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A CATEGORICAL CONNECTION BETWEEN CATEGORIES
(m,n)-HYPERRINGS AND (m,n)-RING VIA THE FUNDAMENTAL
RELATION T*

AMENEH ASADI', REZA AMERI?, AND MORTEZA NOROUZI?

ABSTRACT. Let R be an (m,n)-hyperring. The I'*-relation on R in the sense of
Mirvakili and Davvaz [34] is the smallest strong compatible relation such that the
quotient R/T'* is an (m, n)-ring. We use I'*-relation to define a fundamental functor,
F from the category of (m,n)-hyperrings to the category of (m,n)-rings. Also, the
concept of a fundamental (m, n)-ring is introduced and it is shown that every (m,n)-
ring is isomorphic to R/I'™* for a nontrivial (m, n)-hyperring R. Moreover, the notions
of partitionable and quotientable are introduced and their mutual relationship is
investigated. A functor G from the category of classical (m,n)-rings to the category
of (m,n)-hyperrings is defined and a natural transformation between the functors
F and G is given.

1. INTRODUCTION

The notion of n-ary groups (also called n-group or multiary group) is a generalization
of that of groups. An n-ary group (G, f) isa pair of aset G and amap f : Gx---xG —
GG, which is called an n-ary operation. The earliest work on these structures was done
in 1904 by Krasner [24] and in 1928 by Dérnte [22]. Such n-ary groups have many
applications to computer science, coding theory, topology, combinatorics and quantum
physic (see [18-21,36] and [38]). One of the applications is the entering into algebraic
hyperstructures theory defined by Marty in [30]. This work is initiated by Davvaz
and Vougiouklis [16] by defining n-ary hypergroups. By its generalization, (m,n)-
hyperrings and (m, n)-hypermodules were introduced and studied in different contexts.
Some of the studies can be seen in [2,5,11,27-29,32,33] and [34].
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On the other hand, fundamental relations are one of important concepts in alge-
braic hyperstructures theory which classical algebraic structures will be obtained from
algebraic hyperstructures by them. The relations have been studied and investigated
on hypergroups in [23] and [25], on hyperrings in [1,13,15] and [42], and on hyper-
modules in [3] and [4]. After defining n-ary hyperstructures, fundamental relations
were extended on them. This extension done on n-ary hypergroups in [12] and [16],
on (m,n)-hyperrings in [34] and (m, n)-hypermodules in [5]. The I'*-relation in the
sense of Mirvakili and Davvaz [34] is one of relations on an (m, n)-hyperring by which
an (m,n)-ring is induced via the quotient.

In this paper, in Section 2, we give some basic preliminaries about (m,n)-rings and
(m, n)-hyperrings. In Section 3, we define the concept of a fundamental (m, n)-ring and
prove that every (m,n)-ring is isomorphic to R/I"™* for a nontrivial (m, n)-hyperring R.
In Section 4, we define the notion of quotiontable and partitionable (m,n)-hyperrings
and study a relationship between them. Finally, in Section 5, we introduce the category
of (m,n)-hyperrings, denoted by (m,n) — H, and investigate functorial connections
between the categories of (m, n)-hyperrings and (m, n)-rings via I'*-relation. Moreover,
a natural transformation between these functors is characterized.

2. (m,n)-RINGS AND (m,n)-HYPERRINGS

In this section we recall some definitions about (m,n)-rings and (m, n)-hyperrings
based on [9,16] and [34] for development of our paper.
Let H be a nonempty set. A mapping f : H X ---x H — H (P*(H)), where
—_——

P*(H) is the set of all nonempty subsets of H, is called an n-ary operation (hyperop-
eration). A pair (H, f) consisting of a set H and an n-ary operation (hyperoperation)
fon H is called an n-ary groupoid (hypergroupoid). Note that for abbreviation, the

sequence Z;, Tit1, - - . , £; will be denoted by a7 and for j < 1, x‘z is the empty set. Also,
F(T1, o i Yis1s -« Yjy i1y - - - 2n) Will be written as f(z?, yl 4, 27,1). In the case
when y;1 = - = y; = y the last expression will be written as f(zf,y"=", 20, ,). If

f is an n-ary operation (hyperoperation) and ¢t = I(n — 1) + 1 for some [ > 1, then

t-ary operation (hyperoperation) [y, 1s defined by

f(l)<x1( )+ )= fUfC o ff (D), x721+11)7 ) $(§_1)():_1)+2)'
l

An n-ary operation (hyperoperation) f is called associative, if

i—1 n+i—1 2n—1Y\ __ j—1 n+j—1 2n—1
f<1'1 7f($z )axn+i)_f($1 7f(xj )axn-{-j)v

holds, for every 1 < i < j < n and all 23"' € H. An n-ary groupoid (hyper-

groupoid) with the associative n-ary operation (hyperoperation) is called an n-ary
semigroup (semihypergroup). An n-ary groupoid (hypergroupoid) (H, f) in which the
equation b = f(ai™", z;,a,) (b € flai™', x;,al,,)) has a solution z; € H, for every

aﬁ_l,agﬁrl,b € H and 1 < i < n, is called an n-ary quasigroup (quasihypergroup).
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If (H,f) is an n-ary semigroup (semihypergroup) and an n-ary quasigroup (quasi-

hypergroup), then (H, f) is called an n-ary group (hypergroup). An n-ary groupoid

