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FURTHER REVERSE INEQUALITIES FOR THE NUMERICAL
RADIUS AND OPERATOR NORM OF HILBERT SPACE
OPERATORS

MOHAMMAD SABABHEH!? AND HAMID REZA MORADI?

ABSTRACT. The main purpose of this paper is to give some reverse inequalities for
the numerical radius of bounded linear operators on a Hilbert space, in a way that
complements many celebrated inequalities in the literature.

1. INTRODUCTION

Let B(H) be the C*-algebra of all bounded linear operators on Hilbert space H,
with identity I. For A € B (H), let r (4), w (A), and ||A|| denote the spectral radius,
the numerical radius and the operator norm of A, respectively. It is well known that
for every A € B(H),

r(A) w (4) <Al
Recall that r(A) = sup{|A| : A € 0(A)}, where o(A) is the spectrum of A, w(A) =

sup [(Az,x)| and ||A|| = sup |(Az,y)|. The Crawford number of A € B (H) is
ll=]|=1 l[=l[=llyll=1
defined by m (A) = ||iﬂl£1 |(Az, ).

It is well known that w (-) defines a norm on B(H), which is equivalent to the
operator norm. In fact, the following more precise result holds for every A € B(H),
as one can find in [11, Theorem 1.3-1],

(1) SIAL < w(4) < 4]
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The inequalities in (1.1) are sharp. Indeed, if A% = 0, then the first inequality becomes
an equality, while the second inequality becomes an equality if A is normal.

For recent reverses and refinements of the inequalities in (1.1), see [13-16,18,19,25,
27]. In addition, for a comprehensive account of the numerical radius, the reader is
referred to [11]. Finding reverse inequalities for already established results enhances
our understanding of these notions, and provides new tools and auxiliary results that
we might benefit from. The above references, and many others, have discussed several
forms of reverse inequalities.

While the operator norm is sub-multiplicavive in the sense that |AB|| < ||A]| - || B||
for all A, B € B(H), the numerical radius is not. However, the numerical radius enjoys
the power inequality stating that, for A € B(H),

(1.2) w (A7) < WP(A),

for p = 1,2,... This was first considered by Berger in [1]. However, the problem of
finding the smallest constant ¢ such that

W(A) <cw(AP), c¢>1

Y

is still unsolved.
A weaker version of sub-multiplicativity for the numerical radius asserts that [11,
Theorem 2.5-2]:

(1.3) W(AB) < 4w(A)w(B).

This paper presents a general discussion that leads to several relations in the above
setting. More precisely, we find some additive reverses of celebrated inequalities related
to the numerical radius and the operator norm. For example, we find a constant 7y,
that depends on A, B € B(H), such that w(AB) < w(A)w(B) + 71. This provides a
weak sub-multiplicative behavior of the numerical radius.

Further, we show that

1
5 1A+ 1A = w? (4) < e,
for some constant ~y,, providing an additive reverse of the celebrated inequality [17]
1 *
(1.4) W (A) < 5 |1AF + 1A

Many other relations are proved similarly, covering a wide selection of celebrated
results in this direction.

We will need the following lemmas to achieve some of our results. The first lemma
presents a refinement and a reverse for the simple inequality a” < 0P, whenever a < b
and p > 1.

Lemma 1.1. Let a,b,m, M € R and let p > 1. Then,
a? +pm?~' (b —a) <P,

O<m<a<b< M = 1
W <al 4+ pMP~ (b—a).
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Proof. Applying Lagrange theorem (Mean Value Theorem) on the function f(t) = ¢?
implies
f(b) = f(a) = pb"~' (b — a),

for some 6 € (a,b). This immediately gives the desired conclusion. O

Lemma 1.2 (Buzano’s inequality [2]). Let a,b,e € H with |le| = 1. Then,
1
[{a, e} (e, b)] < 5 (llall - [1Bl} + (@, b1)

Lemma 1.3 (Holder-McCarthy inequality [22]). Let A € B (H) be a positive operator.
Then, for any unit vector x € H,

(Az,z)" < (A"z,z), r>1.

