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EXISTENCE AND STABILITY OF NONLOCAL INITIAL VALUE
PROBLEMS INVOLVING GENERALIZED KATUGAMPOLA

DERIVATIVE

ARIF S. BAGWAN1 AND DEEPAK B. PACHPATTE2

Abstract. In this paper, the existence results for the solutions to nonlocal initial
value problems involving generalized Katugampola derivative are established. Some
fixed point theorem techniques are used to derive the existence results. In the sequel,
we investigate the generalized Ulam-Hyers-Rassias stability corresponding to our
problem. Some examples are given to illustrate our main results.

1. Introduction

In recent decades, the theory of continuous fractional calculus and their applications
have remains a centre of attraction in many mathematical research. Indeed, fractional
differential equations (FDEs) have grabbed desired attention by many authors. One
can see [1–5, 7–13, 20, 21, 23, 26, 27, 33, 34] and references therein. Several definitions
of fractional derivatives and integrals have been introduced during the theoretical
development of fractional calculus. See [1, 2, 5, 7, 8, 16, 20–22, 25, 27] and references
therein.

Initially, Hilfer et al. [16,17] have proposed linear differential equations involving new
fractional operator. They applied operational method to solve such FDEs. Further,
Furati et al. [14, 15] investigated non-linear problems and discussed existence and
non-existence results for FDEs with Hilfer derivative operator. Benchohra et al. [6,7],
U. N. Katugampola [20,21], D. B. Dhaigude et al. [8, 9], Kou et al. [23], J. Wang et
al. [32, 33] and many more authors, see [1, 2, 5, 19, 29,31] and references therein, have
established the existence results for FDEs with several fractional derivative operators.
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Recently, D. S. Oliveira et al. [27] in their article proposed a new fractional differ-
ential operator: Hilfer-Katugampola frational derivative (also known as generalized
Katugampola derivative). Further, they established the existence and uniqueness
results for the FDEs with generalized Katugampola derivative.

The theory of Ulam stability is also evolved as one of the most interesting field
of research. Initially, Ulam [30] established the results on the stability of functional
equations. Thereafter, remarkable interest have been shown by authors towards the
study of Ulam-Hyers stability and Ulam-Hyers-Rassias stability for various FDEs, see
[1, 6, 7, 18,24,31,33] and references therein.

In this paper, we studied the existence and stability of nonlocal initial value problem
(IVP) involving generalized Katugampola derivative of the form:

ρDµ,ν
a+ u (t) =f (t, u (t)) , µ ∈ (0, 1) , ν ∈ [0, 1] , t ∈ (a, b] ,(1.1)

ρI1−β
a+ u (a) =

m∑
i=1

λiu (κi) , µ ≤ β = µ+ ν (1− µ) < 1, κi ∈ (a, b] ,(1.2)

where f is a given function such that f : (a, b]× R→ R, 0 < ρ. The operator ρDµ,ν
a+

is the generalized Katugampola fractional derivative of order µ and type ν and the
operator ρI1−β

a+ u (a) is the Katugampola fractional integral of order 1− β, with a > 0,
κi, i = 1, 2, . . . ,m, are prefixed points satisfying a < κ1 ≤ κ2 ≤ · · · ≤ κm < b.

Furthermore, the paper is arranged as follows. In Section 2, we recall some basic
definitions, important results and preliminary facts. We establish the equivalent
mixed type Volterra integral equation for the IVP (1.1)–(1.2). In Section 3, we
present existence of solution using the Krasnoselskii fixed point theorem. Further, we
present the generalized Ulam-Hyers-Rassias stability to our problem. An illustrative
example is given at the end of the main results.

2. Preliminary Results

In this section, we provide some basic definitions of generalized fractional integrals
and derivatives, some important results and preliminary facts that are very useful to
us in the sequel.

Let 0 < a < b <∞ be a finite interval on R+ and C [a, b] be the Banach space of
all continuous functions h : [a, b]→ R with the norm

‖h‖C = max {|h (t)| : t ∈ [a, b]} .

For 0 ≤ β < 1 and the parameter ρ > 0 we define the weighted space of continuous
functions h on (a, b] by

Cβ,ρ [a, b] =

h : (a, b]→ R :
(
tρ − aρ

ρ

)β
h (t) ∈ C [a, b]

 ,
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with the norm

‖h‖Cβ,ρ =

∥∥∥∥∥∥
(
tρ − aρ

ρ

)β
h (t)

∥∥∥∥∥∥
C

= max
t∈[a,b]

∣∣∣∣∣∣
(
tρ − aρ

ρ

)β
h (t)

∣∣∣∣∣∣ .
It is obvious that C0,ρ [a, b] = C [a, b].

Let δρ =
(
tρ−1 d

dt

)
. We define the Banach space of continuously differentiable

functions h on [a, b] by

C1
δρ,β [a, b] = {h : [a, b]→ R : δρh ∈ Cβ,ρ [a, b]} ,

with the norms
‖h‖C1

δρ,β
= ‖h‖C + ‖δρh‖Cβ,ρ

and
‖h‖C1

δρ,β
= max {|δρh (t)| : t ∈ [a, b]} .

Note that C0
δρ,β [a, b] = Cβ,ρ [a, b].