(hypergroupoid) (H, f) is commutative, if for all ¢ € S,, and for every a} € H, we

have f(a1,...,an) = f(ao1)s- - 0o@m)- If af € H, then we denote (ag(1y; - ., aom))
o(n)

by Qg(1) -

Definition 2.1. Let (H, f) be an n-ary group (hypergroup). A non-empty subset B

of H is called an n-ary subgroup (subhypergroup) of (#, f), if f(z7) € B (f(z}) C B)

for all 27 € B, and the equation b = f(bi"", a;, b0 ) (b € f(bi"', 2;,b,)) has a

solution x; € B, for all b}"!, bl ,be Band 1 <1< n.

Definition 2.2. An (m,n)-ring (hyperring) is an algebraic structure (R, f, g), which
satisfies the following axioms:
(1) (R, f) is an m-ary group (hypergroup);
(2) (R,g) is an n-ary semigroup (semihypergroup);
(3) the n-ary operation (hyperoperation) g is distributive with respect to the m-ary
operation (hyperoperation) f, i.e., for all a{ ', a?,,,27" € R,and 1 <i<n

g(ai_17 f(a‘Jln)a a?—&-l) - f(g(ail_la L1, a?—i—l)v v 7g(ail_17 L, a?—i—l))'
We say that an (m, n)-ring (hyperring) (R, f, g) has an identity element if there exists
1 € R such that z = g(1@, 2, 10=Y) ({2} = g(1¥, 2,1 D)) forall 0 < i < n — 1.

Ezxample 2.1. Consider the ring (Z, +, -) where “+” and “-” are ordinary addition and
multiplication on the set of all integers. It is easy to see that Z with f(z,y, z) = x+y+=z
and g(z,y,z) = x-y-z for all x, y, z € Z will give rise to a (3, 3)-ring. Now, consider the
following 3-ary hyperoperations on Z h(x,y, z) = {z,y,z, 2 +y,x+ 2,y + z,x + y+ 2z}
and k(z,y,z) = {z-y-z}. Then, it can be seen that (Z, h, k) is a (3, 3)-hyperring.

Let (Ry, f1, 1) and (Rs, fa, g2) be two (m, n)-hyperrings. The mapping ¢ : Ry — Ry
is called a homomorphism from R; to R, if for all 27",y € R; we have

(fi(z]") = falp(z1), .- p(zm)) and  @(g1(yy)) = g2((y1), - -, P (Yn))-

3. FUNDAMENTAL (m,n)-RINGS

Let (R, f,g) be an (m,n)-hyperring and p be an equivalence relation on R. If A
and B are non-empty subsets of R, then ApB means that for every a € A, there exists
b € B such that apb and for every v € B, there exists u € A that upr. We write
ApB if apb for any a € A and b € B. The equivalence relation p is called compatible
on (R, f), if a;pb; for all 1 <i < m implies that f(a}*)pf(b]"). Moreover, it is called
strongly compatible if f(a)pf(b7) when a;pb; for 1 < i < m.

Now assume that % = {p(r) | r € R}, be the set of all equivalence classes of R with
respect to p. Define m-ary and n-ary hyperoperations f/p and g/p on % as follow:

f/p(p(a)*) ={p(c) | c € f(p(a)")} and g/p(p(a)l) = {p(c)|c € g(p(a)})}
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Based on [16], in [34], it was shown that (R/p, f/p,g/p) is an (m,n)-hyperring (ring)
if and only if p is (strongly) compatible relation on R. Mirvakili and Davvaz in [34]
introduced the strongly compatible relation I'* on (m,n)-hyperrings as follows.

Let (R, f,g) be an (m,n)-hyperring. For every k € N and I € N, where s =
k(m — 1) + 1, the relation I'yys is defined by

xrk‘lsy = {-T,y} g fk (ula BRI aus)7

where u; = gg,)(z}}) for some ziy € R with ¢; = l;(n — 1) + 1 such that 1 < i < s.
Now, set I';, = U [pys and I' = U ['x. The results [34, Theorem 5.5 and 5.6] yield

I3eEN keN*
that the transitive closure of I', I'*, is a strongly compatible relation on R that is the
smallest equivalence relation such that (R/I'*, f/T'*, g/T™*) is an (m,n)-ring. Hence,
['* is said to be a fundamental relation on R.