Lemma 1.4 (Mixed Schwarz inequality [12, pp. 75-76]). Let A € B(H) and let
x,y € H be any vectors. Then,

[(Az.p)| < (1Al ) (|4 y, ).
For o, 5 € C and A € B (H), we define the following transform
Cap(A) = (A" —al) (Bl — A).

This transformation received some attention in the literature, as seen in [5,10]. In fact,
it was introduced in [5] as a tool for discussing some operator bounds. In [10], it was
discussed in further details as an indicator of some relations among different operator
forms. Also, in [23], it was applied to obtain certain Cassels type inequalities.

We recall that a bounded linear operator A on the complex Hilbert space (H, (-, ))
is called accretive if Re (Az,z) > 0 for any x € H, where Re(+) denotes the real part
operation.

It has been shown in [7, Lemma 86] that if A € B(H) is such that C,z(A) is
accretive, then

o — B
(1.5) <o

A_Oz+ﬁ[|
2

The Euclidean operator radius shows some benefits when dealing with the numerical
radius. We recall that if Ay,..., A, € B(H), then the Euclidean operator radius of
these operators is defined by [24]

1
n 2
We <A17A27"'7An> = sup (Z‘<A1$7$>’2> :

lzl=1 \i=1
The following upper bound for the Euclidean operator radius is well known [3, Theo-
rem 1]

(1.6) w? (A, B) < |4 + B

Related inequalities that include a reversed version of this will also be discussed in
the sequel.
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2. UppER BOUNDS FOR [[A* + B[

First, we prove the following general form that provides a reversed version of the
simple inequality w?(A4) + w?(B) < || A||* + || B

Theorem 2.1. Let A, B € B (H). Then, for any o, 5, A\, u € C,
2 2
o — A—
e e

[P + 1B < w?(4) + w?(B) + ==+
2 2
s |

Proof. On account of [8, Theorem 3], we have

2 2
| 46! +Hx_ozwe

(2.1) lz]l* = [z, e)]” <

Y

2

where z,e € H, |le]| = 1 and a, f € C. Replacing x by Az and e by z, with ||z|| =1
in (2.1), we obtain

2 2

(2.2) 1Az < [(Az, 2)[? + 12 45’ 4 (A—O”ff)x .
Similarly, we can show that

A — pl? A 2

(2.3) |BalP < |[(Bx.z)[+ 4“‘ + (B—?I)x ,

for any pu, A € C. Combining (2.2) and (2.3) implies that
<(]A|2 + ]B|2> a:,x> = <\A]2x,$> + <\B]2:L’,w>
= ||| + || Bz|”

a—6\2+ A — pf?
1 1

(B— MI) w
2

2 2
Swz(A)—i—uﬂ(B)—i— |a 4B| 4 |)‘ 4M|

‘B_wj
2

< (A, 2)? + |(Ba, 2)* + |

(2.4) —|—H<A—a+5l>x2

2

2

i

2
+

a+p ?

2
where we have used the definitions of the numerical radius and the operator norm to

obtain the second inequality above. We deduce the desired inequality by taking the
supremum over z € H with [|z|| = 1. O

+ 1

Y

-

The approach we adopt in this work can be also applied to obtain bounds for
w? (JA| +1|BJ), as follows.
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Corollary 2.1. Let A, B € B(H). Then, for any o, 3, A\, u € C,
o — B N A —pf
4 4

A+

2
B-"2F1
5

w* (JA| +1]B]) < w? (4) +w* (B) +

+la-

Proof. This follows from Theorem 2.1 noting that w?(|A| +i|B|) < H|A|2 + |B|2H . O

Remark 2.1. Set « =  and A\ = p, in Corollary 2.1, and then take the infimum over
a and A\, we get

w? (|A] +1|B]) < w? (A) +w* (B) + inf || A~ ol|]* + inf ||B — A|?.
In particular,
5@ (|A] +1]A47)) < w? (A) + inf [|A - aI|.

Notice that the above inequality provides a reverse for the first inequality in [20,
Corollary 2.2].

