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A CATEGORICAL CONNECTION BETWEEN CATEGORIES
(m,n)-HYPERRINGS AND (m,n)-RING VIA THE FUNDAMENTAL

RELATION Γ∗

AMENEH ASADI1, REZA AMERI2, AND MORTEZA NOROUZI3

Abstract. Let R be an (m,n)-hyperring. The Γ∗-relation on R in the sense of
Mirvakili and Davvaz [34] is the smallest strong compatible relation such that the
quotient R/Γ∗ is an (m,n)-ring. We use Γ∗-relation to define a fundamental functor,
F from the category of (m,n)-hyperrings to the category of (m,n)-rings. Also, the
concept of a fundamental (m,n)-ring is introduced and it is shown that every (m,n)-
ring is isomorphic to R/Γ∗ for a nontrivial (m,n)-hyperring R. Moreover, the notions
of partitionable and quotientable are introduced and their mutual relationship is
investigated. A functor G from the category of classical (m,n)-rings to the category
of (m,n)-hyperrings is defined and a natural transformation between the functors
F and G is given.

1. Introduction

The notion of n-ary groups (also called n-group or multiary group) is a generalization
of that of groups. An n-ary group (G, f) is a pair of a setG and a map f : G×· · ·×G→
G, which is called an n-ary operation. The earliest work on these structures was done
in 1904 by Krasner [24] and in 1928 by Dörnte [22]. Such n-ary groups have many
applications to computer science, coding theory, topology, combinatorics and quantum
physic (see [18–21,36] and [38]). One of the applications is the entering into algebraic
hyperstructures theory defined by Marty in [30]. This work is initiated by Davvaz
and Vougiouklis [16] by defining n-ary hypergroups. By its generalization, (m,n)-
hyperrings and (m,n)-hypermodules were introduced and studied in different contexts.
Some of the studies can be seen in [2, 5, 11, 27–29,32,33] and [34].
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On the other hand, fundamental relations are one of important concepts in alge-
braic hyperstructures theory which classical algebraic structures will be obtained from
algebraic hyperstructures by them. The relations have been studied and investigated
on hypergroups in [23] and [25], on hyperrings in [1, 13, 15] and [42], and on hyper-
modules in [3] and [4]. After defining n-ary hyperstructures, fundamental relations
were extended on them. This extension done on n-ary hypergroups in [12] and [16],
on (m,n)-hyperrings in [34] and (m,n)-hypermodules in [5]. The Γ∗-relation in the
sense of Mirvakili and Davvaz [34] is one of relations on an (m,n)-hyperring by which
an (m,n)-ring is induced via the quotient.

In this paper, in Section 2, we give some basic preliminaries about (m,n)-rings and
(m,n)-hyperrings. In Section 3, we define the concept of a fundamental (m,n)-ring and
prove that every (m,n)-ring is isomorphic to R/Γ∗ for a nontrivial (m,n)-hyperring R.
In Section 4, we define the notion of quotiontable and partitionable (m,n)-hyperrings
and study a relationship between them. Finally, in Section 5, we introduce the category
of (m,n)-hyperrings, denoted by (m,n)−Hr and investigate functorial connections
between the categories of (m,n)-hyperrings and (m,n)-rings via Γ∗-relation. Moreover,
a natural transformation between these functors is characterized.

2. (m,n)-Rings and (m,n)-Hyperrings

In this section we recall some definitions about (m,n)-rings and (m,n)-hyperrings
based on [9, 16] and [34] for development of our paper.

Let H be a nonempty set. A mapping f : H × · · · ×H︸ ︷︷ ︸
n

−→ H (P∗(H)), where

P∗(H) is the set of all nonempty subsets of H, is called an n-ary operation (hyperop-
eration). A pair (H, f) consisting of a set H and an n-ary operation (hyperoperation)
f on H is called an n-ary groupoid (hypergroupoid). Note that for abbreviation, the
sequence xi, xi+1, . . . , xj will be denoted by xji and for j < i, xji is the empty set. Also,
f(x1, . . . , xi, yi+1, . . . , yj, zj+1, . . . , zn) will be written as f(xi1, y

j
i+1, z

n
j+1). In the case

when yi+1 = · · · = yj = y the last expression will be written as f(xi1, y(j−i), znj+1). If
f is an n-ary operation (hyperoperation) and t = l(n − 1) + 1 for some l ≥ 1, then
t-ary operation (hyperoperation) f(l) is defined by

f(l)(x
l(n−1)+1
1 ) = f(f(. . . , f(f︸ ︷︷ ︸

l

(xn1 ), x2n−1
n+1 ), . . .), xl(n−1)+1

(l−1)(n−1)+2).

An n-ary operation (hyperoperation) f is called associative, if

f
(
xi−1

1 , f
(
xn+i−1
i

)
, x2n−1

n+i

)
= f

(
xj−1

1 , f
(
xn+j−1
j

)
, x2n−1

n+j

)
,

holds, for every 1 ≤ i < j ≤ n and all x2n−1
1 ∈ H. An n-ary groupoid (hyper-

groupoid) with the associative n-ary operation (hyperoperation) is called an n-ary
semigroup (semihypergroup). An n-ary groupoid (hypergroupoid) (H, f) in which the
equation b = f(ai−1

1 , xi, a
n
i+1) (b ∈ f(ai−1

1 , xi, a
n
i+1)) has a solution xi ∈ H, for every

ai−1
1 , ani+1, b ∈ H and 1 ≤ i ≤ n, is called an n-ary quasigroup (quasihypergroup).
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If (H, f) is an n-ary semigroup (semihypergroup) and an n-ary quasigroup (quasi-
hypergroup), then (H, f) is called an n-ary group (hypergroup). An n-ary groupoid
(hypergroupoid) (H, f) is commutative, if for all σ ∈ Sn and for every an1 ∈ H, we
have f(a1, . . . , an) = f(aσ(1), . . . , aσ(n)). If an1 ∈ H, then we denote (aσ(1), . . . , aσ(n))
by aσ(n)

σ(1) .