Lemma 3.1. Let (R, f,q), (S, f',¢') be (m,n)-hyperrings and h : R — S be a homo-
morphism. Then, for all x,y € R,
(1) ™y implies h(x)T*h(y);
(13) if h is an injection, then h(x)[™h(y) implies that xT™*y;
(7i1) if h is a bijection, then Ty if and only if h(z)[™h(y);
(1) if h is a bijection, then h(F*(a:)) = T*(h(z)).

Proof. (i) Let T*y. Then there exist k,[; € N and 2! € R, where t; = [;(n — 1) + 1
and 1 < i < s such that {z,y} C fu (ul,...,us), Where u; = gy (). Since h is
homomorphism, we have

{h(a). h(y)} = hiz. y}Ch(ﬂmul,..., ))
(hul,..., )
= fhy (h (@), -a9<z5>(wiﬁs)))
= fi s

g lt1 g(l )(h( )st ))

So, h(z)I™h(y). .
() For 2,y € R, since h(x)[*h(y), there exist k,15 € N and z/i' € S, where
=lLin—1)+1and 1 < i < s such that {h(z ) h(y)} C fly(ur, ... us) for

= g (zi1"). Now, for an injection h: (R, f,g) = (S, f',¢') we have
.y = {07 b)) b () = 07 (R, o)} )
hl(f(’k)(ul,...,us)>
fory (901) (P NE)s 90 (h_l(Z)ii‘*))'

N
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So, zI™y.

(#4i) It is clear by (i) and (7).

(iv) Let z € R. By (iii), we have

M) = U hy)= Uy = U Wy =T"(0)). O
yel™(z) zl™y h(z)I™h(y)

Corollary 3.1. Let (Ry, f1,g1) and (Ra, fa, g2) be isomorphic (m,n)-hyperrings. Then
Ry /T = Ry /T,
Proof. Let h : (Ry, f1,91) — (Rs, f2,g2) be an isomorphism. Define n : Ry /T* —
Ry /T by n(F* (m)) =1I" (h(x)) By Lemma 3.1, n is well-defined, one to one and
onto. Hence, n is an isomorphism, since h is a homomorphism. O]

Definition 3.1. An (m,n)-ring (R, f, g) is called a fundamental (m,n)-ring if there
exists a non-trivial (m,n)-hyperring, say (S, f’,¢'), such that (S/I'*, f'/T*, ¢ /") =
(R, f,9).

Remark 3.1. It is needed to explain what a non-trivial (m, n)-hyperring is. An (m,n)-
hyperring (S, f', ¢') is said to be trivial if |f'(z7")| = |¢'(y7)| = 1 for all 27", y7 € S.
For example, let (R, f,g) be an (m,n)-ring. Define m-ary and n-ary hyperoperations

fraf) =A{f(a)} and ¢'(y7) = {g(y})} for all 7",y € R. Then (R, f',¢’) is a trivial
(m, n)-hyperring.

Lemma 3.2. Let (R, f,g) be an (m,n)-ring with identity, then for any (m,n)-ring
S with identity, there exist m-ary and n-ary hyperoperations “f'” and “g'” on R x S
such that (R x S, f',¢') is an (m,n)-hyperring.

Proof. Let S be a non-zero (m,n)-ring with identity 1. Define m-ary and n-ary
hyperoperations “f’” and “¢’” on R x S as follows:

F(ras0)ees ) ) = {(FOP) 0. (07,0
¢ (ress0)ces ) ) = {000, (000,50 .

(For abbreviation, f’((rl, $1)y ey (T, sm)) denoted by f’((r, 5)71”), similarly this is

for ¢'). Clearly “f’” and “¢’” are associative and “¢’” is distributive with respect to
“f". Also, we have

i Rx S i) = U (o) 07, (n )

(r',s")ERxS

= U {(f(riilarlvrm—lxsl)a"'7(f(riilyrlarﬁ-lx‘si*l)?
(r',s")ERxS

(f(riila T/a T?j—l)v 5/)7 (f(riila T,) Tﬁl)a Si+1)7

) (f(rll;la 7 rﬁ-l)a Sm)}
=R x S.
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Thus, (R x S, f',¢') is an (m,n)-hyperring. O

The (m,n)-hyperring (R x S, f', ¢') is called an associated (m,n)-hyperring to R
(via S) and denoted by Rg.

Theorem 3.1. Let (R, f,g) and (T, f,g) be isomorphic (m,n)-rings with identity.
Then, for any (m,n)-ring S with identity, Rs and Ts are isomorphic (m,n)-hyperrings.

