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SOME APPLICATIONS RELATED TO ADMISSIBLE FUNCTIONS
FOR HIGHER-ORDER DERIVATIVES OF MEROMORPHIC

MULTIVALENT FUNCTIONS

ABBAS KAREEM WANAS1 AND ZAINAB SWAYEH GHALI2

Abstract. In the present manuscript, we obtain some differential subordination
and superordination results for higher-order derivatives of meromorphic multivalent
functions in the punctured unit disk by investigating appropriate families of admis-
sible functions. These results are applied to obtain differential sandwich results.

1. Introduction

We denote by Σp the family of all functions f of the form:

(1.1) f(z) = z−p +
∞∑

n=p

anz
n (p ∈ N = {1, 2, . . .}),

which are analytic and multivalent in the punctured unit disk
U∗ = {z ∈ C : 0 < |z| < 1} .

A function f ∈ Σp is meromorphic multivalent starlike if f(z) ̸= 0 and

−Re
{
zf ′(z)
f(z)

}
> 0 (z ∈ U∗),

and f ∈ Σp is meromorphic multivalent convex if f ′(z) ̸= 0 and

−Re
{

1 + zf ′′(z)
f ′(z)

}
> 0 (z ∈ U∗).
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Upon differentiating both sides of (1.1) j-times with respect to z, we obtain

f (j)(z) = (−1)j(p+ j − 1)!
(p− 1)! z−p−j +

∞∑
n=p

n!
(n− j)!anz

n−j (p, j ∈ N; p > j).

Let H(U) be the collection of analytic functions in the open unit disk U =
{z ∈ C : |z| < 1}. For a positive integer n and a ∈ C, let H [a, n] be the sub-collection
of H(U) consisting of functions of the form:

f(z) = a+ anz
n + an+1z

n+1 + · · · ,

with H = H [1, 1].
Let f and g be members of H(U). The function f is said to be subordinate to g, or

(equivalently) g is said to be superordinate to f , if there exists a Schwarz function w
which is analytic in U with w (0) = 0 and |w(z)| < 1, z ∈ U , such that f(z) = g(w(z)).
In such a case, we write f ≺ g or f(z) ≺ g(z), z ∈ U . Further, if the function g is
univalent in U , then we have the following equivalence (see [5])

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(U) ⊂ g(U).

Definition 1.1 ([6]). Let F, h ∈ H(U) and ϕ : C3 × U → C. If F is analytic in U
and satisfies the following (second-order) differential subordination:

(1.2) ϕ
(
F (z), zF ′(z), z2F ′′(z); z

)
≺ h(z),

then F is called a solution of the differential subordination (1.2). The univalent
function q is called a dominant of the solutions of the differential subordination or
more simply a dominant if F (z) ≺ q(z) for all F satisfying (1.2). A dominant q̌ that
satisfies q̌(z) ≺ q(z) for all dominants q of (1.2) is said to be the best dominant.

Definition 1.2 ([7]). Let F, h ∈ H(U) and ϕ : C3 × U → C. If F and

ϕ
(
F (z), zF ′(z), z2F ′′(z); z

)
are univalent in U for ζ ∈ Ū and satisfy the following (second-order) differential
superordination:

(1.3) h(z) ≺ ϕ
(
F (z), zF ′(z), z2F ′′(z); z

)
,

then F is called a solution of the differential superordination (1.3). An analytic
function q is called a subordinant of the solutions of the differential superordination
or more simply a subordinant if q(z) ≺ F (z) for all F satisfying (1.3). A univalent
subordinant q̌ that satisfies q(z) ≺ q̌(z) for all subordinants q of (1.3) is said to be
the best subordinant.

Definition 1.3 ([6]). Denote by Q the set consisting of all functions q that are
analytic and injective on Ū\E(q), where

E(q) =
{
ξ ∈ ∂U : lim

z→ξ
q(z) = ∞

}
,
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and are such that q′(ξ) ̸= 0 for ξ ∈ ∂U\E(q).
Further, let the subclass of Q for which q(0) = a be denoted by Q(a), Q(0) ≡ Q0

and Q(1) ≡ Q1.