Definition 2.1. Let (H, f) be an n-ary group (hypergroup). A non-empty subset B
of H is called an n-ary subgroup (subhypergroup) of (H, f), if f(xn1 ) ∈ B (f(xn1 ) ⊆ B)
for all xn1 ∈ B, and the equation b = f(bi−1

1 , xi, b
n
i+1) (b ∈ f(bi−1

1 , xi, b
n
i+1)) has a

solution xi ∈ B, for all bi−1
1 , bni+1, b ∈ B and 1 ≤ i ≤ n.

Definition 2.2. An (m,n)-ring (hyperring) is an algebraic structure (R, f, g), which
satisfies the following axioms:

(1) (R, f) is an m-ary group (hypergroup);
(2) (R, g) is an n-ary semigroup (semihypergroup);
(3) the n-ary operation (hyperoperation) g is distributive with respect to them-ary

operation (hyperoperation) f , i.e., for all ai−1
1 , ani+1, x

m
1 ∈ R, and 1 ≤ i ≤ n

g(ai−1
1 , f(xm1 ), ani+1) = f(g(ai−1

1 , x1, a
n
i+1), . . . , g(ai−1

1 , xm, a
n
i+1)).

We say that an (m,n)-ring (hyperring) (R, f, g) has an identity element if there exists
1 ∈ R such that x = g(1(i), x, 1(n−i−1)) ({x} = g(1(i), x, 1(n−i−1))) for all 0 ≤ i ≤ n− 1.

Example 2.1. Consider the ring (Z,+, ·) where “+” and “ ·” are ordinary addition and
multiplication on the set of all integers. It is easy to see that Z with f(x, y, z) = x+y+z
and g(x, y, z) = x·y ·z for all x, y, z ∈ Z will give rise to a (3, 3)-ring. Now, consider the
following 3-ary hyperoperations on Z h(x, y, z) = {x, y, z, x+ y, x+ z, y+ z, x+ y+ z}
and k(x, y, z) = {x · y · z}. Then, it can be seen that (Z, h, k) is a (3, 3)-hyperring.

Let (R1, f1, g1) and (R2, f2, g2) be two (m,n)-hyperrings. The mapping ϕ : R1 → R2
is called a homomorphism from R1 to R2, if for all xm1 , yn1 ∈ R1 we have

ϕ(f1(xm1 )) = f2(ϕ(x1), . . . , ϕ(xm)) and ϕ(g1(yn1 )) = g2(ϕ(y1), . . . , ϕ(yn)).

3. Fundamental (m,n)-Rings

Let (R, f, g) be an (m,n)-hyperring and ρ be an equivalence relation on R. If A
and B are non-empty subsets of R, then Aρ̄B means that for every a ∈ A, there exists
b ∈ B such that aρb and for every ν ∈ B, there exists u ∈ A that uρν. We write
A ¯̄ρB if aρb for any a ∈ A and b ∈ B. The equivalence relation ρ is called compatible
on (R, f), if aiρbi for all 1 ≤ i ≤ m implies that f(am1 )ρ̄f(bm1 ). Moreover, it is called
strongly compatible if f(am1 )¯̄ρf(bm1 ) when aiρbi for 1 ≤ i ≤ m.

Now assume that R
ρ

= {ρ(r) | r ∈ R}, be the set of all equivalence classes of R with
respect to ρ. Define m-ary and n-ary hyperoperations f/ρ and g/ρ on R

ρ
as follow:

f/ρ(ρ(a)m1 ) = {ρ(c) | c ∈ f(ρ(a)m1 )} and g/ρ(ρ(a)n1 ) = {ρ(c) | c ∈ g(ρ(a)n1 )}.
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Based on [16], in [34], it was shown that (R/ρ, f/ρ, g/ρ) is an (m,n)-hyperring (ring)
if and only if ρ is (strongly) compatible relation on R. Mirvakili and Davvaz in [34]
introduced the strongly compatible relation Γ∗ on (m,n)-hyperrings as follows.

Let (R, f, g) be an (m,n)-hyperring. For every k ∈ N and ls1 ∈ N, where s =
k(m− 1) + 1, the relation Γk;ls1 is defined by

xΓk;ls1y ⇔ {x, y} ⊆ f(k)(u1, . . . , us),

where ui = g(li)(x
iti
i1 ) for some xitii1 ∈ R with ti = li(n − 1) + 1 such that 1 ≤ i ≤ s.

Now, set Γk =
⋃
ls1∈N

Γk;ls1 and Γ =
⋃
k∈N∗

Γk. The results [34, Theorem 5.5 and 5.6] yield

that the transitive closure of Γ, Γ∗, is a strongly compatible relation on R that is the
smallest equivalence relation such that (R/Γ∗, f/Γ∗, g/Γ∗) is an (m,n)-ring. Hence,
Γ∗ is said to be a fundamental relation on R.

Lemma 3.1. Let (R, f, g), (S, f ′, g′) be (m,n)-hyperrings and h : R→ S be a homo-
morphism. Then, for all x, y ∈ R,

(i) xΓ∗y implies h(x)Γ∗h(y);
(ii) if h is an injection, then h(x)Γ∗h(y) implies that xΓ∗y;

(iii) if h is a bijection, then xΓ∗y if and only if h(x)Γ∗h(y);
(iv) if h is a bijection, then h(Γ∗(x)) = Γ∗(h(x)).

Proof. (i) Let xΓ∗y. Then there exist k, ls1 ∈ N and xitii1 ∈ R, where ti = li(n− 1) + 1
and 1 ≤ i ≤ s such that {x, y} ⊆ f(k)(u1, . . . , us), where ui = g(li)(x

iti
i1 ). Since h is

homomorphism, we have

{h(x), h(y)} = h{x, y} ⊆ h
(
f(k)(u1, . . . , us)

)
= f ′(k)

(
h(u1, . . . , us)

)
= f ′(k)

(
h
(
g(l1)(x1t1

11 ), . . . , g(ls)(xstss1 )
))

= f ′(k)

(
g′(l1)

(
h(x)1t1

11

)
, . . . , g′(ls)

(
h(x)stss1

))
.