Proof. Let h : R — T be an homomorphism. Define w : (Rx S, f',¢') = (T'x S, f',¢)
by w(r,s) = (h(r),s) for all (r,s) € R x S. Since h is an isomorphism, it is easy to
see that w is well-defined and a bijection. Now we verify that w is a homomorphism.

o(£(esr)) =w({Um s, (075w} )

Similarly, w(g’((r, s)’f)) = g’(w((r, 5)?)). Thus, (Rx S, f',¢) = (T xS, f',¢). O
Theorem 3.2. Every (m,n)-ring is a fundamental (m,n)-ring.

Proof. Let (R, f,g) be an (m,n)-ring. By Lemma 3.2, for any (m,n)-ring S, (R x
S, f',q') is an (m,n)-hyperring. For any r € R and (s,s') € S x S we have
{(r,s),(r,s")} = ¢ ((r,s), (1,87 1), so (r,s)I*(r,s"). Hence, (r,s") € I'*(r,s). Thus,
[*(r,s) = {(r,z) | x € S}. Define the mapping 6 : (Rx S/T*, f'/T* ¢'/T*) = (R, f, g)
by 0(I'*(r,s)) = r. It is clear that 6 is well-defined and one to one, since for any
(r,s),(r',s") € Rx S, T*(r,s) = I'"(+', ') if and only if (+/,s") € I'*(r,s) if and
only if » = r" if and only if 8(I'*(r,s)) = O(I'*(+',s")). 6 is a homomorphism. Let
(r,s)7", (r,s)} € R x S. We have

0(5/0 (o)) =6(T (7)) ) = - = 6(T (0T, m) ) = £67)
—f(( )y ) (/0 ) ) = 0(T (7). 50) )
= =0((09), ) = 1) = 9 (B (. )F)-

Since for any r € R, 0(I'*(r,0)) = r, then 6 is onto. Thus, 6 is an isomorphism. [



A CATEGORICAL CONNECTION BETWEEN CATEGORIES 367

Theorem 3.3. Let (R, f,g) be an (m,n)-hyperring. Then there exist an (m,n)-ring
S, m-ary and n-ary hyperoperations ' and g on R X S such that (R, f,g) can be
embedded in (R xS, f',q').

Proof. Let (R, f,g) be an (m,n)-hyperring and set S = (R/I'*, f/T*, g/T"*). Define
m-ary and n-ary hyperoperations f’ and ¢’ on R x R/T™*, as following:

7 enr) = (Fem. ),
g (T @) = (967 T (901)))-

Let (r,I"(v))T" = (', T*(v'))T", then r; = r'; and I'*(v;) = [*(v]) for all 1 < j < m.
Since T™*(v;) = [*(v';) for all j = 1,...,m, there exist k;, I} € N and xzi” € R,
where ¢;; = l;;(n — 1) + 1 and i; = 1;,...,s;, such that {v;,v';} C fix,)(uy,,. .., us,),

thij
where u;; = gq,)(2;,,”). Hence,

(FOP). O C (AP S0 ). 000 ). O
CF(Fan @y i () )
and
{91 9D} € {g01). 901, v5). 901,02, ). g(0})
C 9ot f ) ).
Thus, I°(f(2f")) = T*(f(v})) and T*(g(e1) = D(g(e})). So, (F07),T°(S(oT) =

S, T (f(v'7)) and (g(r}), T (g(v1)) = (9(r'7), I (9(v'1))). Therefore, the m-ary
and n-ary hyperoperations f’ and ¢’ are well-defined. Now, we show that (Rx S, f', ¢)

is an (m,n)-hyperring. Let (r,I'*(v))]* € Rx S. Then for any 7,5 € {1,--- ,m}, since
“f7 is associative, it follows that:

£ T @D P T ), (T )2
—(F O T S ) )
= (P A D (S Y, 02
=P (T @R T @), 6T () ).

So, f'is associative. Similarly, it can be shown that ¢ is associative on R x S. Now, we
verify the reproduction property. Since f(ri™", R,r ) = R and R/T* = U, ' (t),
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£ @) R xS T @)
- U (0T 0T ), T ) )

(r',T*(v'))ERXS

= U (e e )
(r',T*(v'))ERXS
—RxT*(R)=Rx&.