Definition 2.1 (Katugampola fractional integral [20,27]). Let µ, c ∈ R, with µ > 0,
u ∈ Zp

c (a, b), where Zp
c (a, b) is the space of Lebesgue measurable functions with

complex values. The left-sided Katugampola fractional integral of order µ is defined
by

(2.1) (ρIµa+u) (t) = ρ1−µ

Γ (µ)

t∫
a

xρ−1u (x)
(tρ − xρ)1−µdx, t > a.

Definition 2.2 (Katugampola fractional derivative [21, 27]). Let µ, ρ ∈ R be such
that µ /∈ N, 0 < µ, ρ. The left-sided Katugampola fractional derivative of order µ is
defined by

(ρDµ
a+u) (t) = δnρ

(
ρIn−µa+ u

)
(t) = ρ1−n+µ

Γ (n− µ)

(
t1−ρ

d

dt

)n t∫
a

xρ−1u (x)
(tρ − xρ)1−n+µdx,(2.2)

where n = [µ] + 1 is such that [µ] is the integer part of µ.

Definition 2.3 (Generalized Katugampola fractional derivative [27]). Let 0 < µ ≤ 1
and 0 ≤ ν ≤ 1. The generalized Katugampola fractional derivative (of order µ and
type ν) with respect to t is defined by

(ρDµ,ν
a+ u) (t) =

±ρIν(1−µ)
a±

(
tρ−1 d

dt

)1
ρI

(1−ν)(1−µ)
a± u

 (t)

=
{
±ρIν(1−µ)

a± δρ
ρI

(1−ν)(1−µ)
a± u

}
(t) ,(2.3)

where ρ > 0, u ∈ C1−β,ρ [0, 1] and I is Katugampola fractional integral defined in
(2.1).
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Remark 2.1. ([27]). For β = µ + ν (1− µ), the generalized Katugampola fractional
derivative operator ρDµ,ν

a+ can be expressed as

(2.4) ρDµ,ν
a+ = ρI

ν(1−µ)
a+ δρ

ρI1−β
a+ = ρI

ν(1−µ)
a+

ρDβ
a+ .

Lemma 2.1 ([27]). Let µ > 0, 0 ≤ β < 1 and u ∈ Cβ,ρ [a, b]. Then

(ρDµ
a+

ρIµa+u) (t) = u (t) , for all t ∈ (a, b] .

Lemma 2.2 (Semigroup property [27]). Let µ > 0, ν > 0, 1 ≤ q ≤ ∞, a, b ∈ (0,∞)
such that a < b and ρ, s ∈ R, s ≤ ρ. Then the following property holds true

(ρIµa+
ρIνa+u) (t) =

(
ρIµ+ν
a+ u

)
(t) ,

for all u ∈ Zq
s (a, b).

Lemma 2.3 ([27]). Let t > a and for µ ≥ 0 and ν > 0, we haveρDµ
a+

(
xρ − aρ

ρ

)µ−1
 (t) = 0, 0 < µ < 1,

ρIµa+

(
xρ − aρ

ρ

)ν−1
 (t) = Γ (ν)

Γ (µ+ ν)

(
xρ − aρ

ρ

)µ+ν−1

.

Lemma 2.4 ([27]). Let µ > 0, 0 ≤ β < 1 and a, b ∈ (0,∞) such that a < b and
u ∈ Cβ,ρ [a, b]. Then

(ρIµa+u) (a) = lim
t→a+

(ρIµa+u) (t) = 0,

and ρIµa+u is continuous on [a, b] if β < µ.

Lemma 2.5 ([27]). Let µ ∈ (0, 1), ν ∈ [0, 1] and β = µ + ν − µν. If u ∈ Cβ
1−β [a, b]

then
ρIβa+

ρDβ
a+u = ρIµa+

ρDµ,ν
a+ u

and
ρDβ

a+
ρIµa+u = ρD

ν(1−µ)
a+ u.

Lemma 2.6 ([27]). Let µ ∈ (0, 1), 0 ≤ β < 1. If u ∈ Cβ [a, b] and ρI1−µ
a+ u ∈ C1

β [a, b],
then for all t ∈ (a, b]

(ρIµa+
ρDµ

a+u) (t) = −
(
tρ − aρ

ρ

)µ−1
(
ρI1−β
a+ u

)
(a)

Γ (µ) + u (t) .

Lemma 2.7 ([27]). Let u ∈ L1 (a, b). If ρDν(1−µ)
a+ u exists on L1 (a, b), then

ρDµ,ν
a+

ρIµa+u = ρI
ν(1−µ)
a+

ρD
ν(1−µ)
a+ u.
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Lemma 2.8 ([27]). Let f : (a, b]×R→ R be a function where f (·, u (·)) ∈ C1−β [a, b].
A function u ∈ Cβ

1−β [a, b] is a solution of fractional IVP

Dµ,ν
a+ u (t) = f (t, u (t)) , µ ∈ (0, 1) , ν ∈ [0, 1] ,

I1−β
a+ u

(
a+
)

= u0, β = µ+ ν − µν,

if and only if u satisfies the integral equation of Volterra type:

u (t) = u0(t− a)β−1

Γ (β) + 1
Γ (µ)

t∫
a

(t− x)µ−1f (x, u (x)) dx.