So, h(x)Γ∗h(y).
(ii) For x, y ∈ R, since h(x)Γ∗h(y), there exist k, ls1 ∈ N and zitii1 ∈ S, where

ti = li(n − 1) + 1 and 1 ≤ i ≤ s such that {h(x), h(y)} ⊆ f ′(k)(u1, . . . , us) for
ui = g′(li)(z

iti
i1 ). Now, for an injection h : (R, f, g)→ (S, f ′, g′) we have

{x, y} =
{
h−1(h(x)), h−1(h(y))

}
= h−1

(
{h(x), h(y)}

)
⊆ h−1

(
f ′(k)(u1, . . . , us)

)
= f(k)

(
g(l1)

(
h−1(z)1t1

11

)
, . . . , g(ls)

(
h−1(z)stss1

))
.
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So, xΓ∗y.
(iii) It is clear by (i) and (ii).
(iv) Let x ∈ R. By (iii), we have

h(Γ∗(x)) =
⋃

y∈Γ∗(x)
h(y) =

⋃
xΓ∗y

h(y) =
⋃

h(x)Γ∗h(y)
h(y) = Γ∗(h(x)). �

Corollary 3.1. Let (R1, f1, g1) and (R2, f2, g2) be isomorphic (m,n)-hyperrings. Then
R1/Γ∗ ∼= R2/Γ∗.

Proof. Let h : (R1, f1, g1) → (R2, f2, g2) be an isomorphism. Define η : R1/Γ∗ →
R2/Γ∗ by η

(
Γ∗(x)

)
= Γ∗

(
h(x)

)
. By Lemma 3.1, η is well-defined, one to one and

onto. Hence, η is an isomorphism, since h is a homomorphism. �

Definition 3.1. An (m,n)-ring (R, f, g) is called a fundamental (m,n)-ring if there
exists a non-trivial (m,n)-hyperring, say (S, f ′, g′), such that (S/Γ∗, f ′/Γ∗, g′/Γ∗) ∼=
(R, f, g).

Remark 3.1. It is needed to explain what a non-trivial (m,n)-hyperring is. An (m,n)-
hyperring (S, f ′, g′) is said to be trivial if |f ′(xm1 )| = |g′(yn1 )| = 1 for all xm1 , yn1 ∈ S.
For example, let (R, f, g) be an (m,n)-ring. Define m-ary and n-ary hyperoperations
f ′(xm1 ) = {f(xm1 )} and g′(yn1 ) = {g(yn1 )} for all xm1 , yn1 ∈ R. Then (R, f ′, g′) is a trivial
(m,n)-hyperring.

Lemma 3.2. Let (R, f, g) be an (m,n)-ring with identity, then for any (m,n)-ring
S with identity, there exist m-ary and n-ary hyperoperations “f ′” and “g′” on R× S
such that (R× S, f ′, g′) is an (m,n)-hyperring.

Proof. Let S be a non-zero (m,n)-ring with identity 1. Define m-ary and n-ary
hyperoperations “f ′” and “g′” on R× S as follows:

f ′
(

(r1, s1), . . . , (rm, sm)
)

=
{

(f(rm1 ), s1), . . . , (f(rm1 ), sm)
}
,

g′
(

(r1, s1), . . . , (rn, sn)
)

=
{

(g(rn1 ), s1), . . . , (g(rn1 ), sn)
}
.

(For abbreviation, f ′
(
(r1, s1), . . . , (rm, sm)

)
denoted by f ′

(
(r, s)m1

)
, similarly this is

for g′). Clearly “f ′” and “g′” are associative and “g′” is distributive with respect to
“f ′”. Also, we have
f ′
(
(r, s)i−1

1 , R× S, (r, s)mi+1

)
=

⋃
(r′,s′)∈R×S

f ′
(
(r, s)i−1

1 , (r′, s′), (r, s)mi+1

)
=

⋃
(r′,s′)∈R×S

{(
f(ri−1

1 , r′, rmi+1), s1
)
, . . . ,

(
f(ri−1

1 , r′, rmi+1), si−1
)
,

(
f(ri−1

1 , r′, rmi+1), s′
)
,
(
f(ri−1

1 , r′, rmi+1), si+1
)
,

. . . ,
(
f(ri−1

1 , r′, rmi+1), sm
)}

=R× S.
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Thus, (R× S, f ′, g′) is an (m,n)-hyperring. �

The (m,n)-hyperring (R × S, f ′, g′) is called an associated (m,n)-hyperring to R
(via S) and denoted by RS.

Theorem 3.1. Let (R, f, g) and (T, f, g) be isomorphic (m,n)-rings with identity.
Then, for any (m,n)-ring S with identity, RS and TS are isomorphic (m,n)-hyperrings.

Proof. Let h : R→ T be an homomorphism. Define ω : (R×S, f ′, g′)→ (T ×S, f ′, g′)
by ω(r, s) = (h(r), s) for all (r, s) ∈ R × S. Since h is an isomorphism, it is easy to
see that ω is well-defined and a bijection. Now we verify that ω is a homomorphism.

ω
(
f ′
(
(r, s)m1

))
= ω

({
(f(rm1 ), s1), . . . , (f(rm1 ), sm)

})
=
{
ω
(
f(rm1 ), s1

)
, . . . , ω

(
f(rm1 ), sm

)}
=
{(
h(f(rm1 )), s1

)
, . . . ,

(
h(f(rm1 )), sm

)}
=
{(
f(h(r)m1 ), s1

)
, . . . ,

(
f(h(r)m1 ), sm

)}
= f ′

(
(h(r), s)m1

)
= f ′

(
ω
(
(r, s)m1

))
.

Similarly, ω
(
g′
(
(r, s)n1

))
= g′

(
ω
(
(r, s)n1

))
. Thus, (R× S, f ′, g′) ∼= (T × S, f ′, g′). �

Theorem 3.2. Every (m,n)-ring is a fundamental (m,n)-ring.

