(5, §) (respectively G(§ + 2,5 — 2)), starting
and ending at the edges or only one edge in P: U Q< (respectively Peiq U Qg,l). In
the following let G(3, §) := G(1) and G(§ + 2, § — 2) := G(2). By definition Pz U Q-
and Pci1 U Qg1 are isomorphic to C1, so we denoted them by C.

Lemma 4.3. Let ¢ be an even integer. If £ > 5, then

(i) [M(G(2); )| < [Me(G(1)); )5
(if) [M(G(2); )| < [Mp(G(1)); ).

Proof. Let w € My(G(2); ), we may decompose w into maximal sections in union
Pei1 U@y or in G. Each of them is one of the following types.

(1) a (o, )- walk in union Peyy UQg 1.

(2) a walk in G(2) with all edges in G.

Similarly, we may decompose any w € M,(G(1); ) into maximal sections in union
Pe UQ¢ or in G. Each of these maximal sections has one of the following types.

(3) a (o, @)-walk in union Ps U Q-.

(4) a walk in G(1) with all edges in G.

Next, since I'(k) is symmetric, for any w € M,(G(2); ), we can replace the even
indices with the odd indices that are in front of each other see Figure 3. Hence,
from now on, w is a (a, a)- walk with only odd or even indices. So without loss of
generality w is a (o, a)-walk with only odd indices. By definition, two unions Pe UQ-
and Pc+1 U Q ¢_q are isomorphic to C'; and by Lemma 4.2 there exists an injection
mapping 7; from a (a, a)-walk of length {in Pe 1 UQ:; into a (o, a)- walk of length
{in Pg U Q2 Let w = wjwows - -+ € Mg(P;_H U Q; 1) where w; is a walk of length
¢; of type (1) or (2) for i > 1. Let n*(w) = n*(w1)n*(w2) ... where n*(w;) = n; (w;)
and n*(w;) = w; if w; is type (2) so n*(w;) for ¢ > 1 is of type (3) or (4) and thus



ON THE ESTRADA INDEX OF POINT ATTACHING STRICT k-QUASI TREE GRAPHS 177

n*(w) € My(G(1)). Thus, |M,(G(2); )| < |M,(G(1);«)|. This prove (i). The proof of
(i) is similar. O
Theorem 4.2. Let ¢ be an even integer. If § > 3, then Sy(G(2)) < Sy(G(1)). For
¢ > 5, the strict inequality holds.

Proof. Let A; and Ay be two sets of closed walks of length ¢ in G(1) and G(2),
respectively, containing some edges in G. Then Sy(G(2)) = S¢(Pe1 U Qg 1) + |As]
and Sg(G(l)) = Sg(Pg U Qg) + |A1|

By our definition, P: U Q¢ and Pcyq U Q< are isomorphic to €7, and we need
only to prove that |As| < |A,| for all £ > 0.

Let Ay and Asy be two subsets of A, for which every closed walk starts at a vertex
in V(Pey1 UQg-1) and in V(G) — {a}, respectively. Then |As| = [Az| + [Assl.

Let A;; and Aqo be two subsets of A; for which every closed walk starts at a vertex
in V(P: UQc¢) and in V(G) — {a}, respectively. Then [A;] = [Ay] + |Aa].

We may decompose any w € Ay into three sections wjwows, where wq,ws are
walks in Pey; UQc_; and ws is the longest walk of w in G(2) starting and ending
at the edges in G. By the choice of ws, we have that ws is a (a,a)-walk. Let
A (w,0) = {w € A9 twy is a (o, a)-walk}. So, we have |Ag| = |Agr(w, £)].

Let Ajy(w, ) = {w € Ayt wy is a (o, a)-walk}. So, we have |Ay| = |A11(w, £)].

Let V(Pe1 UQs-1) :=V(1). Let t = [M,(G(2); a)|. From this decomposition for
w € Ay and by the definition of Ag(w, ¢), we have

[Agi (w, 0)] = > > St (P41 U Qs1; B, 2)..80,(Ps 1 U Q13 v, B)

Li+Lla+Ll3=C BeV (1)
£1,0320,02>2

= Yoot Y Su(PeyiUQs 1 B,0).80,(Peya UQs 15, )

Li+Llo+l3=L  BeV (1)
£1,£320,02>2

= Y tSni(PeUQs i)
L1 +Lo+03=0
£1,0320,02>2

Similarly,

(A (w, Ol = >0 [Mp(G(1);0)].Sp40,(Ps U Q5 ).

L14+-La+l3=L
£1,0320,02>2

By Lemma 4.3, we have |M;,(G(2);a)| < |My,(G(1);a)| for all positive integers
{5 and by Lemma 4.2, we have Sy(Pz11 U Q:_1;a) < S;(P: UQ¢;a) for all positive
integers ¢. Thus |Ag; (w, £)| < |Ay1(w, £)|. Note that this inequality is strict for some
positive integer ¢y = to+c—1 where ty > 5. Also [Ag;| < |Ay| for all positive integers
¢, and it is strict for some positive integer /.

By similar argument as above, we can prove that |Ag| < |Aja]. Thus |Ay] < A
for all positive integers ¢, and it is strict for some positive integer £. O

Corollary 4.1. For graphs G(1) and G(2) we have EE(G(1)) > EE(G(2)).
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Proof. From Theorem 4.2, we have

EE(G?2) =Y SZ(G('Q)) <X Sﬁ(Gﬂl)) = EE(G(1)). O
s (0 = ()

The transformation from G(1) to G(2), depicted in Figure 3, is called transformation
slowromancapi@ of G(1).

Corollary 4.2. For two graphs G'(1) and G'(2), we have EE(G'(1)) > EE(G'(2)).
Proof. By Theorem 4.1, we have

!/ /
EE(G/(Q)) _ Z SZ(G (2)) < Z SE(G (1))
= O = (@)
The transformation from G’(1) to G’(2), depicted in Figure 2, is called transfor-
mation slowromancapi@ of G’(1). Transformation slowromancapiii@ is similar to
transformation slowromancapii@ which obtained by attaching o € G at vy. There is a
closed walks in M.((c—1),0) which is not including the edge v.v.41. So there is a closed
walk in M.((c —1),1) not in M.((c¢ — 1),0). Hence, transformation slowromancapiii@
strictly decreases the Estrada index for ¢ > c.
Let G be a point attaching strict k-quasi tree graph with k even cycles of length ¢,
obtained by attaching the subgraphs G, Gs,...,Ga at u with the maximum degree A.

= EE(G'(1)). O

By using transformations slowromancapi@, slowronancapii@ and slowromancapiii@,
Gis, (1<i< %) can be changed into the graphs I'; s. These transformations change
GG into G* which is obtained by attaching I'; s at u. Each application of transformation
strictly decreases its Estrada index. So we have FE(G*) < EE(G). Finally repeatedly
applying transformation I, G* can be changed into the graph I'(k) that is obtained

A
from U2, I'(k;). So we have the following result.

Theorem 4.3. Let G be a point attaching strict k-quasi tree graph with k even cycles.
Then EE(I'(k)) < EE(G).
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