Definition 1.4 ([6]). Let Ω be a set in C, q ∈ Q and n ∈ N. The family of admissible
functions Ψn [Ω, q] consists of those functions ψ : C3×U → C that satisfy the following
admissibility condition: ψ(r, s, t; z) /∈ Ω, whenever

r = q(ξ), s = kξq′(ξ) and Re
{
t

s
+ 1

}
≥ kRe

{
ξq′′(ξ)
q′(ξ) + 1

}
,

z ∈ U , ξ ∈ ∂U\E(q) and k ≥ n.
We simply write Ψ1 [Ω, q] = Ψ [Ω, q].

Definition 1.5 ([6]). Let Ω be a set in C and q ∈ H [a, n] with q′(z) ̸= 0. The family
of admissible functions Ψ′

n [Ω, q] consists of those functions ψ : C3 × U → C that
satisfy the following admissibility condition: ψ(r, s, t; ξ) ∈ Ω, whenever

r = q(z), s = zq′(z)
m

and Re
{
t

s
+ 1

}
≤ 1
m

Re
{
zq′′(z)
q′(z) + 1

}
,

z ∈ U , ξ ∈ ∂U and m ≥ n ≥ 1.
In particular, we write Ψ′

1 [Ω, q] = Ψ′ [Ω, q].

In our investigations we shall need the following lemmas.

Lemma 1.1 ([6]). Let ψ ∈ Ψn [Ω, q], with q(0) = a. If F ∈ H [a, n] satisfies

ψ
(
F (z), zF ′(z), z2F ′′(z); z

)
∈ Ω,

then F (z) ≺ q(z).

Lemma 1.2 ([6]). Let ψ ∈ Ψ′
n [Ω, q] with q(0) = a. If F ∈ Q(a) and

ψ
(
F (z), zF ′(z), z2F ′′(z); z

)
is univalent in U , then

Ω ⊂
{
ψ
(
F (z), zF ′(z), z2F ′′(z); z

)
: z ∈ U, ζ ∈ Ū

}
implies q(z) ≺ F (z).

In recent years, several authors obtained many interesting results in differential
subordination and superordination, such as Seoudy [12], Wanas and Srivastava [19],
Lupas and Catas [4] and others (see, for example, [1–3,8–11,13–18,20]). In this inves-
tigation, we consider certain suitable families of admissible functions and derive some
differential subordination and superordination properties for higher-order derivatives
of meromorphic multivalent functions.
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2. Subordination Results

Definition 2.1. Let Ω be a set in C and q ∈ Q1 ∩H. The class of admissible functions
Φj [Ω, q] consists of those functions ϕ : C3 × U → C that satisfy the admissibility
condition: ϕ(u, v, w; z) /∈ Ω, whenever

u = q(ξ), v = kξq′(ξ)
q(ξ) , q(ξ) ̸= 0 and Re

{
w + v2

v

}
≥ kRe

{
ξq′′(ξ)
q′(ξ) + 1

}
,

where z ∈ U , ξ ∈ ∂U\E(q) and k ≥ 1.

Theorem 2.1. Let ϕ ∈ Φj [Ω, q]. If f ∈ Σp satisfies{
ϕ

(
(p− 1)!zp+j−1f (j−1)(z)

(−1)j−1(p+ j − 2)! ,
zf (j)(z)
f (j−1)(z) + p+ j − 1,(2.1)

z2f (j+1)(z)
f (j−1)(z) + zf (j)(z)

f (j−1)(z) −
(
zf (j)(z)
f (j−1)(z)

)2

; z
 : z ∈ U

 ⊂ Ω,

then
(p− 1)!zp+j−1f (j−1)(z)

(−1)j−1(p+ j − 2)! ≺ q(z).

Proof. Define the function F by

(2.2) F (z) = (p− 1)!zp+j−1f (j−1)(z)
(−1)j−1(p+ j − 2)! .

Then, the function F is analytic in U . After some calculation, we have

(2.3) zF ′(z)
F (z) = zf (j)(z)

f (j−1)(z) + p+ j − 1.

Further computations show that

z2F ′′(z)
F (z) + zF ′(z)

F (z) −
(
zF ′(z)
F (z)

)2

=z
[
zf (j)(z)
f (j−1)(z) + p+ j − 1

]′

(2.4)

=z
2f (j+1)(z)
f (j−1)(z) + zf (j)(z)

f (j−1)(z) −
(
zf (j)(z)
f (j−1)(z)

)2

.

Now, we define the transforms from C3 to C by

u = r, v = s

r
, w = r(t+ s) − s2

r2 .