Proof. Let (R, f, g) be an (m,n)-ring. By Lemma 3.2, for any (m,n)-ring S, (R ×
S, f ′, g′) is an (m,n)-hyperring. For any r ∈ R and (s, s′) ∈ S × S we have
{(r, s), (r, s′)} = g′((r, s), (1, s′)n−1

1 ), so (r, s)Γ∗(r, s′). Hence, (r, s′) ∈ Γ∗(r, s). Thus,
Γ∗(r, s) = {(r, x) | x ∈ S}. Define the mapping θ : (R×S/Γ∗, f ′/Γ∗, g′/Γ∗)→ (R, f, g)
by θ(Γ∗(r, s)) = r. It is clear that θ is well-defined and one to one, since for any
(r, s), (r′, s′) ∈ R × S, Γ∗(r, s) = Γ∗(r′, s′) if and only if (r′, s′) ∈ Γ∗(r, s) if and
only if r = r′ if and only if θ(Γ∗(r, s)) = θ(Γ∗(r′, s′)). θ is a homomorphism. Let
(r, s)m1 , (r, s)n1 ∈ R× S. We have

θ
(
f ′/Γ∗(Γ∗(r, s)m1 )

)
=θ
(

Γ∗(f(rm1 ), s1)
)

= · · · = θ
(

Γ∗(f(rm1 ), sm)
)

= f(rm1 )

=f
(
θ(Γ∗(r, s))m1

)
θ
(
g′/Γ∗(Γ∗(r, s)n1 )

)
= θ

(
Γ∗(g(rn1 ), s1)

)
= · · · = θ

(
Γ∗(g(rn1 ), sn)

)
= g(rn1 ) = g

(
θ(Γ∗(r, s))n1

)
.

Since for any r ∈ R, θ(Γ∗(r, 0)) = r, then θ is onto. Thus, θ is an isomorphism. �
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Theorem 3.3. Let (R, f, g) be an (m,n)-hyperring. Then there exist an (m,n)-ring
S, m-ary and n-ary hyperoperations f ′ and g′ on R × S such that (R, f, g) can be
embedded in (R× S, f ′, g′).

Proof. Let (R, f, g) be an (m,n)-hyperring and set S = (R/Γ∗, f/Γ∗, g/Γ∗). Define
m-ary and n-ary hyperoperations f ′ and g′ on R×R/Γ∗, as following:

f ′
(

(r,Γ∗(v))m1
)

=
(
f(rm1 ),Γ∗(f(vm1 ))

)
,

g′
(

(r,Γ∗(v))n1
)

=
(
g(rn1 ),Γ∗(g(vn1 ))

)
.

Let (r,Γ∗(v))m1 = (r′,Γ∗(v′))m1 , then rj = r′j and Γ∗(vj) = Γ∗(v′j) for all 1 ≤ j ≤ m.
Since Γ∗(vj) = Γ∗(v′j) for all j = 1, . . . ,m, there exist kj, l

sj

1j
∈ N and x

ijtij

ij1 ∈ R,
where tij = lij (n− 1) + 1 and ij = 1j, . . . , sj, such that {vj, v′j} ⊆ f(kj)(u1j

, . . . , usj
),

where uij = g(lj)(x
ijtij

ij1 ). Hence,

{f(vm1 ), f(v′m1 )} ⊆
{
f(vm1 ), f(v1, v

′m
2 ), f(v′1, v2, v

′m
3 ), . . . , f(v′m1 )

}
⊆ f

(
f(k1)(u11 , . . . , us1), . . . , f(km)(u1m , . . . , usm)

)
and

{g(vn1 ), g(v′n1 )} ⊆
{
g(vn1 ), g(v1, v

′n
2 ), g(v′1, v2, v

′n
3 ), . . . , g(v′n1 )

}
⊆ g

(
f(k1)(u11 , . . . , us1), . . . , f(kn)(u1n , . . . , usn)

)
.

Thus, Γ∗(f(vm1 )) = Γ∗(f(v′m1 )) and Γ∗(g(vn1 )) = Γ∗(g(v′n1 )). So, (f(rm1 ),Γ∗(f(vm1 ) =
f(r′m1 ),Γ∗(f(v′m1 )) and (g(rn1 ),Γ∗(g(vn1 )) = (g(r′n1 ),Γ∗(g(v′n1 ))). Therefore, the m-ary
and n-ary hyperoperations f ′ and g′ are well-defined. Now, we show that (R×S, f ′, g′)
is an (m,n)-hyperring. Let (r,Γ∗(v))m1 ∈ R×S. Then for any i, j ∈ {1, · · · ,m}, since
“f” is associative, it follows that:

f ′
(

(r,Γ∗(v))i−1
1 , f ′((r,Γ∗(v))m+i−1

i ), (r,Γ∗(v))2m−1
m+i

)
=
(
f(ri−1

1 , f(rm+i−1
i ), r2m−1

m+i ),Γ∗(f(vi−1
1 , f(vm+i−1

i ), v2m−1
m+i )

)
=
(
f(rj−1

1 , f(rm+j−1
j ), r2m−1

m+j ),Γ∗(f(vj−1
1 , f(vm+j−1

j ), v2m−1
m+j )

)
=f ′

(
(r,Γ∗(v))j−1

1 , f ′((r,Γ∗(v))m+j−1
j ), (r,Γ∗(v))2m−1

m+j

)
.

So, f ′ is associative. Similarly, it can be shown that g′ is associative on R×S. Now, we
verify the reproduction property. Since f(ri−1

1 , R, rmi+1) = R and R/Γ∗ = ⋃
t∈R Γ∗(t),
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so

f ′
(

(r,Γ∗(v))i1, R× S, (r,Γ∗(v))mi+1

)
=

⋃
(r′,Γ∗(v′))∈R×S

f ′
(

(r,Γ∗(v))i1, (r′,Γ∗(v′)), (r,Γ∗(v))mi+1

)

=
⋃

(r′,Γ∗(v′))∈R×S

(
f(ri1, r′, rmi+1),Γ∗(f(vi1, s′, vmi+1))

)
= R× Γ∗(R) = R× S.