To investigate distributivity law, let (', *(v"))]* € R x S, (r,['*(v))} € R x S. Since
g is distributive with respect to f, then

g (T @) (T WD), (T @)
= (9 £ T 0 FWT), 000
=(FlolT ), g ),

D (Fg0 01t g0 s tl))
=1/ @) 6T @) (T @),

g (T @) 0 T s (T @)2)):

So, (R x S, f',¢") is an (m,n)-hyperring. Now, define the mapping 6 : (R, f,g9) —
(Rx S, f,q), by 0(r) = (r,T*(r)). Let r,7” € R. Then r = 7' if and only if
(r,T*(r)) = (', T*(r")) if and only if O(r) = 0(r'). Let r{*,r} € R. Then

0(f(r1") = (f(r"), D (f (") = F/((r, T2 (r))Y) = f1(6(r)")

and

0(g(r1)) = (9(r?), I (g(r1)) = ¢'((r, " (1)) = 4'(0(r)7),
where 0(r)¥ means 0(r1),...,0(r;) for k = m or k = n. Thus, (R, f,g) can be
embedded in (R x S, f', ¢'). O

Theorem 3.4. Let R and S be two sets such that |R| = |S|. If (R, f,qg) is an (m,n)-
hyperring, then there exist m-ary and n-ary hyperoperations “f'” and “g'” on “S7,
such that (R, f,q) and (S, f',q’) are isomorphic (m,n)-hyperrings

Proof. Since |R| = |S], then there exists a bijection ¢ : R — S. For any s7*, s} € S,
define the m-ary and n-ary hyperoperations “f’” and “¢'” as follows:

(81 =o(f(r),  g'(s7) = (g(r7))-
First we prove that f’ and ¢’ are well-defined. Let s; = §;, where s; = ¢(r;), s; = ¢(r})

(]

and r;,r, € R for i = 1,...,m. So, s; = §; implies that ¢(r;) = ¢(r}). Since ¢ is
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bijection, then r; = /; for i = 1,...,m and so f'(s7*) = o(f(r7")) = o(f(r']")) =
(87, similarly ¢'(st) = ¢'(s']). Moreover, since

(3.1) o(f(r1") = f'(o(r)T"),

o(g(r})) = g'(o(r)7),
¢ is a homomorphism. Now, it is enough to show that (S, f’, ¢') is an (m, n)-hyperring.
Define the map 6 : (R, f,g9) — (S, f',¢") by 0(z) = ¢(x). Since ¢ is bijection then 6
is a bijection. Now we show that 6 is a homomorphism. Let " € R. Then, by (3.1),

0(f(r1")) = o(f(r1")) = ['(¢(r)1") = f/(0(r)1") and O(g(r7)) = ¢(g(r)) = ¢'(¢(r)7) =
g (0(r)}). Thus, 0 is an isomorphism and so (S, f’, ¢') is an (m, n)-hyperring. O

Corollary 3.2. Let (R, f,g) be an (m,n)-ring of infinite order. Then there exist m-
ary and n-ary hyperoperations “ f'” and “g'” on R such that (R, f,g) is a fundamental

(m, n)-ring of itself, i.e., (R/T*, f'/T* ¢ /T*) = (R, [, g).

Proof. For a given (m,n)-ring (R, f,g), consider the smallest associated (m,n)-
hyperring (R X Zs, f’,¢'). By Theorem 3.2, (%,f’ﬂ"*,g’/r‘*) = (R, f,9).
Since R is infinite set, then |R| = |R X Z| and, by Theorem 3.4, there exist m-
ary and n-ary hyperoperations “f”” and “¢g”” on (R, f, g), such that (R, f”,¢") and
(R X Za, f',¢'), are isomorphic (m,n)-hyperrings. Now, we have

(. frg) = (D) e e} o (L), e ).

Hence, (R, f,g) is a fundamental (m,n)-ring of itself. O

We recall the relation §; = U;>; Bk on an n-ary semihypergroup (R, f) defined by
Davvaz and Vougiouklis in [16], where x5,y if and only if there exist ¢t = k(m — 1) + 1
and 2 € R such that {z,y} C fu(2}). It is well known that 5, is the smallest
strongly compatible equivalence relation on n-ary semihypergroup (R, f) such that
(R/By, f/By) is an n-ary semigroup. Clearly, 3y C T" and so 87 C I'*.

Theorem 3.5. Every finite (m,n)-ring is not its fundamental (m,n)-ring.

Proof. Let (R, f,g) be a finite (m,n)-ring, |R| = n. If “f’” and “¢’”, are m-ary and
n-ary hyperoperations on R, such that (R, f,g) is an (m,n)-hyperring, then there
exist 21" € R such that |f/'(2]*)| > 2. Hence, there are a,b € f(27"). So afb and
then al'b. Therefore, al™*b and I'*(a) = I'*(b). Since R/I'™* = {I'*(t) | t € R}, then
|R/T*| < n. Thus, (R, f,g9) 2 (R/T*, f'/T*, ¢ /T). O

4. EMBEDDABLE (m,n)-HYPERRING

In this section we introduce the concepts of partitionable and quotientable (m,n)-
hyperrings and investigate the relation between them. Also, we give some results
concerning about these concepts.
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Definition 4.1. An (m,n)-hyperring (R, fi, ¢1) is said to be a partitionable (m,n)
hyperring if there exists an (m,n)-ring (.5, f, g), an equivalence relation p on (S, f, g)
non-trivial m-ary and n-ary hyperoperations f’ and ¢ such that (S/p, f',¢) =
(R7 fla gl)

Theorem 4.1. Every (m,n)-hyperring is a partitionable (m,n)-hyperring.