Another upper bound for H]A|2 + |B|2H in terms of w?(A) + w?(B) can be stated in
the following form.

Proposition 2.1. Let A, B € B (H). Then, for any a, B, A\, u € C,
[l + 18P < i [1AP + 1472 + 1B +1B*P| + ; (w(4%) +w (BY)

o =B [N —uf a+p | A+ p
—7 B—il
+ 4 + 4 2

+|a-

Proof. Let x € H be a unit vector. If we put a = Ax (resp. Bx), b = A*x (resp. B*x),
and e = z, in Lemma 1.2, we obtain

[(Az,2)|” + [(Bz, 2)[*
<o (IlAz] - |42 + |{ A%, 2)| + || Ba|| - | Bxl| + |( B, z)])

:; \/<\A12x,x> (|42, 2) + | (A%, 2)| + \/<|B|2x,x> (1B*[Pz,x) + \(B%,@D
i<(|A|2 + A" +|Bf + |B*[*) 2, 2) + ; (|(A%,2)| + (B, 7))

<2 1A + 1477 + |BI® + 1B || + ; (w(4?) +w(B?),

where the second inequality is obtained from the arithmetic-geometric mean inequality.
So, we obtain the desired result after adding (2.2) and (2.3) together and then taking
the supremum over all unit vectors x € H. O
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Remark 2.2. (i) If we set B = A and aw = f = A = p, in Proposition 2.1, we get
2 1 2 *2 1 2 . 2
JAIP < 3 [I4P + 47| + G0 (4%) + inf 14 — et
(ii) If we set B = A* and oo = 3, A = p = @, in Proposition 2.1, we get
1
SIAP + 14| < w (42) + 2inf [|A - al|* < w (A)° + 2inf [|A - aI||*.
2 a€eC aeC
This provides a reverse and a refinement of the inverse of (1.4).

Remark 2.3. Both Theorem 2.1 and Proposition 2.1 provided upper bounds for
H|A\2 +|B \QH In this remark, we show that the two bounds are incomparable in
the sense that neither upper bound is always better than the other. For this, we
consider two choices of A, B.

. . 1 1
First, if we let A = [ 1 1

0 1

]andB—[_l 0

1 , we find that w?(A)+w?(B) = 2
and ) )
i AP + (4P + 1B + |B*P| + 5 (w (4%) +w (B%)) =25,
showing that Theorem 2.1 is sharper than Proposition 2.1 for these A, B.
On the other hand, letting A = l _02 _02 ] and B = [ _02 ;) ] , we find that
w?(A) + w?(B) ~ 15.3218 and

TIAR 1477 1B 418 + 3 (w0 (47) + (B7)) ~ 144357

We point out that for A =

-1 0 11
0 1 1 and B = [ 10 1, the two bounds are equal.

Proposition 2.2. Let A, B € B (H). Then, for any o, B, A\, u € C,

2 2
_ )\_
H|A|2+|B|2HSW(‘A’+i’B|)w(|A*’+i‘B*|)+‘O‘ 6| _'_| /L|

4 4
" HA— “*%Hz ¥ HB BTy
2 2
Proof. Let x € H be a unit vector. Then,
(2.5) |(Az, 2)[* + [(Bz, z)|”

<(|A|x,z) (|A"| z,x) + (|B| x,z) {|B*| ,z) (by Lemma 1.4)

s¢ (Al 2, 2)* + (| Bz, 2)*) ({|A*] @, 2)* + (|B*| z, 7))
(by the Cauchy-Schwarz inequality)

=[(|Alz,2) +1(|B|z,2)| - |{| A" 2, 2) +1(|B"| z, )]
(since |a + ib] = Va2 + b2, a,b € R)
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=[{(Al +1]B]) z,2)| - ((|A"] + i B"]) z, 7))
<w (Al +i[B|)w (A% +1]B"]).