To investigate distributivity law, let (r′,Γ∗(v′))m1 ∈ R× S, (r,Γ∗(v))n1 ∈ R× S. Since
g is distributive with respect to f , then

g′
(

(r,Γ∗(v))i−1
1 , f ′((r′,Γ∗(v′))m1 ), (r,Γ∗(v))ni+1

)
=
(
g(ri−1

1 , f(r′m1 ), rni+1),Γ∗(g(vi−1
1 , f(v′m1 ), vni+1))

)
=
(
f(g(ri−1

1 , r′1, r
n
i+1), . . . , g(ri−1

1 , r′m, r
n
i+1)),

Γ∗(f(g(vi−1
1 , v′1, v

n
i+1), · · · , g(vi−1

1 , v′m, v
n
i+1)))

)
=f ′

(
g′((r,Γ∗(v))i−1

1 , (r′,Γ∗(v′))1, (r,Γ∗(v))ni+1), . . . ,

g′((r,Γ∗(v))i−1
1 , (r′,Γ∗(v′))m, (r,Γ∗(v))ni+1)

)
.

So, (R × S, f ′, g′) is an (m,n)-hyperring. Now, define the mapping θ : (R, f, g) →
(R × S, f ′, g′), by θ(r) = (r,Γ∗(r)). Let r, r′ ∈ R. Then r = r′ if and only if
(r,Γ∗(r)) = (r′,Γ∗(r′)) if and only if θ(r) = θ(r′). Let rm1 , rn1 ∈ R. Then

θ(f(rm1 )) = (f(rm1 ),Γ∗(f(rm1 )) = f ′((r,Γ∗(r))m1 ) = f ′(θ(r)m1 )
and

θ(g(rn1 )) = (g(rn1 ),Γ∗(g(rn1 )) = g′((r,Γ∗(r))n1 ) = g′(θ(r)n1 ),
where θ(r)k1 means θ(r1), . . . , θ(rk) for k = m or k = n. Thus, (R, f, g) can be
embedded in (R× S, f ′, g′). �

Theorem 3.4. Let R and S be two sets such that |R| = |S|. If (R, f, g) is an (m,n)-
hyperring, then there exist m-ary and n-ary hyperoperations “f ′” and “g′” on “S”,
such that (R, f, g) and (S, f ′, g′) are isomorphic (m,n)-hyperrings

Proof. Since |R| = |S|, then there exists a bijection φ : R → S. For any sm1 , sn1 ∈ S,
define the m-ary and n-ary hyperoperations “f ′” and “g′” as follows:

f ′(sm1 ) = φ(f(rm1 )), g′(sn1 ) = φ(g(rn1 )).
First we prove that f ′ and g′ are well-defined. Let si = s′i, where si = φ(ri), s′i = φ(r′i)
and ri, r

′
i ∈ R for i = 1, . . . ,m. So, si = s′i implies that φ(ri) = φ(r′i). Since φ is
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bijection, then ri = r′i for i = 1, . . . ,m and so f ′(sm1 ) = φ(f(rm1 )) = φ(f(r′m1 )) =
f ′(s′m1 ), similarly g′(sn1 ) = g′(s′n1 ). Moreover, since

φ(f(rm1 )) = f ′(φ(r)m1 ),(3.1)
φ(g(rn1 )) = g′(φ(r)n1 ),

φ is a homomorphism. Now, it is enough to show that (S, f ′, g′) is an (m,n)-hyperring.
Define the map θ : (R, f, g) → (S, f ′, g′) by θ(x) = φ(x). Since φ is bijection then θ
is a bijection. Now we show that θ is a homomorphism. Let rm1 ∈ R. Then, by (3.1),
θ(f(rm1 )) = φ(f(rm1 )) = f ′(φ(r)m1 ) = f ′(θ(r)m1 ) and θ(g(rn1 )) = φ(g(rn1 )) = g′(φ(r)n1 ) =
g′(θ(r)n1 ). Thus, θ is an isomorphism and so (S, f ′, g′) is an (m,n)-hyperring. �

Corollary 3.2. Let (R, f, g) be an (m,n)-ring of infinite order. Then there exist m-
ary and n-ary hyperoperations “f ′” and “g′” on R such that (R, f, g) is a fundamental
(m,n)-ring of itself, i.e., (R/Γ∗, f ′/Γ∗, g′/Γ∗) ∼= (R, f, g).

Proof. For a given (m,n)-ring (R, f, g), consider the smallest associated (m,n)-
hyperring (R × Z2, f

′, g′). By Theorem 3.2,
(

(R×Z2,f ′,g′)
Γ∗ , f ′/Γ∗, g′/Γ∗

) ∼= (R, f, g).
Since R is infinite set, then |R| = |R × Z2| and, by Theorem 3.4, there exist m-
ary and n-ary hyperoperations “f ′′” and “g′′” on (R, f, g), such that (R, f ′′, g′′) and
(R× Z2, f

′, g′), are isomorphic (m,n)-hyperrings. Now, we have

(R, f, g) ∼=
(

(R× Z2, f
′, g′)

Γ∗ , f ′/Γ∗, g′/Γ∗
)
∼=
(

(R, f ′′, g′′)
Γ∗ , f ′/Γ∗, g′/Γ∗

)
.

Hence, (R, f, g) is a fundamental (m,n)-ring of itself. �

We recall the relation βf = ⋃
k≥1 βk on an n-ary semihypergroup (R, f) defined by

Davvaz and Vougiouklis in [16], where xβky if and only if there exist t = k(m− 1) + 1
and zt1 ∈ R such that {x, y} ⊆ f(k)(zt1). It is well known that βf is the smallest
strongly compatible equivalence relation on n-ary semihypergroup (R, f) such that
(R/βf , f/βf ) is an n-ary semigroup. Clearly, βf ⊆ Γ and so β∗f ⊆ Γ∗.

Theorem 3.5. Every finite (m,n)-ring is not its fundamental (m,n)-ring.