Definition 2.4 (Volterra integral equation). A linear Volterra integral equation of
the second kind has the form of

u (t) = u0 (t) +
t∫
a

K (t, x)u (x) dx,

where K is a kernel.

Theorem 2.1 (Krasnoselskii fixed point theorem [28]). Let E be a nonempty closed,
bounded and convex subset of a Banach space (B, ‖·‖). Further, assume that F and
G are two operators defined on E which map E into B such that

(a) F (x) +G (y) ∈ E for all x, y ∈ E;
(b) F is a contraction;
(c) G is continuous and compact.

Then F +G has a fixed point in E.

Using the above fundamental results, the following theorem yields the equivalence
between the IVP (1.1)–(1.2) and an improved mixed type Volterra integral equation.

Theorem 2.2. Let f : (a, b]× R→ R be a function such that for any u ∈ C1−β [a, b]
f (·, u (·)) ∈ C1−β [a, b], where β = µ+ ν − µν, with 0 < µ ≤ 1, 0 ≤ ν ≤ 1. Function
u ∈ Cβ

1−β [a, b] is a solution of IVP (1.1)–(1.2) if and only if it satisfies the following
mixed type Volterra integral equation

u (t) = K

Γ (µ)

(
tρ − aρ

ρ

)β−1 m∑
i=1

λi

κi∫
a

(
κi
ρ − xρ

ρ

)µ−1

xρ−1f (x, u (x)) dx

+ 1
Γ (µ)

t∫
a

(
tρ − xρ

ρ

)µ−1

xρ−1f (x, u (x)) dx,(2.5)

where K =
{

Γ (β)−
m∑
i=1

λi
(
κi
ρ−aρ
ρ

)β−1
}−1

.
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Proof. Let u ∈ Cβ
1−β [a, b] be a solution of IVP (1.1)–(1.2). Then by the Lemma 2.8

the solution of IVP (1.1)–(1.2) can be written as

(2.6) u (t) =
(
tρ − aρ

ρ

)β−1
(
ρI1−β
a+ u

)
(a)

Γ (β) + 1
Γ (µ)

t∫
a

(
tρ − xρ

ρ

)µ−1

xρ−1f (x, u (x)) dx.

Now, substitute t = κi in the above equation

u (κi) =
(
κi
ρ − aρ

ρ

)β−1
(
ρI1−β
a+ u

)
(a)

Γ (β) + 1
Γ (µ)

κi∫
a

(
κi
ρ − xρ

ρ

)µ−1

xρ−1f (x, u (x)) dx.

Multiplying by λi the both hand sides, we get

λiu (κi) = λi

(
κi
ρ − aρ

ρ

)β−1
(
ρI1−β
a+ u

)
(a)

Γ (β) + λi
Γ (µ)

κi∫
a

(
κi
ρ − xρ

ρ

)µ−1

xρ−1f (x, u (x)) dx.

Thus, we have

ρI1−β
a+ u (a) =

m∑
i=1

λiu (κi),

=

(
ρI1−β
a+ u

)
(a)

Γ (β)

m∑
i=1

λi

(
κi
ρ − aρ

ρ

)β−1

+ 1
Γ (µ)

m∑
i=1

λi

κi∫
a

(
κi
ρ − xρ

ρ

)µ−1

xρ−1f (x, u (x)) dx,

which implies

(2.7)
(
ρI1−β
a+ u

)
(a) = Γ (β)

Γ (µ)K
m∑
i=1

λi

κi∫
a

(
κi
ρ − xρ

ρ

)µ−1

xρ−1f (x, u (x)) dx.

Substituting (2.7) in (2.6) we get (2.5), which proved that u also satisfies integral
equation (2.5) when it satisfies IVP (1.1)–(1.2). This proved the necessity. Now, we
prove the sufficiency by applying ρI1−β

a+ to both hand sides of the integral equation
(2.5), we have

ρI1−β
a+ u (t) =ρI1−β

a+

(
tρ − aρ

ρ

)β−1
K

Γ (µ)

m∑
i=1

λi

κi∫
a

(
κi
ρ − xρ

ρ

)µ−1

xρ−1f (x, u (x)) dx

+ ρI1−β
a+

ρIµa+f (x, u (x)) .

By using Lemma 2.2, Lemma 2.1 and Lemma 2.3, we have

ρI1−β
a+ u (t) = Γ (β)

Γ (µ)K
m∑
i=1

λi

κi∫
a

(
κi
ρ − xρ

ρ

)µ−1

xρ−1f (x, u (x)) dx+ ρI
1−ν(1−µ)
a+ f (t, u (t)) .
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Since 1 − ν (1− µ) > 1 − β, by taking the limit as t → a and using Lemma 2.4, we
have

(2.8)
(
ρI1−β
a+ u

)
(a) = Γ (β)

Γ (µ)K
m∑
i=1

λi

κi∫
a

(
κi
ρ − xρ

ρ

)µ−1

xρ−1f (x, u (x)) dx.

Now, substituting t = κi in (2.5), we have

u (κi) =
(
κi
ρ − aρ

ρ

)β−1
K

Γ (µ)

m∑
i=1

λi

κi∫
a

(
κi
ρ − xρ

ρ

)µ−1

xρ−1f (x, u (x)) dx

+ 1
Γ (µ)

κi∫
a

(
κi
ρ − xρ

ρ

)µ−1

xρ−1f (x, u (x)) dx.

