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WOVEN (WEAVING) FRAMES IN BANACH SPACES

ASGHAR RAHIMI1, SARA BASATI1, BAYAZ DARABY1, AND FIRDOUS A. SHAH2

Abstract. Banach frames are defined by the straightforward generalization of
Hilbert space frames. Woven (weaving) frames are the recent generalization of
standard frames which appeared in the applications of distributed signal processing.
In this paper, we introduce the concepts of woven (weaving) Bessel and frame
sequences in Banach spaces and characterize the woven frames in terms of bounded
operators. We also give some equivalent conditions for woven Xd-frame in Banach
spaces.

1. Introduction

The origin of frame theory can be traced back to the early 1950s with the seminal
work of Duffin and Schaeffer [13] in nonharmonic Fourier series. Today, the theory
of frames has expanded into an independent and broad field of research with wide-
spread applications to signal processing, image processing, data compression, pattern
matching, sampling theory, spherical codes, wavelet analysis, communication and data
transmission [4,8,11,18,19]. Inspired by a problem raised in distributed signal process-
ing, Bemrose et al. [1] introduced the concept of weaving frames in separable Hilbert
spaces and observed that the weaving frames may be applied in sensor networks which
requires distributed processing under different frames. In recent years, a considerable
amount of research has been conducted to extend the notion of weaving frames to
different settings which include weaving frames in Banach spaces, continuous weav-
ing frames, generalized weaving frames, weaving Riesz bases, weaving fusion frames,
weaving controlled frames and weaving vector-valued frames [5,6,20,22,24–26,31–34].
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Frames in Hilbert spaces were extended to Banach spaces by Feichtinger and
Gröchenig [15] who introduced the concept of atomic decompositions in Banach
spaces. Later on, Gröchenig [17] laid down the foundations for the theory of coherent
Banach frames and constructed Banach frames for a wide class of Banach spaces,
the so-called coorbit spaces. Keeping in view the fact that the weaving frames have
potential applications in wireless sensor networks and other allied areas, we are deeply
motivated to extend the concept of woven (weaving) frames to Banach spaces by
invoking certain fundamental concepts of operator theory.

This article is organized as follows. Section 2 contains basic definitions and results
regarding frames and weaving frames in Hilbert spaces. In Section 3, we introduce
the notion of weaving frames in Banach spaces and then generalize the definitions of
Xd-frame and p-frame for the woven.

2. Frames and Woven Frames in Hilbert Spaces

In this section, we give a short review of the concept of frames and woven frames
in Hilbert spaces and make some preparatory observations. For a complete treatment
of frame theory, we recommend the excellent book of Christensen [8], the tutorials
of Casazza [2, 3] and the memoir of Han and Larson [21]. Throughout this paper, H
denotes a separable infinite-dimensional Hilbert space, X, Y, Z the separable Banach
spaces with dual X∗, Y ∗, Z∗, Xd a Banach sequence space and I an index set which
is finite or countable. Let N be the set of all positive integers and let m ∈ N be
fixed. Then for this choice of m, we set [m] = {1, 2, . . . ,m} and [m]c = I \ [m] =
{m+ 1,m+ 2, . . . }. Let us start with the well-known notion of Hilbert space frames.

2.1. Discrete frame in Hilbert spaces. In this section, we give a short review of
the concept of frames in Hilbert spaces, and make some preparatory observations. Let
us start with the well known notion of Hilbert space frames.

Definition 2.1. A family of vectors Φ = {ϕi}i∈I in a Hilbert space H is said to be a
frame if there exist constants 0 < A ≤ B <∞ so that for all x ∈ H

A‖x‖2 ≤
∑
i∈I
|〈x, ϕi〉|2 ≤ B‖x‖2,

where A and B are lower and upper frame bounds, respectively. If only B is assumed,
then it is called B-Bessel sequence. If A = B, it is said to be a tight frame and if
A = B = 1, it is called a Parseval frame.

If Φ = {ϕi}i∈I is a Bessel sequence for H, then the synthesis operator of Φ defined
as

T : l2(I)→ H, T {ci} :=
∑
i∈I
ciϕi,

and the adjoint of T is the analysis operator

T ∗ : H → l2(I), T ∗x := {〈x, ϕi〉}i∈I.
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The frame operator S : H → H is defined by S := TT ∗

Sx = TT ∗x =
∑
i∈I
〈x, ϕi〉ϕi, for all x ∈ H.