Proof. Let (R, f, g) be a finite (m,n)-ring, |R| = n. If “f ′” and “g′”, are m-ary and
n-ary hyperoperations on R, such that (R, f, g) is an (m,n)-hyperring, then there
exist xm1 ∈ R such that |f ′(xm1 )| ≥ 2. Hence, there are a, b ∈ f(xm1 ). So aβfb and
then aΓb. Therefore, aΓ∗b and Γ∗(a) = Γ∗(b). Since R/Γ∗ = {Γ∗(t) | t ∈ R}, then
|R/Γ∗| < n. Thus, (R, f, g) � (R/Γ∗, f ′/Γ∗, g′/Γ∗). �

4. Embeddable (m,n)-Hyperring

In this section we introduce the concepts of partitionable and quotientable (m,n)-
hyperrings and investigate the relation between them. Also, we give some results
concerning about these concepts.
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Definition 4.1. An (m,n)-hyperring (R, f1, g1) is said to be a partitionable (m,n)-
hyperring if there exists an (m,n)-ring (S, f, g), an equivalence relation ρ on (S, f, g),
non-trivial m-ary and n-ary hyperoperations f ′ and g′ such that (S/ρ, f ′, g′) ∼=
(R, f1, g1).

Theorem 4.1. Every (m,n)-hyperring is a partitionable (m,n)-hyperring.

Proof. Let (R, f, g) be an (m,n)-hyperring. Then we consider three cases.
Case 1. Let R be finite and |R| = n. Define on Z the equivalence relation ρ by

xρy ⇔ x ≡ y (mod n).
Clearly |R| = |Z/ρ|. So, by Theorem 3.4, there exist m-ary and n-ary hyperopera-
tions f ′ and g′ on Z/ρ, such that (Z/ρ, f ′, g′) is an (m,n)-hyperring and (R, f, g) ∼=
(Z/ρ, f ′, g′).

Case 2. Let R be infinite countable. Then |R| = |Z|. Let A = {Ai}i∈Z be a
partition of Z such that there exists an index j ∈ Z such that |Aj| = 2 and for any
j 6= i ∈ Z, |Ai| = 1. Clearly, the binary relation ρ on Z, by

rρs⇔ (∃k ∈ Z) s.t {r, s} ⊆ Ak

is an equivalence relation on Z and clearly |Z| = |A| =
∣∣∣Z
ρ

∣∣∣. Thus, by Theorem
3.4, there exist m-ary and n-ary hyperoperations “f ′” and “g′” on Z/ρ, such that
(Z/ρ, f ′, g′) is an (m,n)-hyperring and (R, f1, g1) ∼= (Z/ρ, f ′, g′).

Case 3. Let R be uncountable. Then |R| = |R| and similarly as in case 2 it can be
concluded that R is a partitionable (m,n)-hyperring. �

Let (R, f, g) be an (m,n)-ring. We say that (N, g) is a normal subgroup of n-
semigroup (R, g), if g(ai−1

1 , N, ani+1) = g(aσ(i−1)
σ(1) , N, a

σ(n)
σ(i+1)), for all an1 ∈ R, σ ∈ Sn and

1 ≤ i ≤ n. Also, for a normal subgroup N of (S, g), we set
S/N = {g(xi−1

1 , N, xni+1) | xi ∈ S, 1 ≤ i ≤ n}.

Definition 4.2. An (m,n)-hyperring (R, f, g) is called a quotientable (m,n)-hype-
rring if there exist an (m,n)-ring (S, h, k), non-trivialm-ary and n-ary hyperoperations
f ′ and g′ such that (S/N, f ′, g′) ∼= (R, f, g), where N is a normal subgroup of the
n-semigroup of (S, k).

Theorem 4.2. Every (m,n)-hyperring is a quotientable (m,n)-hyperring.

Proof. Let (R, f, g) be an (m,n)-hyperring and consider the following cases.
Case 1. Let R be finite and |R| = n. Consider (Z∗n = Zn \ {0̄},�) and set g(xn1 ) =

n⊙
i=1

xi for xn1 ∈ Zn. Clearly, N = {1̄} is a normal subgroup of (Z∗n, g) and |R| = |Zn/N |.

Thus, by Theorem 3.4, there existm-ary and n-ary hyperoperations f ′ and g′ on Zn/N
such that (Zn/N, f ′, g′) is an (m,n)-hyperring and (R, f, g) ∼= (Zn/N, f ′, g′).

Case 2. Let R be infinite countable and |R| = |Z × Z|. Note that (Z × Z, f, g) is
an (m,n)-ring such that f((a, b)m1 ) = (a1 + · · · + am, b1 + · · · + bm) and g((a, b)n1 ) =
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(a1 · a2 · · · an, b1 · b2 · · · bn) for any am1 , an1 , bm1 , bn1 ∈ Z, where “ + ” and “ · ” are ordinary
binary operations on Z. Now, let N = {(−1, 1), (1, 1)}. Then N is a normal in
((Z × Z)∗, g). Clearly |Z × Z| = |(Z × Z)/N |. Hence, by Theorem 3.4, there exist
m-ary and n-ary hyperoperations f ′ and g′ on (Z×Z)/N such that ((Z×Z)/N, f ′, g′)
is an (m,n)-hyperring and (R, f, g) ∼= ((Z× Z)/N, f ′, g′).

Case 3. Let R be uncountable. Then |R| = |R× R| and similarly as in case 2 we
conclude that R is a quotientable (m,n)-hyperring. �

Theorem 4.3. Every quotientable (m,n)-hyperring is a partitionable (m,n)-hyperring.

Proof. Let (R, f1, g1) be a quotientable (m,n)-hyperring. Then, there exist an (m,n)-
ring (S, f, g), non-trivial m-ary and n-ary hyperoperations f ′ and g′ such that
(S/N, f ′, g′) ∼= (R, f1, g1), where N is a normal subgroup the n-semigroup (S, g).
Define, the binary relation ρ on S as follows:

xρy ⇔ g(x, xi−1
2 , N, xni+1) = g(y, xi−1

2 , N, xni+1).
Clearly ρ is an equivalence relation on S and for any s ∈ S, ρ(s) = g(s, xi−1

2 , N, xni+1).
Hence, (R, f1, g1) is a partitionable (m,n)-hyperring. �

Remark 4.1. Consider the (m,n)-hyperring (Z3, f, g) with the m-ary and n-ary hyper-
operations f(xm1 ) = Z3 and g(yn1 ) = Z3 for all xm1 , yn1 ∈ Z3. Define on Z the relation
ρ by ρ = {(0, 0), (2k, 2k′), (2k + 1, 2k′ + 1)} Clearly ρ is an equivalence relation and
|Z3| = |Zρ |. Hence, by Theorem 4.1, (Z3, f, g) is a partitionable (m,n)-hyperring. But
ρ is not a multiplicative normal n-subgroup of Z. Thus, the converse of Theorem 4.3,
is not valid.