Let

(2.5) ψ (r, s, t; z) = ϕ (u, v, w; z) = ϕ

(
r,
s

r
,
r(t+ s) − s2

r2 ; z
)
.
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The proof will make use of Lemma 1.1. Using equations (2.2), (2.3) and (2.4), it
follows from (2.5) that

ψ
(
F (z), zF ′(z), z2F ′′(z); z

)
= ϕ

(
(p− 1)!zp+j−1f (j−1)(z)

(−1)j−1(p+ j − 2)! ,
zf (j)(z)
f (j−1)(z) + p+ j − 1,

(2.6)

z2f (j+1)(z)
f (j−1)(z) + zf (j)(z)

f (j−1)(z) −
(
zf (j)(z)
f (j−1)(z)

)2

; z
 .

Therefore, (2.1) becomes ψ (F (z), zF ′(z), z2F ′′(z); z) ∈ Ω.
To complete the proof, we next show that the admissibility condition for ϕ ∈ Φj [Ω, q]

is equivalent to the admissibility condition for ψ as given in Definition 1.4.
Note that

t

s
+ 1 = w + v2

v
,

and hence ψ ∈ Ψ [Ω, q]. By Lemma 1.1, F (z) ≺ q(z) or equivalently

(p− 1)!zp+j−1f (j−1)(z)
(−1)j−1(p+ j − 2)! ≺ q(z). □

We consider the special situation when Ω ̸= C is a simply connected domain. In this
case Ω = h(U), for some conformal mapping h of U onto Ω and the class Φj [h(U), q] is
written as Φj [h, q]. The following result is an immediate consequence of Theorem 2.1.

Theorem 2.2. Let ϕ ∈ Φj [h, q]. If f ∈ Σp satisfies

ϕ

(
(p− 1)!zp+j−1f (j−1)(z)

(−1)j−1(p+ j − 2)! ,
zf (j)(z)
f (j−1)(z) + p+ j − 1,(2.7)

z2f (j+1)(z)
f (j−1)(z) + zf (j)(z)

f (j−1)(z) −
(
zf (j)(z)
f (j−1)(z)

)2

; z
 ≺ h(z),

then
(p− 1)!zp+j−1f (j−1)(z)

(−1)j−1(p+ j − 2)! ≺ q(z).

By taking ϕ(u, v, w; z) = u+ v
βu+γ

, β, γ ∈ C, in Theorem 2.2, we state the following
corollary.

Corollary 2.1. Let β, γ ∈ C and let h be convex in U , with h(0) = 1, and

Re {βh(z) + γ} > 0.
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If f ∈ Σp satisfies

(p− 1)!zp+j−1f (j−1)(z)
(−1)j−1(p+ j − 2)!

+
(−1)j−1(p+ j − 2)!

[
zf (j)(z) + (p+ j − 1)f (j−1)(z)

]
β(p− 1)!zp+j−1 (f (j−1)(z))2 + γ(−1)j−1(p+ j − 2)!f (j−1)(z)

≺ h(z),

then
(p− 1)!zp+j−1f (j−1)(z)

(−1)j−1(p+ j − 2)! ≺ q(z).

The next result is an extension of Theorem 2.1 to the case where the behavior of q
on ∂U is not known.

Corollary 2.2. Let Ω ∈ C and q be univalent in U with q(0) = 1. Let ϕ ∈ Φj [h, qρ]
for some ρ ∈ (0, 1), where qρ(z) = q(ρz). If f ∈ Σp satisfies

ϕ

(
(p− 1)!zp+j−1f (j−1)(z)

(−1)j−1(p+ j − 2)! ,
zf (j)(z)
f (j−1)(z) + p+ j − 1,

z2f (j+1)(z)
f (j−1)(z) + zf (j)(z)

f (j−1)(z) −
(
zf (j)(z)
f (j−1)(z)

)2

; z
 ∈ Ω,

then
(p− 1)!zp+j−1f (j−1)(z)

(−1)j−1(p+ j − 2)! ≺ q(z).

Proof. Theorem 2.1 yields

(p− 1)!zp+j−1f (j−1)(z)
(−1)j−1(p+ j − 2)! ≺ qρ(z).