Then we have
m∑
i=1

λiu (κi) = K

Γ (µ)

m∑
i=1

λi

(
κi
ρ − aρ

ρ

)β−1 m∑
i=1

λi

κi∫
a

(
κi
ρ − xρ

ρ

)µ−1

xρ−1f (x, u (x)) dx

+ 1
Γ (µ)

m∑
i=1

λi

κi∫
a

(
κi
ρ − xρ

ρ

)µ−1

xρ−1f (x, u (x)) dx

= 1
Γ (µ)

m∑
i=1

λi

κi∫
a

(
κi
ρ − xρ

ρ

)µ−1

xρ−1f (x, u (x)) dx

×

K
m∑
i=1

λi

(
κi
ρ − aρ

ρ

)β−1

+ 1


=Γ (β)

Γ (µ)K
m∑
i=1

λi

κi∫
a

(
κi
ρ − xρ

ρ

)µ−1

xρ−1f (x, u (x)) dx.(2.9)

It follows from (2.8) and (2.9), that

ρI1−β
a+ u (a) =

m∑
i=1

λiu (κi).

It follows from Lemma 2.3 and Lemma 2.5 and by applying ρDβ
a+ to both hand sides

of (2.5) that

(2.10) ρDβ
a+u (t) = ρD

ν(1−µ)
a+ f (t, u (t)) .

Since u ∈ Cβ
1−β [a, b] and by the definition of Cβ

1−β [a, b], we have ρDβ
a+ u ∈ Cβ

1−β [a, b].
Then ρD

ν(1−µ)
a+ f = ρDρI

1−ν(1−µ)
a+ f ∈ C1−β [a, b]. It is obvious that for any f ∈

C1−β [a, b], ρI
1−ν(1−µ)
a+ f ∈ C1−β [a, b], then ρI

1−ν(1−µ)
a+ f ∈ C1

1−β [a, b]. Thus, f and
ρI

1−ν(1−µ)
a+ f satisfy both the conditions of Lemma 2.6.
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Now, it follows from Lemma 2.6, by applying ρI
ν(1−µ)
a+ on both sides of (2.10), that

(2.11) (ρDµ,ν
a+ u) (t) = −

(
tρ − aρ

ρ

)ν(1−µ)−1 ρI
1−ν(1−µ)
a+ f (a)

Γ (ν (1− µ)) + f (t, u (t)) .

By Lemma 2.4, it implies that ρI
1−ν(1−µ)
a+ f (a) = 0. Hence, (2.11) reduces to

(ρDµ,ν
a+ u) (t) = f (t, u (t)) .

This completes the proof. �

3. Main Result

In the sequel, let us introduce the following hypothesis.
[Q1] Let f : (a, b]×R→ R be a continuous function such that for any u ∈ C1−β [a, b]

f (·, u (·)) ∈ Cν(1−µ)
1−β [a, b]. For all u, v ∈ R there exists a positive constant J > 0 such

that
|f (t, u)− f (t, v)| ≤ J |u− v| .

[Q2] The constant

(3.1) σ := JB (µ, β)
Γ (µ)

|K|
m∑
i=1

λi

(
κi
ρ − aρ

ρ

)µ+β−1

+
(
bρ − aρ

ρ

)µ < 1,

where K is defined in the Theorem 2.2.
Now, we will establish our main existence result for IVP (1.1)–(1.2) using Kras-

noselskii fixed point theorem.

Theorem 3.1. Assume that the hypothesis [Q1] and [Q2] are satisfied. Then IVP
(1.1)–(1.2) has at least one solution in Cβ

1−β [a, b].

Proof. According to Theorem 2.2, it is sufficient to prove the existence result for the
mixed type integral equation (2.5).

Now, define the operator ∆ by

(∆u) (t) = K

Γ (µ)

(
tρ − aρ

ρ

)β−1 m∑
i=1

λi

κi∫
a

(
κi
ρ − xρ

ρ

)µ−1

xρ−1f (x, u (x)) dx

+ 1
Γ (µ)

t∫
a

(
tρ − xρ

ρ

)µ−1

xρ−1f (x, u (x)) dx.(3.2)

It is obvious that the operator ∆ is well defined and maps C1−β [a, b] into C1−β [a, b].
Let f̂ (x) = f (x, 0) and

(3.3) η := B (µ, β)
Γ (µ)

|K|
m∑
i=1

λi

(
κi
ρ − aρ

ρ

)µ+β−1

+
(
bρ − aρ

ρ

)µ∥∥∥f̂∥∥∥C1−β
.

Consider a ball Bs :=
{
u ∈ C1−β [a, b] : ‖u‖C1−β

≤ s
}
, with η

1−σ ≤ s, σ < 1.
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Now, let us subdivide the operator ∆ into two operators F and G on Bs as follows:

(Fu) (t) = K

Γ (µ)

(
tρ − aρ

ρ

)β−1 m∑
i=1

λi

κi∫
a

(
κi
ρ − xρ

ρ

)µ−1

xρ−1f (x, u (x)) dx

and

(Gu) (t) = 1
Γ (µ)

t∫
a

(
tρ − xρ

ρ

)µ−1

xρ−1f (x, u (x)) dx.