Let (R, f1, g1) be an (m,n)-hyperring. Consider the canonical projection
ϕ : (R, f1, g1) → (R/Γ∗, f1/Γ∗, g1/Γ∗) by ϕ(r) = Γ∗(r). Also, by Theorem 4.2,
there exist an (m,n)-ring (S, f, g), normal n-subgroup N such that θ : (R, f1, g1)→
(S/N, f ′, g′) is an isomorphism. Hence, we have the following theorem.

Theorem 4.4. Let (R, f1, g1) be a quotientable (m,n)-hyperring via an (m,n)-ring
(S, f, g). Then there exists a unique homomorphism ψ, such that ψθ = ϕ.

Proof. Since (R, f1, g1) is a quotientable (m,n)-hyperring via an (m,n)-ring (S, f, g),
there exists a normal subgroup of the n-semigroup (S, g) such that (S/N, f ′, g′) ∼=
(R, f1, g1). Define ψ : S/N → R/Γ∗ by ψ(g(si−1

1 , N, sni+1)) = Γ∗(r) such that θ(r) =
g(si−1

1 , N, sni+1) for any sn1 ∈ S. Therefore ψ = ϕ◦ θ−1, so ψ is a homomorphism. Also,
ψθ(r) = (ϕ ◦ θ−1)(θ(r)) = ϕ(r). Thus, the following diagram is commutative.

R

ϕ !!

θ // S/N

ψ

��
R/Γ∗

Moreover, it is easy to see that ψ is unique. �
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Corollary 4.1. Let (R, f1, g1) be a quotientable (m,n)-hyperring via an (m,n)-ring
(S, f, g). Then the following diagram is commutative.

R
θ //

ϕ

��

S/N

ϕ̄

��
R/Γ∗ θ̄ // (S/N)/Γ∗

Proof. Define the maps θ̄ : R/Γ∗ → (S/N)/Γ∗ by θ̄(Γ∗(r)) = Γ∗(θ(r)) and ϕ̄ : S/N →
(S/N)/Γ∗ by ϕ̄(g(si−1

1 , N, sni+1)) = Γ∗(g(si−1
1 , N, sni+1)). Since θ and ϕ are homomor-

phism, θ̄ and ϕ̄ are so. Hence, for any r ∈ R

ϕ̄θ(r) = ϕ̄
(
g(si−1

1 , N, sni+1)
)

= Γ∗
(
g(si−1

1 , N, sni+1)
)

= Γ∗(θ(r)) = θ̄(Γ∗(r)) = θ̄ϕ(r).

�

5. Categorical Relations on (m,n)-Hyperrings and (m,n)-Rings

Now we introduce the category of (m,n)-hyperrings, denoted by (m,n)−Hr. This
category is defined as follows:

(i) the objects of (m,n)−Hr are (m,n)-hyperrings;
(ii) for the objects R and R′ of (m,n)−Hr, the set of all homomorphisms from R

to R′ are arrows and denoted by h : R→ R′.
In this section, we try to investigate the relation between two categories (m,n)−Hr

and (m,n) − Rg (category of (m,n)-rings) and work on natural transformations
between them. At first, we define an arrow F : (m,n) − Hr → (m,n) − Rg by
F (R) = R/Γ∗, where (R, f, g) is an object of (m,n) − Hr and for any arrow ν :
(R1, f1, g1)→ (R2, f2, g2), we define:

F (ν) : R1/Γ∗ → R2/Γ∗ by F (ν)(Γ∗(x)) = Γ∗(ν(x)), for every x ∈ R1.

By Corollary 3.1, F is well-defined. Hence, we have the following.

Theorem 5.1. F is a covariant functor from (m,n)−Hr to (m,n)−Rg.

Proof. For any object (R, f, g) of (m,n)−Hr, F (R) = R/Γ∗ is an (m,n)-ring and then
F (R) is an object in (m,n)−Rg. Now, we show that F (ν) is an arrow in (m,n)−Rg,
for any arrow ν : (R1, f1, g1)→ (R2, f2, g2). Let Γ∗(x)m1 , Γ∗(x)n1 ∈ R1/Γ∗. Thus,

F (ν)
(
f1/Γ∗

(
Γ∗(x)m1

))
= F (ν)

(
Γ∗
(
f1(xm1 )

))
= Γ∗

(
ν
(
f1(xm1 )

))
= Γ∗

(
f2
(
ν(x1), . . . , ν(xm)

))
= f2/Γ∗

(
Γ∗
(
ν(x1)

)
, . . . ,Γ∗

(
ν(xm)

))
= f2/Γ∗

(
F (ν)

(
Γ∗(x1)

)
, . . . , F (ν)

(
Γ∗(xm)

))
.
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Similarly, we have

F (ν)
(
g1/Γ∗

(
Γ∗(x)n1

))
= g2/Γ∗

(
F (ν)

(
Γ∗(x1)

)
, . . . , F (ν)

(
Γ∗(xn)

))
.

Also for the composition of two arrows F (ν) and F (ω) in (m,n) − Rg, where ν :
(R1, f1, g1)→ (R2, f2, g2) and ω : (R2, f2, g2)→ (R3, f3, g3), we have

F (ω) ◦ F (ν) = F (ω)(F (ν)) = F (ω)(Γ∗(ν)) = Γ∗(ω ◦ ν) = F (ω ◦ ν).
Moreover, for 1R : R→ R and 1F (R) : R/Γ∗ → R/Γ∗, we have

F (1R)
(

Γ∗(x)
)

= Γ∗(1R(x)) = Γ∗(x) = 1F (R)(x).