The result is now deduced from the fact that qρ(z) ≺ q(z). □

Theorem 2.3. Let h and q be univalent in U with q(0) = 1 and set qρ(z) = q(ρz)
and hρ(z) = h(ρz). Let ϕ : C3 × U → C satisfy one of the following conditions:

(1) ϕ ∈ Φj [h, qρ] for some ρ ∈ (0, 1);
(2) there exists ρ0 ∈ (0, 1) such that ϕ ∈ Φj [hρ, qρ] for all ρ ∈ (ρ0, 1).
If f ∈ Σp satisfies (2.7), then

(p− 1)!zp+j−1f (j−1)(z)
(−1)j−1(p+ j − 2)! ≺ q(z).

Proof. Case (1). By applying Theorem 2.1, we obtain

(p− 1)!zp+j−1f (j−1)(z)
(−1)j−1(p+ j − 2)! ≺ qρ(z).
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Since qρ(z) ≺ q(z), we deduce
(p− 1)!zp+j−1f (j−1)(z)

(−1)j−1(p+ j − 2)! ≺ q(z).

Case (2). Let

F (z) = (p− 1)!zp+j−1f (j−1)(z)
(−1)j−1(p+ j − 2)! and Fρ(z) = F (ρz).

Then,

ϕ
(
Fρ(z), zF ′

ρ(z), z2F ′′
ρ (z); ρz

)
= ϕ

(
F (ρz), zF ′(ρz), z2F ′′(ρz); ρz,

)
∈ hρ(U).

By using Theorem 2.1 and the comment associated with

ϕ
(
F (z), zF ′(z), z2F ′′(z);w(z)

)
∈ Ω,

where w is any function mapping U into U , with w(z) = ρz, we obtain Fρ(z) ≺ qρ(z)
for ρ ∈ (ρ0, 1). By letting ρ → 1−, we get F (z) ≺ q(z). Therefore,

(p− 1)!zp+j−1f (j−1)(z)
(−1)j−1(p+ j − 2)! ≺ q(z). □

The next result gives the best dominant of the differential subordination (2.7).

Theorem 2.4. Let h be univalent in U and ϕ : C3 × U → C. Suppose that the
differential equation

(2.8) ϕ

q(z), zq′(z)
q(z) ,

z2q′′(z)
q(z) + zq′(z)

q(z) −
(
zq′(z)
q(z)

)2

; z
 = h(z)

has a solution q, with q(0) = 1, and satisfies one of the following conditions:
(1) q ∈ Q1 and ϕ ∈ Φj [h, q];
(2) q is univalent in U and ϕ ∈ Φj [h, qρ] for some ρ ∈ (0, 1);
(3) q is univalent in U and there exists ρ0 ∈ (0, 1) such that ϕ ∈ Φj [hρ, qρ] for all

ρ ∈ (ρ0, 1).
If f ∈ Σp satisfies (2.7), then

(p− 1)!zp+j−1f (j−1)(z)
(−1)j−1(p+ j − 2)! ≺ q(z)

and q is the best dominant.

Proof. It follows from Theorems 2.2 and 2.3, that q is a dominant of (2.7). Since q
satisfies (2.8), it is also a solution of (2.7), then q will be dominated by all dominants.
Thus, q is the best dominant of (2.7). □

In the particular case q(z) = 1 + Mz, M > 0, and in view of Definition 2.1, the
family of admissible functions Φj [Ω, q] denoted by Φj [Ω,M ] can be expressed in the
following form.
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Definition 2.2. Let Ω be a set in C and M > 0. The family of admissible functions
Φj [Ω,M ] consists of those functions ϕ : C3 × U → C such that

(2.9) ϕ

1 +Meiθ,
kM

M + e−iθ
,
kM + Le−iθ

M + e−iθ
−
(

kM

M + e−iθ

)2

; z
 /∈ Ω,

whenever z ∈ U , θ ∈ R, Re {Le−iθ} ≥ k(k − 1)M for all θ and k ≥ 1.

Corollary 2.3. Let ϕ ∈ Φj [Ω,M ]. If f ∈ Σp satisfies

ϕ

(
(p− 1)!zp+j−1f (j−1)(z)

(−1)j−1(p+ j − 2)! ,
zf (j)(z)
f (j−1)(z) + p+ j − 1,

z2f (j+1)(z)
f (j−1)(z) + zf (j)(z)

f (j−1)(z) −
(
zf (j)(z)
f (j−1)(z)

)2

; z
 ∈ Ω,

then ∣∣∣∣∣(p− 1)!zp+j−1f (j−1)(z)
(−1)j−2(p+ j − 2)! + 1

∣∣∣∣∣ < M.