The operator S is positive, self-adjoint, invertible and AI ≤ S ≤ BI. Any x ∈ H has
an expansion

x =
∑
i∈I
〈S−1ϕi, x〉ϕi =

∑
i∈I
〈ϕi, x〉S−1ϕi.(2.1)

The family {S−1ϕi}i∈I is also a frame with bounds B−1, A−1 and this frame is called
the canonical dual or reciprocal frame of {ϕi}i∈I.

Definition 2.2. A family of vectors Φ = {ϕi}i∈I in a Hilbert space H is said to be a
Riesz sequence if there exist constants 0 ≤ A ≤ B <∞ so that for all {ci}i∈I ∈ l2(I)

A
∑
i∈I
|ci|2 ≤

∥∥∥∥∥∥
∑
i∈I
ciϕi

∥∥∥∥∥∥
2

≤ B
∑
i∈I
|ci|2,

where A and B are the lower Riesz bound and upper Riesz bound, respectively. If in
addition, Φ is complete in H, then it is called as the Riesz basis for H.

2.2. Woven Frame in Hilbert spaces. Woven frames in Hilbert spaces were intro-
duced by Bemros et al. [1, 6] in 2015. Weaving frames have potential applications in
wireless sensor networks that require distributed processing under different frames,
as well as preprocessing of signals using Gabor frames. In this subsection, we review
the notions of woven and weaving frames in Hilbert spaces and present certain new
examples.

Definition 2.3. A family of frames {fij}i∈I with j ∈ [m] for a Hilbert space H is
said to be woven if there exist universal constants A and B so that for every partition
{σj}j∈[m] of I, the family {fij}i∈σj ,j∈[m] is a frame for H with lower and upper frame
bounds A and B, respectively. For every j ∈ [m], the frames {fij}i∈σj are called
weaving frames.

The following proposition shows that every weaving frame has always a universal
upper frame bound.

Proposition 2.1. If each φ = {ϕij}i∈I,j∈[m] is a Bessel sequence for H with bounds
Bj for all j ∈ [m] , then every weaving frame is a Bessel sequence with ∑m

j=1Bj as a
Bessel bound.

Proof. For every partition {σj}j∈[m] of I and every x ∈ H, the inequality
m∑
j=1

∑
i∈σj
|〈x, ϕij〉|2 ≤

m∑
j=1

∑
i∈I
|〈x, ϕij〉|2 ≤ ‖x‖2

m∑
j=1

Bj,

yields the desired bound. �
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Example 2.1. There exist two Parseval frames that yield weaving frames with arbitrary
weaving bounds. For showing this, assume ε > 0, set δ = (1 + ε2)−

1
2 , and let

{e1, e2, e3} be the standard orthonormal basis of R3. Then the sets φ = {ϕi}ni=1 =
{δe1+δεe1, δe2+δεe2, δe3+δεe3} and ψ = {ψi}ni=1 = {δεe2+δe2, δεe1+δe1, δεe3+δe3},
are Parseval frames, which are woven since any choice of σ gives the spaning set. Since
they are Parseval, as a consequence of Proposition 2.1, the universal frame bound for
every weaving frame can be chosen to be n. For σ = {2, 4, 6}, we have∑

i∈σ
|〈x, ϕi〉|2 +

∑
i∈σc
|〈x, ψi〉|2

=|〈x, δe1 + δεe1〉|2 + |〈x, δe2 + δεe2〉|2

+ |〈x, δe3 + δεe3〉|2 + |〈x, δεe2 + δe2〉|2 + |〈x, δεe1 + δe1〉|2 + |〈x, δεe3 + δe3〉|2

=2
(
δ2 + δ2ε2

)
|〈x, e1〉|2 + 2

(
δ2ε2 + δ2

)
|〈x, e2〉|2 + 2

(
δ2ε2 + δ2

)
|〈x, e3〉|2

=2δ2
(
1 + ε2

)
‖x‖2 = 2ε2

1 + ε2‖x‖
2,

which lies between 0, 3 for arbitrary choice of ε ∈ (0,∞) .

The following proposition demonstrates that the perturbed frames are obtained as
the image of a bounded and invertible operator of a given frame.

Proposition 2.2. Let {ϕi}i∈I be a frame with bounds A,B and V be a bounded
operator. If ‖Id − V ‖2 ≤ A

B
and ‖V − V 2‖2 ≤ A

B
, then the frames {ϕi}i∈I, {V ϕi}i∈I

and {V 2ϕi}i∈I are woven.