From (2.2) and (2.3) above we have
(2.6) Az < [(Az, )| + 12 _5’ H(A—a—gﬁf>a:

Similarly, we can show that

2

2

A —pl? A
(2.7) |Bz|* < |<Bx,x>|2+|4“|+ H(B— ;”J>x

Noting that ||Az||* = (Az, Az) = (|A|*z, z) and that ||Bzx||*> = (Bz, Bz) = (|B|*, 1),
then (2.6) and (2.7), and using (2.5) imply

((IA + |B]?)z, 2) <w (JA| +i|B[)w (|JA"| +1] B"])

oz o j+ﬂ>x
-2

Taking the supremum over all unit vectors x € H implies the desired conclusion. [J

2
N A — pf?
1

Remark 2.4. 1f we set B = A* and a = 5, A = u = @, in Proposition 2.2, we obtain

[IAP + 14| < w (Al +i 1A ) w (A7 +1]A]) + 2] A - o |
= w (A +i|A)w (i (|47 +i]A]) +2/|A - ||
= w(|A] +i|A)w (i|A%] = |A]) + 2]|A — ||
= w (A +i|A)w (47 = |A])") + 2[|A = aT||?
= w (A +i|A)w (=i 4| = [A]) + 2] A = oI |
= w (Al +i|A)w (= (JA] +1]A"]) + 2] A — o |
=w? (JA| +i]AY]) +2||A - a[||2.

Namely,
AP + A7)

| <w?(lA]+i]4%) + 2inf || A~ al|l”
ac
The above inequality provides a reverse for the second inequality in [20, Corollary 2.2].

Another upper bound for H|A|2 + |B|2H is found next. This bound relates the
two quantities H|A|2 + \B|2H and H|A*]2 + |B*?
changing A to A* and B to B* in this result.

‘. A reversed version is obtained by
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Corollary 2.2. Let A, B € B(H). Then, for any «, 3, A\, u € C,
LS
2

+HB—A+“I

mA|+MﬂH<HMﬂ—HB|H+ cli

oo )

Proof. Direct calculations show that w?(|A| +i|B]|) < H|A[2 + |B[2H . Employing this
inequality in Proposition 2.2, we obtain

2

2
|lAP + |B] H<\/H|A| +|BP- [14* + 18] H+ ! \A—4uy
Tl
2

We obtain the desired result if we apply the arithmetic-geometric mean inequality on
the square root on the right side. O

Remark 2.5. If we set a = [, A = u, and then taking infimum over a and ), in
Corollary 2.2, we obtain

(2.8) Hmf+u#HgWﬁf+uwﬂha(mﬂm—anﬁ+mwB—Amﬂ.
acC AeC
Of course, if we replace A and B by A* and B*, in (2.8), we get
Hmﬂ%HBWHgWAE+M#H+2OMHAhﬂuW+nﬁW¥_Amﬁ.
acC AeC
Letting B = A, « = XA and 8 = p, in Theorem 2.1, we infer that
2
o = BI° ‘ ath,
4

(2.9) 1A]* = w?(4) < HiA-—

In the following, we present an upper bound for the non-negative difference ||A||* —
w?(A). We remark that the fact of Corollary 2.3 was pointed out in [4, Corollary 1].

Corollary 2.3. Let A€ B (H). Then,
(2.10) JAIP = w*(4) < inf |4 = o]

Proof. Since «,  are arbitrary, we can choose o = /3 in (2.9) to get
IAII* = w?(A4) < [|A = al|*.
By taking infimum over a € C, we infer (2.10). O

Remark 2.6. We have seen that Proposition 2.2 has added a new upper bound for
H |A]* + |B\2H . This remark shows that this bound is independent of both bounds in
Theorem 2.1 and Proposition 2.1. For this purpose, let us use the notations

Ri(A, B) =w?*(A) + w?*(B),
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Ro(A, B) :i AP+ 14 + B + |B*P| + ; (w(4?) +w (BY))

and
R3(A, B) = w (Al +1[B[)w (|A*] +1[B7]) .
If we let A = l 8 _21 ] and B = [ _03 _13 1 , then numerical calculations show

that, for these matrices,
Ri(A, B) =~ 21.1939, Ry(A, B) =~ 19.8777, R3(A, B) =~ 22.7987,
showing that Theorem 2.1 and Proposition 1.1 can be both better than Proposition