When Ω = q(U) = {w : |w − 1| < M}, the family Φj [Ω,M ] is simply denoted by
Φj [M ], then Corollary 2.3 takes the following form.

Corollary 2.4. Let ϕ ∈ Φj [M ]. If f ∈ Σp satisfies∣∣∣∣∣ϕ
(

(p− 1)!zp+j−1f (j−1)(z)
(−1)j−1(p+ j − 2)! ,

zf (j)(z)
f (j−1)(z) + p+ j − 1,

z2f (j+1)(z)
f (j−1)(z) + zf (j)(z)

f (j−1)(z) −
(
zf (j)(z)
f (j−1)(z)

)2

; z
− 1

∣∣∣∣∣∣ < M.

Then, ∣∣∣∣∣(p− 1)!zp+j−1f (j−1)(z)
(−1)j−2(p+ j − 2)! + 1

∣∣∣∣∣ < M.

Example 2.1. If M > 0 and f ∈ Σp satisfies∣∣∣∣∣∣z
2f (j+1)(z)
f (j−1)(z) −

(
zf (j)(z)
f (j−1)(z)

)2

− p− j + 1

∣∣∣∣∣∣ < M,

then ∣∣∣∣∣(p− 1)!zp+j−1f (j−1)(z)
(−1)j−2(p+ j − 2)! + 1

∣∣∣∣∣ < M.

This implication follows from Corollary 2.4 by taking ϕ(u, v, w; z) = w − v + 1.

Example 2.2. If M > 0 and f ∈ Σp satisfies∣∣∣∣∣ zf (j)(z)
f (j−1)(z) + p+ j − 2

∣∣∣∣∣ < M

M + 1 ,
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then ∣∣∣∣∣(p− 1)!zp+j−1f (j−1)(z)
(−1)j−2(p+ j − 2)! + 1

∣∣∣∣∣ < M.

This implication follows from Corollary 2.3 by taking ϕ(u, v, w; z) = v and Ω = h(U)
where h(z) = M

M+1z, M > 0. To apply Corollary 2.3, we need to show that ϕ ∈
Φj [Ω,M ], that is the admissibility condition (2.9) is satisfied follows from∣∣∣∣∣∣ϕ

1 +Meiθ,
kM

M + e−iθ
,
kM + Le−iθ

M + e−iθ
−
(

kM

M + e−iθ

)2

; z
∣∣∣∣∣∣ = kM

M + 1 ≥ M

M + 1 ,

for z ∈ U , θ ∈ R and k ≥ 1.

3. Superordination Results

In this section, we derive differential superordination. For this purpose the family
of admissible functions given in the following definition will be required.

Definition 3.1. Let Ω be a set in C and q ∈ H. The class of admissible functions
Φ′

j [Ω, q] consists of those functions ϕ : C3 × U → C that satisfy the admissibility
condition: ϕ(u, v, w; ξ) ∈ Ω, whenever

u = q(z), v = zq′(z)
mq(z) , q(z) ̸= 0 and Re

{
w + v2

v

}
≤ 1
m

Re
{
zq′′(z)
q′(z) + 1

}
,

where z ∈ U , ξ ∈ ∂U and m ≥ 1.

Theorem 3.1. Let ϕ ∈ Φ′
j [Ω, q]. If f ∈ Σp,

(p− 1)!zp+j−1f (j−1)(z)
(−1)j−1(p+ j − 2)! ∈ Q1

and

ϕ

(
(p− 1)!zp+j−1f (j−1)(z)

(−1)j−1(p+ j − 2)! ,
zf (j)(z)
f (j−1)(z) + p+ j − 1,

z2f (j+1)(z)
f (j−1)(z) + zf (j)(z)

f (j−1)(z) −
(
zf (j)(z)
f (j−1)(z)

)2

; z


is univalent in U , then

Ω ⊂

ϕ
(

(p− 1)!zp+j−1f (j−1)(z)
(−1)j−1(p+ j − 2)! ,

zf (j)(z)
f (j−1)(z) + p+ j − 1,(3.1)

z2f (j+1)(z)
f (j−1)(z) + zf (j)(z)

f (j−1)(z) −
(
zf (j)(z)
f (j−1)(z)

)2

; z
 : z ∈ U


implies

q(z) ≺ (p− 1)!zp+j−1f (j−1)(z)
(−1)j−1(p+ j − 2)! .