Proof. Note that by Neumann’s Theorem V is invertible and thus {V ϕi}i∈I and
{V 2ϕi}i∈I automatically constitute frames. For every partitions σ,∆ ⊂ I and every
x ∈ H by using Minkowski,s inequality:∑

i∈σ
|〈x, ϕi〉|2 +

∑
i∈∆
|〈x, V ϕi〉|2 +

∑
i∈I\(σ∪∆)

∣∣∣〈x, V 2ϕi
〉∣∣∣2
 1

2

=
∑

i∈σ
|〈x, ϕi〉|2 +

∑
i∈∆
|〈x, ϕi〉|2 −

∑
i∈∆
|〈x, ϕi〉|2 +

∑
i∈∆
|〈V ∗x, ϕi〉|2

+
∑

i∈I\(σ∪∆)
|〈V ∗x, ϕi〉|2 −

∑
i∈I\(σ∪∆)

|〈V ∗x, ϕi〉|2 +
∑

i∈I\(σ∪∆)

∣∣∣〈(V 2)∗x, ϕi
〉∣∣∣2

 1
2

=
∑

i∈σ
|〈x, ϕi〉|2 +

∑
i∈∆
|〈x, ϕi〉|2 −

∑
i∈∆
|〈(I − V ∗)x, ϕi〉|2 +

∑
i∈I\(σ∪∆)

|〈V ∗x, ϕi〉|2

−
∑

i∈I\(σ∪∆)

∣∣∣〈(V ∗ − (V 2)∗)x, ϕi
〉∣∣∣2

 1
2
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≥

∑
i∈I
|〈x, ϕi〉|2

 1
2

−

∑
i∈∆
| 〈(I − V ∗)x, ϕi〉 |2

 1
2

+
 ∑
i∈∆∪(I\(σ∪∆))

|〈V ∗x, ϕi〉|2
 1

2

−

 ∣∣∣〈(V ∗ − (V 2)∗
)
x, ϕi

〉∣∣∣2
 1

2

≥
√
A ‖x‖ −

√
B‖(I − V ∗)x‖+

√
B‖V ∗x‖ −

√
B‖(V ∗ − (V 2)∗)x‖

≥
(√

A−
√
B‖I − V ∗‖+

√
B‖V ∗‖ −

√
B‖V ∗‖‖I − V ∗‖

)
‖x‖.

Thus, {ϕ}i∈σ ∪ {V ϕi}i∈∆ ∪ {V 2ϕi}i∈I\(σ∪∆) forms a woven frames having(√
A−
√
B‖I − V ∗‖+

√
B‖V ∗‖ −

√
B‖V ∗‖‖I − V ∗‖

)2
> 0.

�

3. Woven Frames in Banach Space

3.1. Frames in Banach Space. Frames were extended to Banach spaces by Fe-
ichtinger and Gröchenig [15] who introduced the notion of atomic decompositions
for Banach spaces. Later, Gröchenig [17] introduced a more general concept called
Banach frame. Banach frames were further studied in [4]. An analysis of p-frames in
general Banach spaces first appeared in [9]. The aim of an atomic decomposition for
a space of functions or distributions is to represent every element as a sum of simple
functions usually called atoms. If this is possible, some properties of these function
spaces, such as duality, interpolation, or operator theory for them, can be understood
better by means of the atomic decomposition. Decomposition methods have been
used for many important theoretical contributions. A Banach space of scalar valued
sequences (often called BK-space) is a linear space of sequences equipped with a
norm under which it constitutes a Banach Space (i.e., it is complete in the norm)
and for which the coordinate functionals are continuous. In a Banach space of scalar
valued sequences, the unit vectors are the elements ei’s defined by ei (j) = δij (δij the
Kronechker delta).
Definition 3.1. A sequence space Xd is called BK-space, if it is a Banach space
and the coordinate functionals {ak} → ak are continuous on Xd, that is, the relations
xn = {α(n)

j }, x = {αj} ∈ Xd, limn→∞ xn = x imply

lim
n→∞

α
(n)
j = αj, j = 1, 2, . . .

A BK-space is called solid if whenever {ak} and {bk} are sequences with {bk} ∈ Xd

and |ak| ≤ |bk| for each k ∈ I, then it follows that {ak} ∈ Xd and
‖{ak}‖Xd ≤ ‖{bk}‖Xd .