Proof. Let (R, f,g) be an (m,n)-hyperring. Then we consider three cases.
Case 1. Let R be finite and |R| = n. Define on Z the equivalence relation p by

xpy < x =y (mod n).
Clearly |R| = |Z/p|. So, by Theorem 3.4, there exist m-ary and n-ary hyperopera-
tions f’ and ¢’ on Z/p, such that (Z/p, f’,¢’') is an (m,n)-hyperring and (R, f,g) =
(Z/p, [, 9")

Case 2. Let R be infinite countable. Then |R| = |Z|. Let A = {A;}icz be a
partition of Z such that there exists an index j € Z such that |A;| = 2 and for any
j#i1€Z, |A;| =1. Clearly, the binary relation p on Z, by

rps < (Ik € Z) s.t {r,s} C Ag

is an equivalence relation on Z and clearly |Z| = |A| = ‘%’. Thus, by Theorem

3.4, there exist m-ary and n-ary hyperoperations “f’” and “¢’” on Z/p, such that
(Z/p, f',g') is an (m,n)-hyperring and (R, f1,91) = (Z/p, ', ).

Case 3. Let R be uncountable. Then |R| = |R| and similarly as in case 2 it can be
concluded that R is a partitionable (m,n)-hyperring. O

Let (R, f,g) be an (m,n)-ring. We say that (N, g) is a normal subgroup of n-
semigroup (R, g), if g(ai™", N,al,;) = g(agggl), N, aggzl)), for all a} € R, 0 € S,, and
1 <4 <mn. Also, for a normal subgroup N of (S, g), we set

SIN ={g(ay", N.a}yy) [z € S, 1 <i <n}.

Definition 4.2. An (m,n)-hyperring (R, f, g) is called a quotientable (m,n)-hype-
rring if there exist an (m, n)-ring (S, h, k), non-trivial m-ary and n-ary hyperoperations
f" and ¢ such that (S/N, f',¢') = (R, f,g), where N is a normal subgroup of the
n-semigroup of (5, k).

Theorem 4.2. FEvery (m,n)-hyperring is a quotientable (m, n)-hyperring.

Proof. Let (R, f,g) be an (m,n)-hyperring and consider the following cases.
Case 1. Let R be finite and |R| = n. Consider (Z} = Z,, \ {0}, ®) and set g(z}) =

(D for 7 € Z,. Clearly, N = {1} is a normal subgroup of (Z?, g) and |R| = |Z,/N|.

=1
Thus, by Theorem 3.4, there exist m-ary and n-ary hyperoperations f’ and ¢’ on Z,, /N
such that (Z,/N, f',¢') is an (m,n)-hyperring and (R, f,g9) = (Z,/N, ', ¢').

Case 2. Let R be infinite countable and |R| = |Z x Z|. Note that (Z x Z, f,g) is
an (m,n)-ring such that f((a,b)") = (a1 + -+ + am, by +--- + b,,) and g((a,b)}) =
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(ay-ag---ap,by-by---by,) for any ai*,al, bi*, b} € Z, where “ + 7 and “-” are ordinary
binary operations on Z. Now, let N = {(—1,1),(1,1)}. Then N is a normal in
((Z x Z)*,g). Clearly |Z x Z| = |(Z x Z)/N|. Hence, by Theorem 3.4, there exist
m-ary and n-ary hyperoperations f’" and ¢’ on (Z x Z)/N such that ((Zx Z)/N, f', ¢')
is an (m, n)-hyperring and (R, f,g9) = (Z x Z)/N, f'. ).

Case 3. Let R be uncountable. Then |R| = |R x R| and similarly as in case 2 we
conclude that R is a quotientable (m,n)-hyperring. O

Theorem 4.3. Every quotientable (m, n)-hyperring is a partitionable (m, n)-hyperring.

Proof. Let (R, f1,91) be a quotientable (m, n)-hyperring. Then, there exist an (m,n)-
ring (5, f,g), non-trivial m-ary and n-ary hyperoperations f’ and ¢ such that
(S/N,f'.q") = (R, f1,91), where N is a normal subgroup the n-semigroup (S,g).
Define, the binary relation p on S as follows:

rpy ~ g(.il?, x;_lv N7 x?—i—l) = g(y7 xé_la N7 'r?—i—l)'

Clearly p is an equivalence relation on S and for any s € S, p(s) = g(s, 25", N, 22, ).
Hence, (R, f1, 1) is a partitionable (m,n)-hyperring. !