916 A. K. WANAS AND Z. S. GHALI

Proof. Let F defined by (2.2) and ψ (F (z), zF ′(z), z2F ′′(z); z) defined by (2.6). Since
ϕ ∈ Φ′

j [Ω, q], from (2.6) and (3.1), we have

Ω ⊂
{
ψ
(
F (z), zF ′(z), z2F ′′(z); z

)
: z ∈ U

}
.

From (2.5), we see that the admissibility condition for ϕ ∈ Φ′
j [Ω, q] is equivalent to

the admissibility condition for ψ as given in Definition 1.5. Hence, ψ ∈ Ψ′ [Ω, q] and
by Lemma 1.2, q(z) ≺ F (z) or equivalently

q(z) ≺ (p− 1)!zp+j−1f (j−1)(z)
(−1)j−1(p+ j − 2)! . □

We consider the special situation when Ω ̸= C is a simply connected domain. In this
case Ω = h(U), for some conformal mapping h of U onto Ω and the class Φ′

j [h(U), q] is
written as Φ′

j [h, q]. The following result is an immediate consequence of Theorem 3.1.

Theorem 3.2. Let ϕ ∈ Φ′
j [h, q], q ∈ H and h be analytic in U . If f ∈ Σp,

(p−1)!zp+j−1f (j−1)(z)
(−1)j−1(p+j−2)! ∈ Q1 and

ϕ

(
(p− 1)!zp+j−1f (j−1)(z)

(−1)j−1(p+ j − 2)! ,
zf (j)(z)
f (j−1)(z) + p+ j − 1,

z2f (j+1)(z)
f (j−1)(z) + zf (j)(z)

f (j−1)(z) −
(
zf (j)(z)
f (j−1)(z)

)2

; z


is univalent in U , then

h(z) ≺ ϕ

(
(p− 1)!zp+j−1f (j−1)(z)

(−1)j−1(p+ j − 2)! ,
zf (j)(z)
f (j−1)(z) + p+ j − 1,(3.2)

z2f (j+1)(z)
f (j−1)(z) + zf (j)(z)

f (j−1)(z) −
(
zf (j)(z)
f (j−1)(z)

)2

; z


implies

q(z) ≺ (p− 1)!zp+j−1f (j−1)(z)
(−1)j−1(p+ j − 2)! .

By taking ϕ(u, v, w; z) = u+ v
βu+γ

, β, γ ∈ C, in Theorem 3.2, we state the following
corollary.

Corollary 3.1. Let β, γ ∈ C and let h be convex in U with h(0) = 1. Suppose that
the differential equation q(z) + zq′(z)

βq(z)+γ
= h(z) has univalent solution q that satisfies

q(0) = 1 and q(z) ≺ h(z). If f ∈ Σp,

(p− 1)!zp+j−1f (j−1)(z)
(−1)j−1(p+ j − 2)! ∈ H ∩Q1



SOME APPLICATIONS RELATED TO ADMISSIBLE FUNCTIONS 917

and

(p− 1)!zp+j−1f (j−1)(z)
(−1)j−1(p+ j − 2)! +

(−1)j−1(p+ j − 2)!
[
zf (j)(z) + (p+ j − 1)f (j−1)(z)

]
β(p− 1)!zp+j−1 (f (j−1)(z))2 + γ(−1)j−1(p+ j − 2)!f (j−1)(z)

is univalent in U , then

h(z) ≺(p− 1)!zp+j−1f (j−1)(z)
(−1)j−1(p+ j − 2)!

+
(−1)j−1(p+ j − 2)!

[
zf (j)(z) + (p+ j − 1)f (j−1)(z)

]
β(p− 1)!zp+j−1 (f (j−1)(z))2 + γ(−1)j−1(p+ j − 2)!f (j−1)(z)

implies

q(z) ≺ (p− 1)!zp+j−1f (j−1)(z)
(−1)j−1(p+ j − 2)! .

The next result gives the best subordinant of the differential superordination (3.2).