The proof is divided into following steps.
Step I. For every u, v ∈ Bs, Fu+Gv ∈ Bs. For the operator F

(Fu) (t)
(
tρ − aρ

ρ

)1−β

= K

Γ (µ)

m∑
i=1

λi

κi∫
a

(
κi
ρ − xρ

ρ

)µ−1

xρ−1f (x, u (x)) dx, t ∈ (a, b] ,

we have∣∣∣∣∣∣(Fu) (t)
(
tρ − aρ

ρ

)1−β
∣∣∣∣∣∣ ≤ |K|Γ (µ)

m∑
i=1

λi

κi∫
a

(
κi
ρ − xρ

ρ

)µ−1

xρ−1 |f (x, u (x))| dx

≤ |K|Γ (µ)

m∑
i=1

λi

κi∫
a

(
κi
ρ − xρ

ρ

)µ−1

xρ−1 (|f (x, u (x))− f (x, 0)|

+ |f (x, 0)|) dx

≤ |K|Γ (µ)

m∑
i=1

λi

κi∫
a

(
κi
ρ − xρ

ρ

)µ−1

xρ−1
(
J |u (x)|+

∣∣∣f̂ (x)
∣∣∣) dx.

Here we use the fact that
t∫
a

(
tρ − xρ

ρ

)µ−1

xρ−1 |u (x)| dx ≤


t∫
a

(
tρ − xρ

ρ

)µ−1(
xρ − aρ

ρ

)β−1

xρ−1dx


× ‖u (x)‖C1−β

=
(
tρ − aρ

ρ

)µ+β−1

B (µ, β) ‖u (x)‖C1−β
.(3.4)

Thus, we have∣∣∣∣∣∣(Fu) (t)
(
tρ − aρ

ρ

)1−β
∣∣∣∣∣∣ ≤ |K|Γ (µ)

m∑
i=1

λi


(
κi
ρ − aρ

ρ

)µ+β−1

B (µ, β)

×
(
J‖u (x)‖C1−β

+
∥∥∥f̂ (x)

∥∥∥
C1−β

),
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which gives
(3.5)

‖Fu‖C1−β
≤ |K|B (µ, β)

Γ (µ)

m∑
i=1

λi


(
κi
ρ − aρ

ρ

)µ+β−1 (
J‖u (x)‖C1−β

+
∥∥∥f̂ (x)

∥∥∥
C1−β

).
For t ∈ (a, b] and the operator G

(Gu) (t)
(
tρ − aρ

ρ

)1−β

= 1
Γ (µ)

(
tρ − aρ

ρ

)1−β t∫
a

(
tρ − xρ

ρ

)µ−1

xρ−1f (x, u (x)) dx,

we have∣∣∣∣∣∣(Gu) (t)
(
tρ − aρ

ρ

)1−β
∣∣∣∣∣∣ ≤ 1

Γ (µ)

(
tρ − aρ

ρ

)1−β t∫
a

(
tρ − xρ

ρ

)µ−1

xρ−1 |f (x, u (x))| dx

≤ 1
Γ (µ)

(
tρ − aρ

ρ

)1−β

×
t∫
a

(
tρ − xρ

ρ

)µ−1

xρ−1
(
J |u (x)|+

∣∣∣f̂ (x)
∣∣∣) dx.

Again, by using (3.4), we have∣∣∣∣∣∣(Gu) (t)
(
tρ − aρ

ρ

)1−β
∣∣∣∣∣∣ ≤ 1

Γ (µ)

(
tρ − aρ

ρ

)1−β

(
tρ − aρ

ρ

)µ+β−1

×B (µ, β)
(
J‖u (x)‖C1−β

+
∥∥∥f̂ (x)

∥∥∥
C1−β

)
≤B (µ, β)

Γ (µ)

(
bρ − aρ

ρ

)µ (
J‖u (x)‖C1−β

+
∥∥∥f̂ (x)

∥∥∥
C1−β

)
,

which gives

(3.6) ‖(Gu)‖C1−β
≤ B (µ, β)

Γ (µ)

(
bρ − aρ

ρ

)µ (
J‖u (x)‖C1−β

+
∥∥∥f̂ (x)

∥∥∥
C1−β

)
.

Combining (3.5) and (3.6) for every u, v ∈ Bs we have

‖Fu+Gv‖C1−β
≤ ‖Fu‖C1−β

+ ‖(Gv)‖C1−β
≤ σs+ η ≤ s,

which implies that Fu+Gv ∈ Bs.
Step II. The operator F is contraction mapping.
For any u, v ∈ Bs and the operator F

{(Fu) (t)− (Fv) (t)}
(
tρ − aρ

ρ

)1−β
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= K

Γ (µ)

m∑
i=1

λi

κi∫
a

(
κi
ρ − xρ

ρ

)µ−1

xρ−1 [f (x, u (x))− f (x, v (x))] dx

we have∣∣∣∣∣∣{(Fu) (t)− (Fv) (t)}
(
tρ − aρ

ρ

)1−β
∣∣∣∣∣∣ ≤ |K|Γ (µ)

m∑
i=1

λi

κi∫
a

(
κi
ρ − xρ

ρ

)µ−1

xρ−1

× |f (x, u (x))− f (x, v (x))| dx

≤ |K|Γ (µ)

m∑
i=1

λi

κi∫
a

(
κi
ρ − xρ

ρ

)µ−1

xρ−1

× J |u (x)− v (x)| dx

≤J |K|Γ (µ)B (µ, β)
m∑
i=1

λi

(
κi
ρ − aρ

ρ

)µ+β−1

× ‖u− v‖C1−β
,

which gives

‖Fu− Fv‖C1−β
≤ J |K|

Γ (µ)B (µ, β)
m∑
i=1

λi

(
κi
ρ − aρ

ρ

)µ+β−1

‖u− v‖C1−β
≤ σ‖u− v‖C1−β

.