2.2. On the other hand, if we let A = [ _21 :é ] and B = [ g i) ] , we find that

Ri(A, B) = 30.3463, Ry(A, B) ~ 28.3897, R3(A, B) =~ 25.3546,
showing that Proposition 2.2 can be better than both Theorem 2.1 and Proposition 2.1.
Proposition 2.3. Let A € B(H) and p > 1. Then,
IAJI* = w? (A) < p[ AP inf A~ o]

Proof. We know that w? (A) < ||A||>. We infer by substituting a = w? (4), b= M =
|A||?, in Lemma 1.1, that

A1 < w? (A) + pll AP (IA]* = w* (A))

< w? (A) + p[ AP inf A — o],

where the second inequality is obtained from Corollary 2.3. This completes the proof
of the theorem. 0

Remark 2.7. Let A € B (H). It can be easily seen that there is a scalar v € C such
that ir€1£ |A—al| =|A—~I|. Put
r, = {7 €C: [[A—~T| = inf |4~ afu}.
Therefore, from Corollary 2.3, we have
14| = w?(A) < inf [|A — al||* = [A=~I||, v€Ta.

Letting B = A*, in Theorem 2.1, we get
(2.11)

(1A 1472 < 202 () + 122 AL Poul HA

2
+

2
_a+fh, A*—A;“fl

2

4 4

In the following, we aim to find an upper estimate for the non-negative quantity
LIIAP + 1A% ?[| = w? (A), motivated by (1.4).
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Corollary 2.4 ([26, Corollary 2.2]). Let A € B(H). Then,

1 . .

5 |[[AP A = o (4) < inf ||A —aI|)".
Proof. 1t follows from (2.11) that

1 . 1 .

(2.12) 5 (1A 1A = 5 (14 = oI + 147 = MJI") < w? (4).
We obtain the desired result if we put A = @ in (2.12). O
Proposition 2.4. Let A, B € B(H). Then, for any o, B, A\, u € C,

o= 8" | A —pl®
B R
2

|14 + Bl <max {JA|%, | BI*} + w (B"A)
a+p
2

Proof. 1t follows from (3.239) in [7] that
( Az, 2)[* + |(Bz, 2)|* < max {||Az|)*, || Bz|*} + |(Az, Bx)]

2
A
IH + HB _ ;“1

+|a-

for any unit vector € H. Hence, by adding (2.2) and (2.3) together, we obtain

(2.13)
2 2
— )\ _
(1A + 1BP) ,2) < max {|[ 4], |1Ba |} + Az, Bay| + 2 =00 A=

4 4
2
—l—“(A—a;BI)x ( —)\;—'uf>x

We deduce the desired result by taking the supremum over all unit vectors x € H. [

2
+

Remark 2.8. By setting a = § and A = p, in Proposition 2.4, we get
147 + |BI?| < max {||AI%, | BI*} + w (B*A) + A = oI |* + || B = AI|)*
If we put B = A*, we infer that
AP + AP < 1AI° +w (4%) + A = I || + A" = AT,
for any a, A € C. The case A\ = @ implies that
[P + 147 < AI° + w (4%) + 2inf A - aI|)*.

Remark 2.9. If we let Ry(A, B) = max{||A||2, ||B||2} + w(B*A), we find that for

2 —1 -1 -3
A= [0 ]me [

Ri(A,B) =16, Ry(A,B)~17.9142, Rs(A, B)~ 23.3246, R4(A, B) ~ 22.7967,

where R, Ry and R3 are as in Remark 2.6, showing that the bound in Proposition 2.4
can be weaker than those in Theorem 2.1, Proposition 2.1 and Proposition 2.2. On the
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-1 -3

other hand, letting A = [ _9 _9

25.698,
Ry(A, B) =~ 25.8801, R3(A, B)~24.7839, R4(A,B) ~ 21.0623,
meaning that Proposition 2.4 can also be better than the three aforementioned results.