Theorem 3.3. Let h be analytic in U and ϕ : C3 × U → C. Suppose that the
differential equation

ϕ

q(z), zq′(z)
q(z) ,

z2q′′(z)
q(z) + zq′(z)

q(z) −
(
zq′(z)
q(z)

)2

; z
 = h(z)

has a solution q ∈ Q1. If ϕ ∈ Φ′
j [h, q], f ∈ Σp, (p−1)!zp+j−1f (j−1)(z)

(−1)j−1(p+j−2)! ∈ Q1 and

ϕ

(
(p− 1)!zp+j−1f (j−1)(z)

(−1)j−1(p+ j − 2)! ,
zf (j)(z)
f (j−1)(z) + p+ j − 1,

z2f (j+1)(z)
f (j−1)(z) + zf (j)(z)

f (j−1)(z) −
(
zf (j)(z)
f (j−1)(z)

)2

; z


is univalent in U , then

h(z) ≺ ϕ

(
(p− 1)!zp+j−1f (j−1)(z)

(−1)j−1(p+ j − 2)! ,
zf (j)(z)
f (j−1)(z) + p+ j − 1,

z2f (j+1)(z)
f (j−1)(z) + zf (j)(z)

f (j−1)(z) −
(
zf (j)(z)
f (j−1)(z)

)2

; z


implies

q(z) ≺ (p− 1)!zp+j−1f (j−1)(z)
(−1)j−1(p+ j − 2)!

and q is the best subordinant.

Proof. The proof is similar to that of Theorem 2.4 and is omitted. □
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4. Sandwich Results

By combining Theorem 2.2 and Theorem 3.2, we obtain the following sandwich
result.

Theorem 4.1. Let h1 and q1 be analytic functions in U , h2 be univalent in U , q2 ∈ Q1
with q1(0) = q2(0) = 1 and ϕ ∈ Φj [h2, q2] ∩ Φ′

j [h1, q1]. If f ∈ Σp,

(p− 1)!zp+j−1f (j−1)(z)
(−1)j−1(p+ j − 2)! ∈ H ∩Q1

and

ϕ

(
(p− 1)!zp+j−1f (j−1)(z)

(−1)j−1(p+ j − 2)! ,
zf (j)(z)
f (j−1)(z) + p+ j − 1,

z2f (j+1)(z)
f (j−1)(z) + zf (j)(z)

f (j−1)(z) −
(
zf (j)(z)
f (j−1)(z)

)2

; z


is univalent in U , then

h1(z) ≺ϕ
(

(p− 1)!zp+j−1f (j−1)(z)
(−1)j−1(p+ j − 2)! ,

zf (j)(z)
f (j−1)(z) + p+ j − 1,

z2f (j+1)(z)
f (j−1)(z) + zf (j)(z)

f (j−1)(z) −
(
zf (j)(z)
f (j−1)(z)

)2

; z


≺h2(z)

implies

q1(z) ≺ (p− 1)!zp+j−1f (j−1)(z)
(−1)j−1(p+ j − 2)! ≺ q2(z).

By combining Corollary 2.1 and Corollary 3.1, we obtain the following sandwich
result.

Corollary 4.1. Let β, γ ∈ C and let h1, h2 be convex in U with h1(0) = h2(0) = 1.
Suppose that the differential equations q1(z)+ zq′

1(z)
βq1(z)+γ

= h1(z), q2(z)+ zq′
2(z)

βq2(z)+γ
= h2(z)

have a univalent solutions q1 and q2, respectively, that satisfies q1(0) = q2(0) = 1 and
q1(z) ≺ h1(z), q2(z) ≺ h2(z). If f ∈ Σp,

(p− 1)!zp+j−1f (j−1)(z)
(−1)j−1(p+ j − 2)! ∈ H ∩Q1

and

(p− 1)!zp+j−1f (j−1)(z)
(−1)j−1(p+ j − 2)! +

(−1)j−1(p+ j − 2)!
[
zf (j)(z) + (p+ j − 1)f (j−1)(z)

]
β(p− 1)!zp+j−1 (f (j−1)(z))2 + γ(−1)j−1(p+ j − 2)!f (j−1)(z)
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is univalent in U , then

h1(z) ≺(p− 1)!zp+j−1f (j−1)(z)
(−1)j−1(p+ j − 2)!

+
(−1)j−1(p+ j − 2)!

[
zf (j)(z) + (p+ j − 1)f (j−1)(z)

]
β(p− 1)!zp+j−1 (f (j−1)(z))2 + γ(−1)j−1(p+ j − 2)!f (j−1)(z)

≺h2(z)
implies

q1(z) ≺ (p− 1)!zp+j−1f (j−1)(z)
(−1)j−1(p+ j − 2)! ≺ q2(z).
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