Hence, by the hypothesis [Q2] the operator F is a contraction mapping.
Step III. The operator G is compact and continuous.
Since the function f ∈ C1−β [a, b], it is obvious from the definition of C1−β [a, b] that

the operator G is continuous.
From the equation (3.6) of Step I clearly, G is uniformly bounded on Bs. Next we

prove the compactness.
For any a < t1 < t2 ≤ b we have

|(Gu) (t1)− (Gu) (t2)| =

∣∣∣∣∣∣ 1
Γ (µ)

t1∫
a

(
t1
ρ − xρ

ρ

)µ−1

xρ−1f (x, u (x)) dx

− 1
Γ (µ)

t2∫
a

(
t2
ρ − xρ

ρ

)µ−1

xρ−1f (x, u (x)) dx

∣∣∣∣∣∣
≤
‖f‖C1−β

Γ (µ)

∣∣∣∣∣∣
t1∫
a

(
t1
ρ − xρ

ρ

)µ−1(
xρ − aρ

ρ

)β−1

xρ−1dx

−
t2∫
a

(
t2
ρ − xρ

ρ

)µ−1(
xρ − aρ

ρ

)β−1

xρ−1dx

∣∣∣∣∣∣
≤
‖f‖C1−β

B (µ, β)
Γ (µ)

∣∣∣∣∣∣
(
t1
ρ − aρ

ρ

)µ+β−1

−
(
t2
ρ − aρ

ρ

)µ+β−1
∣∣∣∣∣∣
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tending to zero as t2 → t1, whether µ + β − 1 ≥ 0 or µ + β − 1 < 0. Thus, G is
equicontinuous. Hence, by Arzel-Ascoli Theorem, the operator G is compact on Bs.

It follows from Krasnoselskii fixed point theorem that the IVP (1.1)–(1.2) has at
least one solution u ∈ C1−β [a, b]. Using the Lemma 2.7 and repeating the process of
proof in Theorem 2.2, one can show that this solution is actually in Cβ

1−β [a, b] . This
completes the proof. �

3.1. Ulam-Hyers-Rassias stability. In this section, we discuss the Ulam stability
results for the solution of IVP (1.1)–(1.2).

Definition 3.1 ([1]). The solution of IVP (1.1)–(1.2) is said to be Ulam-Hyers stable
if there exists a real number ψ > 0 such that for every ε > 0 and for each solution
u ∈ Cβ,ρ of the inequality
(3.7) |(ρDµ,ν

a+ u) (t)− f (t, u (t))| ≤ ε, t ∈ (a, b] ,
there exists v ∈ Cβ,ρ, a solution of IVP (1.1)–(1.2) satisfying

|u (t)− v (t)| ≤ εψ, t ∈ (a, b] .

Definition 3.2 ([1]). The solution of IVP (1.1)–(1.2) is said to be generalized Ulam-
Hyers stable if there exists a continuous function ψf : R+ → R+, with ψf (0) = 0 such
that for every solution u ∈ Cβ,ρ of the inequality (3.7) there exists v ∈ Cβ,ρ, a solution
of IVP (1.1)–(1.2) satisfying

|u (t)− v (t)| ≤ ψf (ε) , t ∈ (a, b] .

Definition 3.3 ([1]). The solution of IVP (1.1)–(1.2) is said to be Ulam-Hyers-Rassias
stable with respect to Ψ ∈ Cβ,ρ ((a, b] ,R+) if there exists a real number 0 < ψθ such
that for every 0 < ε and for every solution u ∈ Cβ,ρ of the inequality
(3.8) |(ρDµ,ν

a+ u) (t)− f (t, u (t))| ≤ εΨ (t) , t ∈ (a, b] ,
there exists v ∈ Cβ,ρ a solution of IVP (1.1)–(1.2) satisfying

|u (t)− v (t)| ≤ εψθΨ (t) , t ∈ (a, b] .

Definition 3.4 ([1]). The solution of IVP (1.1)–(1.2) is said to be generalized Ulam-
Hyers-Rassias stable with respect to Ψ ∈ Cβ,ρ ((a, b] ,R+) if there exists a real number
0 < ψθ such that for every solution u ∈ Cβ,ρ of the inequality
(3.9) |(ρDµ,ν

a+ u) (t)− f (t, u (t))| ≤ Ψ (t) , t ∈ (a, b] ,
there exists v ∈ Cβ,ρ a solution of IVP (1.1)–(1.2) satisfying

|u (t)− v (t)| ≤ ψθΨ (t) , t ∈ (a, b] .