Proposition 2.5. Let A, B € B (H). Then, for any o, 3, A\, € C,

] and B = [ _12 _32 ] shows that R;(A, B) ~

(1417 +1BP| < 141 = 1BP| + 2w (B*4) + o= B, A=l

2 2
2 [ ||A -
el

Proof. We can see from (2.13) that
((1AP +1B1") 2, x)

2 2
_ N\ —
< max {]| Ao, ||Ba:||2}+|<Aa: By + 12280 Ao n

s o)

(o254

1
=5 (1 42]* + 11 Bz[* + \|1A:c||2 — ||Bz|]*|) + [{Az, Bz)| +

a2 +|o-252)

:; (((1AP + 1BR) 2,2) + [( (141 = 1BP) 2,2)|) + [{Ax, Ba)| + ’“‘4@

2 2 2
Ml (A—a;rﬂl>x (B—)\;MI>95

2
A
+HB—;“I

[ T
4 4

1 +

We deduce the desired result by taking the supremum over all unit vectors x € H. [

+ |

Remark 2.10. By setting a = 8 and A\ = p, in Proposition 2.13, we get
AP+ [BP| < ||IAP = 1BP| + 2 (w(B*A) + (|4 = aI|* + ||B = AI|]*)) .
If we put B = A*, we infer that
1147 + 4P| < 147 = |4 P + 2 (w (42) + (14 = ad|? + | A" = AT|1P)),
for any a, A € C. The case A = @ implies that
[1AP + 14 < |14 - 1A + 2 (w (42) +2in 14 - a[\|2) .

In connection with (1.6), we present the following upper bound for H |A]? + |B[2H -
w? (A, B).
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Theorem 2.2. Let A, B € B(H). Then, for any o, 5, A\, u € C,
(2.14)

B R

In particular,

(2.15)

A+ |BI?|| < w?(A, B) + inf | A — aI|* + inf || B — AT|]*
aeC AeC

Proof. 1t observes from the first inequality in (2.4) that

((IAP + |BP) z,z) <[(Az,)|* + [( Bz, z)[* +|a_’| +|A—Ld

e ]

ja — B” |/\—u|
T+

e e |

2

<w?(A,B) +

B—il

We get the first inequality by taking the supremum over z € H with [|z|| = 1.
The second inequality follows from (2.14) by placing @ =  and A = p and then
taking the infimum over o and . O

If T'= ReT +ilmT is the Cartesian decomposition of T, then from Theorem 2.2,
we have the following reverse of (1.4).

Corollary 2.5. Let A € B(H). Then, for any a, A € C,
1 *
5 1A+ 1A

| = w?(A) < inf [Red — af|* + inf [[TmA — AT|]*
aeC AeC
Remark 2.11. If, in Corollary 2.5, ReA and ImA are scalar multiples of the identity,
we deduce that 1 H|A|2 + |A*|2H = w?(A).
3. UPPER BOUNDS FOR || B*A|| AND THE POWER INEQUALITY

Due to sub-multiplicativity of the operator norm, one has ||B*A|| < || B|| - ||4]] <
4w(B)w(A). In the following result, we present a new form for an upper bound of
| B*A|| in terms of the numerical radii.

Theorem 3.1. Let A, B € B (H). Then, for any o, 5, A\, u € C,

2 2
|BA| Ssz (A) + ’O‘_f' + ||A -

A—pf? A 2
XJMHUMHB_;M}
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Furthermore, the inequality is sharp.