Remark 4.1. Consider the (m,n)-hyperring (Zs, f, g) with the m-ary and n-ary hyper-
operations f(z7") = Zs and ¢(y}') = Zs for all 21", y}" € Z3. Define on Z the relation
p by p=1{(0,0),(2k,2k"), (2k + 1,2k" + 1)} Clearly p is an equivalence relation and
|Zs| = |%]. Hence, by Theorem 4.1, (Zs, f, g) is a partitionable (m,n)-hyperring. But
p is not a multiplicative normal n-subgroup of Z. Thus, the converse of Theorem 4.3,
is not valid.

Let (R, fi,g1) be an (m,n)-hyperring.  Consider the canonical projection
¢+ (R fi,g0) = (R/T" fi/T",q1/T7) by o(r) = I'"(r). Also, by Theorem 4.2,
there exist an (m,n)-ring (S, f, g), normal n-subgroup N such that 6 : (R, f1,91) —
(S/N, f',¢') is an isomorphism. Hence, we have the following theorem.

Theorem 4.4. Let (R, f1,g1) be a quotientable (m,n)-hyperring via an (m,n)-ring
(S, f,9). Then there exists a unique homomorphism 1, such that 10 = .

Proof. Since (R, f1,¢91) is a quotientable (m,n)-hyperring via an (m, n)-ring (S, f, g
there exists a normal subgroup of the n-semigroup (.S, g) such that (S/N, f',¢") =
(R, fi,g1). Define ¢ : S/N — R/T* by ¥(g(s7", N, s?,.,)) = I'*(r) such that 6(r) =
g(si', N, s,,) for any s} € S. Therefore ¢) = ¢o06~!, so 1 is a homomorphism. Also,
PO(r) = (po 071)(0(r)) = ¢(r). Thus, the following diagram is commutative.

R— S/N

N

R/T*

Moreover, it is easy to see that 1) is unique. 0
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Corollary 4.1. Let (R, fi,g1) be a quotientable (m,n)-hyperring via an (m,n)-ring
(S, f,9). Then the following diagram is commutative.

R S/N

R/T* — (S/N)/T*

Proof. Define the maps 0:R/T* — (S/N)/F* by O(I'*(r)) = I'*(0(r)) and ¢ : S/N —
(S/N)/T* by @(g(siT N, st 1)) =T*(g(s7", N, s ,)). Since 6 and ¢ are homomor-
phism, 6 and ¢ are so. Hence, for any r € R

20(r) = p(glst Ny s2) ) = T (657 Nasii) ) = 7(60) = 0T (1) = D).

5. CATEGORICAL RELATIONS ON (m,n)-HYPERRINGS AND (m,n)-RINGS

Now we introduce the category of (m,n)-hyperrings, denoted by (m,n) — H,. This
category is defined as follows:
(7) the objects of (m,n) — H, are (m,n)-hyperrings;
(77) for the objects R and R’ of (m,n) — H,, the set of all homomorphisms from R
to R’ are arrows and denoted by h: R — R'.

In this section, we try to investigate the relation between two categories (m,n) — H,
and (m,n) — R, (category of (m,n)-rings) and work on natural transformations
between them. At first, we define an arrow F : (m,n) — H, — (m,n) — R, by
F(R) = R/T*, where (R, f,g) is an object of (m,n) — H, and for any arrow v :
(R, f1,91) = (R2, f2, g2), we define:

Fv): Ry /T — Ry /T" by F(v)(I'*(x)) =T"(v(x)), forevery z € Ry.
By Corollary 3.1, F' is well-defined. Hence, we have the following.
Theorem 5.1. F is a covariant functor from (m,n) — H, to (m,n) — R,.

Proof. For any object (R, f,g) of (m,n)—H,, F(R) = R/T"* is an (m,n)-ring and then
F(R) is an object in (m,n) —R,. Now, we show that F'(v) is an arrow in (m,n) — Ry,
for any arrow v : (Ry, f1,91) = (Ra, f2,92). Let I'*(2)7", I'"*(z)} € Ry/T'*. Thus,

F) (AT (T @)7)) = <>( (f1 o) ) ( ()
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Similarly, we have

F(v) (91 /r*(r*(x)?)) _ g,/ (F@) (T*(21)) .., F(w) (T (xn))).
Also for the composition of two arrows F(v) and F(w) in (m,n) — Ry, where v :
(R1, f1,91) = (Ra, f2,92) and w @ (R, fo, g2) — (R, f3,93), we have