Remark 3.1 ([1]). Clearly
(a) from Definition 3.1 follows Definition 3.2;
(b) from Definition 3.3 follows Definition 3.4;
(c) from Definition 3.3 for Ψ (·) = 1 follows Definition 3.2.
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Now, we establish the results on generalized Ulam-Hyers-Rassias stability of the
IVP (1.1)–(1.2).

Theorem 3.2. Assume that [Q1] and following hypothesis hold.
[Q3] There exists ωθ > 0 such that for each t ∈ (a, b] we have

ρIµa+Ψ (t) ≤ ωθΨ (t) .

[Q4]There exists a function p ∈ C [(a, b] , [0,∞)] such that for each t ∈ (a, b]

|f (t, u (t))| ≤ p (t) Ψ (t)
1 + |u| |u| .

Then the solution of IVP (1.1)–(1.2) satisfies the generalized Ulam-Hyers-Rassias
stability with respect to Ψ.

Proof. Let u be a solution of the inequality (3.9) and let v be a solution of IVP
(1.1)–(1.2). Then we have

v (t) = K

Γ (µ)

(
tρ − aρ

ρ

)β−1 m∑
i=1

λi

κi∫
a

(
κi
ρ − xρ

ρ

)µ−1

xρ−1f (x, v (x)) dx

+ 1
Γ (µ)

t∫
a

(
tρ − xρ

ρ

)µ−1

xρ−1f (x, v (x)) dx

=Φv + 1
Γ (µ)

t∫
a

(
tρ − xρ

ρ

)µ−1

xρ−1f (x, v (x)) dx,

where

Φv = K

Γ (µ)

(
tρ − aρ

ρ

)β−1 m∑
i=1

λi

κi∫
a

(
κi
ρ − xρ

ρ

)µ−1

xρ−1f (x, v (x)) dx.

On the other hand, if
m∑
i=1

λiu (κi) =
m∑
i=1

λiv (κi) and ρI1−β
a+ u (a) = ρI1−β

a+ v (a), then
Φu = Φv. Indeed,

|Φu − Φv| ≤
|K|

Γ (µ)

(
tρ − aρ

ρ

)β−1 m∑
i=1

λi

κi∫
a

(
κi
ρ − xρ

ρ

)µ−1

xρ−1

× |f (x, u (x))− f (x, v (x))| dx

≤ |K|Γ (µ)

(
tρ − aρ

ρ

)β−1 m∑
i=1

λi

κi∫
a

(
κi
ρ − xρ

ρ

)µ−1

xρ−1J |u− v| dx

≤J |K|Γ (µ)

(
tρ − aρ

ρ

)β−1 m∑
i=1

λi
ρI1−β
a+ |u (κi)− v (κi)|

=0.
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Hence, Φu = Φv. Then we have

v (t) = Φu + 1
Γ (µ)

t∫
a

(
tρ − xρ

ρ

)µ−1

xρ−1f (x, v (x)) dx.

From inequality (3.9) and [Q3] for each t ∈ (a, b] we have∣∣∣∣∣∣u (t)− Φu −
1

Γ (µ)

t∫
a

(
tρ − xρ

ρ

)µ−1

xρ−1f (x, u (x)) dx

∣∣∣∣∣∣ ≤ ρIµa+Ψ (t) ≤ ωθΨ (t) .

Set p̃ = supt∈(a,b] p (t). From the hypothesis [Q3] and [Q4] for each t ∈ (a, b] we
have

|u (t)− v (t)| ≤

∣∣∣∣∣∣u (t)− Φu −
1

Γ (µ)

t∫
a

(
tρ − xρ

ρ

)µ−1

xρ−1f (x, u (x)) dx

∣∣∣∣∣∣
+ 1

Γ (µ)

t∫
a

(
tρ − xρ

ρ

)µ−1

xρ−1 |f (x, u (x))− f (x, v (x))| dx

≤ωθΨ (t) + 1
Γ (µ)

t∫
a

(
tρ − xρ

ρ

)µ−1

xρ−12p̃Ψ (x) dx

≤ωθΨ (t) + 2p̃ (ρIµa+Ψ) (t)
≤ (1 + 2p̃)ωθΨ (t)
:=ψθΨ (t) .

Thus, the IVP (1.1)–(1.2) is generalized Ulam-Hyers-Rassias stable with respect
to Ψ. This completes the proof. �

Following theorem will be useful in the progress of our next result.

Theorem 3.3 ([1]). Let (Ω, d) be a generalized complete metric space and a strictly
contractive operator Φ : Ω→ Ω, with a Lipschitz constant E < 1. If there exists a non
negative integer j such that d (Φj+1u,Φj+1u) <∞ for some u ∈ Ω, then the following
propositions hold true:

A: {Φju}n∈N converges to a fixed point u∗ of Φ;
B: u∗ is a unique fixed point of Φ in Ω∗ = {v ∈ Ω : d (Φ∗u, v) <∞};
C: if v ∈ Ω∗, then d (v, u∗) ≤ 1

1−Ed (v,Φu).

Let Z = Z (I,R) be the metric space with the metric

d (u, v) = sup
t∈(a,b]

(
tρ−aρ
ρ

)1−β
|u (t)− v (t)|

Ψ (t) .