Therefore, F is a covariant functor of (m,n)−Hr to (m,n)−Rg. �

Now, for (m,n) − Hr, (m,n) − Rg, any (m,n)-ring (R, f, g) and S = Z2, define
a categorical arrow U : (m,n) − Rg → (m,n) − Hr by U(R) = RS, which for any
(m,n)-ring homomorphism ν : (R1, f1, g1)→ (R2, f2, g2) defined by

U(ν)(x, y) = (ν, 1S)(x, y) = (ν(x), 1S(y)) = (ν(x), y).
By Theorem 3.1, U is well-defined. Hence, we have the following theorem.

Theorem 5.2. U is a covariant functor from (m,n)−Rg to (m,n)−Hr.

Proof. For any object (R, f, g) of (m,n) − Rg by Lemma 3.2, U(R) = R × S = RS

is an (m,n)-hyperring and so U(R) is an object in (m,n)−Hr. Consider any arrow
ν : (R1, f1, g1) → (R2, f2, g2) in (m,n) − Rg. We show that U(ν) is an arrow in
(m,n)−Hr. Let (r, s)m1 , (r, s)n1 ∈ R1 × S. Now, by Lemma 3.2,

U(ν)
(
f ′1
(
(r, s)m1

))
= U(ν)

(
{(f1(rm1 ), s1), . . . , (f1(rm1 ), sm)}

)
=
{
U(ν)

(
f1(rm1 ), s1)

)
, . . . , U(ν)

(
f1(rm1 ), sm)

)}
=
{(
ν(f1(rm1 )), s1

)
, . . . ,

(
ν(f1(rm1 )), sm

)}
=
{(
f2
(
ν(r1), . . . , ν(rm)

)
, s1

)
, . . . ,

(
f2
(
ν(r1), . . . , ν(rm)

)
, sm

)}
= f ′2

((
ν(r1), s1

)
, . . . ,

(
ν(rm), sm

))
= f ′2

(
U(ν)(r1, s1), . . . , U(ν)(rm, sm)

)
.

Similarly, we have U(ν)(g′1
(
(r, s)n1

)
) = g′2(U(ν)(r1, s1), . . . , U(ν)(rn, sn)). Thus, U(ν) :

R1 × S → R2 × S is an (m,n)-hyperring homomorphism and so is an arrow in
(m,n)−Hr. Now, we investigate the composition property. Let ν and ω be arrows
in (m,n)−Rg. So,

U(ν)◦U(ω)(r, s) = U(ν)
(
U(ω)(r, s)

)
= U(ν)

(
ω(r), s

)
=
(
ν◦ω(r), s

)
= U(ν◦ω)(r, s).
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Moreover, consider 1R : R→ R and 1U(R) : U(R)→ U(R). For any (r, s) ∈ RS

U(1R)(r, s) = (1R(r), s) = (r, s) = 1U(R)(r, s).

Hence, U is a covariant functor of (m,n)−Rg to (m,n)−Hr. �

Theorem 5.3. The functor U : (m,n)−Rg → (m,n)−Hr is a faithful functor.

Proof. Let (R1, f1, g1) and (R2, f2, g2) be objects in (m,n) − Rg, ν1, ν2 : R1 → R2
be parallel arrows of (m,n) − Rg and U(ν1) = U(ν2). So, for any (r, s) ∈ R1S,
U(ν1)(r, s) = U(ν2)(r, s) and so ν1 = ν2. Thus, U is a faithful functor. �

Theorem 5.4. On objects of (m,n)−Rg, F ◦ U = 1.

Proof. For any object (R, f, g) in (m,n)−Rg, we have

(F ◦ U)(R, f, g) = F (RS, f
′, g′) = (RS/Γ∗, f ′/Γ∗, g′/Γ∗) ∼= (R, f, g),

by Theorem 3.2. �

Theorem 5.5. For functors 1, F ◦ U : (m,n) − Rg → (m,n) − Rg there exists a
natural transformation µ : 1→ F ◦ U .

Proof. For two functors 1 and F ◦ U of (m,n) − Rg to (m,n) − Rg, define a map
µ : 1→ F ◦ U as follows:

µ : 1(R)→ (F ◦ U)(R) by µ(r) = Γ∗(r, 0).

Now, for any (m,n)-ring homomorphism ν : (R, f, g) → (R′, f ′, g′), consider the
following diagram.

1(R) µR //

1(ν)
��

(F ◦ U)(R)
F◦U(ν)
��

1(R′)
µR′// (F ◦ U)(R′)

For any r ∈ R, we have(
(F ◦ U)(ν) ◦ µR

)
(r) = F ◦ U(ν)

(
µR(r)

)
= F ◦ U(ν)

(
Γ∗(r, 0)

)
= Γ∗

(
ν(r), 0

)
= µR′

(
ν(r)

)
= µR′

(
1(ν)(r)

)
=
(
µR′ ◦ 1(ν)

)
(r).

So, µ is a natural transformation. �

Theorem 5.6. For functors 1 and U ◦ F from (m,n) − Hr to (m,n) − Hr, there
exists a transformation θ : 1→ U ◦ F such that is natural.
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Proof. For two functors 1, U◦F : (m,n)−Hr → (m,n)−Hr, define a map θ : 1→ U◦F
as θ : 1(R) → (U ◦ F )(R) by θ(r) =

(
Γ∗(r), 0

)
. Now, for any (m,n)-hyperring

homomorphism ν : (R, f, g)→ (R′, f ′, g′), consider the following diagram.

1(R) θR //

1(ν)
��

(U ◦ F )(R)
U◦F (ν)
��

1(R′)
θR′// (U ◦ F )(R′)

For any r ∈ R, we have(
(U ◦ F )(ν) ◦ θR

)
(r) = U ◦ F (ν)

(
θR(r)

)
= U ◦ F (ν)

(
Γ∗(r), 0

)
=
(

Γ∗
(
ν(r)

)
, 0
)

= θR′
(
ν(r)

)
= θR′

(
1(ν)(r)

)
=
(
θR′ ◦ 1(ν)

)
(r).

Therefore, θ is a natural transformation. �
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