F(w)o F(v) = F(w)(F(v)) = F(w)(I''(v)) =" (wov) = Flwov).
Moreover, for 1z : R — R and 1pg) : R/T* — R/T™, we have

F(ln) (@) = T*(1a(@)) = I*(z) = Len (o).
Therefore, F' is a covariant functor of (m,n) — H, to (m,n) — R,. O

Now, for (m,n) — H,, (m,n) — Ry, any (m,n)-ring (R, f,g) and S = Z,, define
a categorical arrow U : (m,n) — R, — (m,n) — H, by U(R) = Rg, which for any
(m, n)-ring homomorphism v : (Ry, f1,91) — (Ra, f2, g2) defined by
Uw)(z,y) = (v, 1s)(x,y) = (v(2), 1s(y)) = (v(2),y).

By Theorem 3.1, U is well-defined. Hence, we have the following theorem.
Theorem 5.2. U is a covariant functor from (m,n) — R, to (m,n) — H,.

Proof. For any object (R, f,g) of (m,n) — R, by Lemma 3.2, U(R) = R x S = Rg
is an (m,n)-hyperring and so U(R) is an object in (m,n) — H,. Consider any arrow
v (R, fi,51) = (R2, f2,02) in (m,n) — R,. We show that U(v) is an arrow in
(m,n) — H,. Let (r,s)}*, (r,s)} € Ry x S. Now, by Lemma 3.2,

U (£(5)7)) = U@ ({ACT) 501 (AT, 0}

Similarly, we have U(v)(g] ((7’, s)?)) = go(UW)(r1,81),..., UW)(rn, sp)). Thus, U(v) :
Ry xS — Ry x S is an (m,n)-hyperring homomorphism and so is an arrow in

(m,n) — H,. Now, we investigate the composition property. Let v and w be arrows
in (m,n) — R,. So,

U(v)oU(w)(r,s) =U(v) (U(w)(r,s)) =U(v) (w(r),s) = (uow(r),s) = U(vow)(r, s).
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Moreover, consider 1z : R — R and 1y gy : U(R) = U(R). For any (r,s) € Rg
U(1gr)(r,s) = (1r(r),s) = (r,5) = Ly (r, s).

Hence, U is a covariant functor of (m,n) — R, to (m,n) — H,. O

Theorem 5.3. The functor U : (m,n) — R, — (m,n) —H, is a faithful functor.

Proof. Let (Ry, f1,91) and (Rq, f2, g2) be objects in (m,n) — Ry, 11,12 1 R — Ry
be parallel arrows of (m,n) — R, and U(ry) = U(rz). So, for any (r,s) € Rig,
U(wr)(r,s) = U(vy)(r,s) and so v; = v,. Thus, U is a faithful functor. O

Theorem 5.4. On objects of (m,n) —R,, FolU = 1.
Proof. For any object (R, f,g) in (m,n) — R,, we have
(F © U)(R7 f? g) - F<R57 flag/) - (RS/F*7 f//r*7g//r*) = (RJ f7 g>7
by Theorem 3.2. 0

Theorem 5.5. For functors 1,F oU : (m,n) — Ry — (m,n) — R, there exists a
natural transformation p:1 — FoU.

Proof. For two functors 1 and F o U of (m,n) — R, to (m,n) — R,, define a map
w:1l— FolU as follows:

w:1(R) = (FoU)(R) by pu(r) =T"(r,0).

Now, for any (m,n)-ring homomorphism v : (R, f,g) — (R, f’,¢'), consider the
following diagram.

1(R) — (F o U)(R)
1(v) Fol(v)
1(R) —E (FoU)(R)
For any r € R, we have
((F oU)(v)o ,uR)(r) =Fo U(V)(MR(T)) =FoU(v) (F*(r, 0))

=TI (I/(T), 0)
= Hr (V(’f’))
= i (1)) = (11 0 1)) ).

So, p is a natural transformation. ([l

Theorem 5.6. For functors 1 and U o F' from (m,n) — H, to (m,n) — H,, there
exists a transformation 6 : 1 — U o F' such that is natural.
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Proof. For two functors 1,UoF : (m,n)—H, — (m,n)—H,, defineamap : 1 — UoF
as 0 : 1(R) — (Uo F)(R) by 0(r) = (F*(r),O). Now, for any (m,n)-hyperring
homomorphism v : (R, f,g) — (R, f',¢'), consider the following diagram.

1(R) —2 (U o F)(R)

iUoF(V)
0

I(R') —= (U o F)(R')

For any r € R, we have

((U o F)(v) o eR) (r) = U F(v)(9a(r)) = U o F(v) <F*('r’), o)

— (r*(u(r)),o)

Therefore, 0 is a natural transformation. 0
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