Theorem 3.4. Assume that [Q3] and the following assumption hold.
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[Q5] There exists φ ∈ C ((a, b] , [0,∞)) such that for every u, v ∈ R and for each
t ∈ (a, b], we have

|f (t, u)− f (t, v)| ≤
(
tρ − aρ

ρ

)1−β

φ (t) Ψ (t) |u− v| .

If

E :=
(
Gρ − aρ

ρ

)1−β

φ∗ωθ < 1,

where φ∗ = supt∈(a,b] φ (t), then there exists a unique solution u0 of the IVP (1.1)–(1.2)
and IVP (1.1)–(1.2) is generalized Ulam-Hyers-Rassias stable. Moreover,

|u (t)− u0 (t)| ≤ Ψ (t)
1− E .

Proof. Let the operator ∆ : Cβ,ρ → Cβ,ρ be defined in (3.2). By using Theorem 3.3,
we have

|(∆u) (t)− (∆v (t))| ≤ 1
Γ (µ)

t∫
a

(
tρ − xρ

ρ

)µ−1

xρ−1 |f (x, u (x))− f (x, v (x))| dx

≤ 1
Γ (µ)

t∫
a

(
tρ − xρ

ρ

)µ−1

xρ−1φ (x) Ψ (x)

×

∣∣∣∣∣∣
(
xρ − aρ

ρ

)1−β

u (x)−
(
xρ − aρ

ρ

)1−β

v (x)

∣∣∣∣∣∣ dx
≤ 1

Γ (µ)

t∫
a

(
tρ − xρ

ρ

)µ−1

xρ−1φ∗ (x) Ψ (x) ‖u− v‖C1−β
dx

≤φ∗ (ρIµa+) Ψ (t) ‖u− v‖C
≤φ∗ωθΨ (t) ‖u− v‖C .

Hence, ∣∣∣∣∣∣
(
tρ − xρ

ρ

)1−β

(∆u) (t)−
(
tρ − xρ

ρ

)1−β

(∆v (t))

∣∣∣∣∣∣ ≤
(
Gρ − aρ

ρ

)1−β

φ∗ωθ

×Ψ (t) ‖u− v‖C .

Thus, we have

d (∆u,∆v) = sup
t∈(a,b]

‖(∆u) (t)− (∆v (t))‖C
Ψ (t) ≤ E‖u− v‖C .

This completes the theorem. �
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3.2. Examples.

Example 3.1. Consider the following IVP:

ρDµ,ν
0+ u (t) = |u (t)|

50et+5 (1 + |u (t)|) , t ∈ (0, 1] ,(3.10)

ρI1−β
0+ u (0) =5u

(1
2

)
+ 3u

(3
4

)
, β = µ+ ν (1− µ) ,(3.11)

where µ = 1
2 , ν = 2

3 and β = 5
6 . Set f (t, u) = |u|

50et+5(1+|u|) , t ∈ (0, 1] .
It is obvious that the function f is continuous. For any u, v ∈ R and t ∈ (0, 1]

|f (t, u)− f (t, v)| ≤ 1
50e5 |u− v| .

Thus, the condition [Q1] of Theorem 3.1 is satisfied, with J = 1
50e5 . Moreover, with

some elementary computation for ρ > 0 we have

|K| =

∣∣∣∣∣∣∣
Γ

(5
6

)
−

5
(

(1/2)ρ − 0ρ
ρ

)−1/6

+ 3
(

(3/4)ρ − 0ρ
ρ

)−1/6
−1∣∣∣∣∣∣∣ < 1

and

σ = 1
50e5 ·

B (1/2, 5/6)
Γ (1/2)

|K|
5
(

(1/2)ρ − 0ρ
ρ

)1/3

+ 3
(

(3/4)ρ − 0ρ
ρ

)1/3


+
(

1ρ − 0ρ
ρ

)1/2
 < 1.

Hence, the condition [Q2] of Theorem 3.1 is satisfied.
It follows, from Theorem 3.1, that the IVP (3.10)–(3.11) has at least one solution

in C1/6 [0, 1].
Now, let Ψ (t) = 1

t2ρ−4 and p (t) = 1
50et+5 , then

|f (t, u (t))| 6 1
50et+5 ·

1
t2ρ−4 ·

|u (t)|
(1 + |u (t)|) .

Thus, the condition [Q4] of Theorem 3.2 is satisfied and with the obvious elementary
computation, we have

ρIµ0+Ψ (t) = ρ1−µ

Γ (µ)

t∫
a

xρ−1Ψ (x)
(tρ − xρ)1−µdx ≤

1
ρµΓ (µ)B

(
µ,

4
ρ
− 1

)
Ψ (t) ≤ ωθΨ (t) .

Hence, the condition [Q4] of Theorem 3.2 is satisfied with ωθ = 1
ρµΓ(µ)B

(
µ, 4

ρ
− 1

)
. It

follows from the Theorem 3.2 that the IVP (3.10)–(3.11) is generalized Ulam-Hyers-
Rassias stable.
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4. Conclusion

We have investigated the sufficient conditions for the existence of solutions to the
nonlocal initial value problems involving generalized Katugampola derivative. We
have used Krasnoselskii fixed point theorem to develop the existence results. Further,
we established some conditions for the generalized Ulam-Hyers-Rassias stability cor-
responding to the considered problem. Finally, as an application, a suitable example
is given to demonstrate our main results.
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