Proof. We can show from (2.2) that

(31) 1Byl < |(By ) + P H( Ay

for any unit vector y € H. So, by (2.2) and (3.1), we can write
[(B"Az,y)| = |(Az, By)|
< [[Az] - | By

§J|(Ax,x>|2 I—@I H(A—Q;LBI)x
XJ\(By7y>I2+|A_4M’ +H<B—A—2Hlf>y

2 2
SJWQ(A>+M+HA_MIH
4 2
2 2
XJWQ(BHW A-QHLI

We deduce the desired inequality by taking supremum over z,y € H with ||z| =
lyll = 1. m

Corollary 3.1. Let A, B € B(H). Then, for any a, A € C,
1B*A| < \/w2 (A) + inf |A — al|? Jw? (B) + inf | B — M|*
aeC AeC

2

)

2

2

+|B -

Proof. Letting o = 3 and A = p and then taking infimum over o and A, in Theorem
3.1, we obtain the desired inequality. 0

Remark 3.1. We notice that if A = 0,1, B = 051, for some 01,09 € C, then by
selecting o = 01,7 = 05 in Corollary 3.1, the inequality becomes an equality with
both sides equal to o105.

We continue this section with the following result, which yields a reverse for the
inequality (1.2) in the case p = 2.

Theorem 3.2. Let A € B(H). Then, for any o, B, A\, € C,
2 2 2
w2<A)_w(A2)§J|Oé 5 ‘A_a;rB[MIA o +HA*_MI

2
Proof. Thanks to [8, Theorem 4], we have
1
2) 2

(32) a9) — (@, 2) <z,y>yg('a;m+\|x—a;%
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A —uf’ A+ p
X( 1 TP

1

2\ 2

for all x,y,z € H, with ||z|| = 1, and for every «, 8, A\, u € C. Applying (3.2) for
r = Au, y = A*u and z = u, we get

[(Au, u)|* — ‘<A2u,u>’
< ‘<A2u, u> — (Au, u)g‘

(!a—ﬁ\ H(A—QJFBI)u
2

1
2) 3
for any v € H with ||u|| = 1. Namely,

O e e

atf

2

=l e 2N Y
4 2

2) 2
for any v € H with ||ul| = 1.
We conclude the result by taking the supremum over v € H with [ju]| = 1 in the
above inequality. 0

1
2)2
)

2
(M—m *H(A*‘HHO“
4 2
2\ 3
)/)

If we put a =  and A = p, in Theorem 3.2, we get
(3.3) W (A) Sw (A?) +[|A—al| - A" = |
In particular, if A = @, in (3.3), we infer that [6]
2 . 2 < i _ 2.
W (A) —w (A%) < inf [|A —al|
When = € H is a unit vector, the Cauchy-Schwarz inequality asserts that |(Az, z)| <

|Az||. In the following, a reversed version of this inequality is presented.

Proposition 3.1. Let A € B(H) and let x € H be a unit vector. Then, for any

a,BeC,
2
(A—JFBI> —m2<A—a;ﬁI>,

where m(X) = ‘Hnlf | (Xz,z)|, for X € B(H).
Proof. Assume that ® is a unital positive linear map on B (H). From [21, (4.2)], we
know that for any A € B (H)

(3.4) ® (JAP) = [@ (A =@ (JA—cI|’) = |®(A—cD)]’, ceC.

14z ])* < [(Az,z)|” +
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Now, when = € H is a unit vector, the mapping ® : B(H) — B(H) defined by
®(A) = (Az, z) is a unital positive linear map. Consequently, (3.4) implies, for any
unit vector z € H and A € B(H),

|Az||* - [(Az, 2)* = (|APz,z) — |(Az, 2)|?

= (JA]) = |® (A)

:@(‘A— . ]2)—‘¢<A—O‘;BI>‘2
{257 (4 570) )
|- o - (42520 )]
< < 2—m2<A—a;BI>,

< ||| A — ot 5]) T
as required. [l

2

2

The next result improves [9, Corollary 2.4].

Corollary 3.2. Let A € B(H). If C, 45 (A) is accretive, then

2
“AHQ_WQ(A)Sla—fl_mZ(A atB, )

2

Proof. 1t follows from Proposition 3.1 and the relation (1.5) that
2
0l < Az + | (4= S5 20) o 2 (a5 L1)
2
+ 8 a+f
<w?(A <

SRR e R Gl o)

2
§w2<A>+|(J‘_45|—m2<A—0”551>.

We conclude the result by taking the supremum over x € H with ||z|| = 1 in the above
inequality. U
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