A sequence space Xd is called an AK-space if it is a topological vector space and
{ak} = lim

n
ρn ({ak}) , for all {ak} ∈ Xd,
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where ρn ({ak}) = (a1, a2, . . . , an, 0, . . . ) .

If the canonical vectors form a Schauder basis for Xd, then Xd is called a CB-space
and its canonical basis is denoted by {ej}∞i=1. If Xd is reflexive and a CB-space, then
Xd is called an RCB-space. Also, the dual of Xd is denoted by X∗d .

Definition 3.2. Let X be a Banach space and Xd be a BK-space. A countable
family {gi}i∈I in the dual X∗ is called an Xd-frame for X if

(a) {gi(f)}i∈I ∈ Xd for all f ∈ X;
(b) the norms ‖f‖X and ‖{gi(f)}i∈I‖Xd are equivalent, that is, there exist constants

A,B > 0 such that
A‖f‖X ≤ ‖{gi(f)}i∈I‖Xd ≤ B‖f‖X , for all f ∈ X.

A and B are called Xd-frame bounds.

If at least (a) and the upper condition in (b) are satisfied, {gi}i∈I is called an
Xd-Bessel sequence for X. In case Xd = `p, the Xd-frame is called p-frame which is
introduced by Christensen and Stoeva [9, 30].

Definition 3.3. A countable family {gi}i∈I ⊂ X∗ is a p-frame for X, 1 < p <∞, if
there exist A,B > 0 such that

A‖f‖X ≤

∑
i∈I
|gi(f)|p

 1
p

≤ B‖f‖X , for all f ∈ X.

The family {gi}i∈I is a p-Bessel sequence if at least the upper p-frame condition is
satisfied.

Lemma 3.1 ([28]). If X is a Banach space and {fn} ⊂ X∗ is total over X, then X
is linearly isometric to the Banach space X = {{fn(x)} : x ∈ X}, where the norm is
given by ‖{fn(x)}‖X = ‖x‖X for x ∈ X.

Definition 3.4. Let X be a Banach space and let Xd be an associated Banach space
of scalar valued sequences indexed by N. Let {fn} ⊂ X∗ and S : Xd → X be given.
The pair ({fn}, S) is called a Banach frame for X with respect to Xd if

(a) {fn(x)} ∈ Xd for each x ∈ X;
(b) there exist positive constants A and B with 0 < A ≤ B <∞ such that

A‖x‖X ≤ ‖{fn(x)}‖Xd ≤ B‖x‖X , for all x ∈ X;(3.1)
(c) S is a bounded linear operator such that S({fn(x)}) = x for all x ∈ X.

The positive constants A and B are called the lower and upper frame bounds of
the Banach frame ({fn}, S), respectively. The operator S : Xd → X is called the
reconstruction operator (or the pre-frame operator). The inequality (b) is called the
frame inequality. The Banach frame ({fn}, S) is called tight if A = B and normalized
tight if A = B = 1.
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Example 3.1. Let X = lp and {en} be the sequence of unit vectors in X. Define
{fn} ⊂ X∗ by

fn = fn+2 = en, n ∈ I.
Then by Lemma 3.1, there exists an associated Banach space Xd = {{fn(x)} : x ∈ X}
and a reconstruction operator S : Xd → X such that ({fn}, S) is a Banach frame for
X.

3.2. Woven in Banach spaces. As we mentioned earlier, Bemrose, Casazza et al.
in [1, 6] proposed weaving frames in a separable Hilbert space. Weaving frames have
potential applications in wireless sensor networks that require distributed processing
under different frames, frames in Hilbert spaces. Improving and extending this notion
on Hilbert spaces, we generalize the concept of woven (weaving) on Banach spaces.

Definition 3.5. Let X be a Banach space and Xd be a BK-space. The family of
Banach frames {gij}i∈I for j ∈ [m] is woven Xd-frame for dual X∗ with universal
bounds A,B if

(a) {gij(f)}i∈I,j∈[m] ∈ Xd, f ∈ X;
(b) the norms ‖f‖X and ‖{gij(f)}i∈I,j∈[m]‖Xd are equivalent, that is, there exist

constants A, B > 0 such that
A‖f‖X ≤ ‖{gij(f)}i∈I,j∈[m]‖Xd ≤ B‖f‖X , f ∈ X.

The constants A and B are called woven Xd-frame bounds. If at least (a) and the
upper condition in (b) are satisfied, {gij}i∈I,j∈[m] is called a woven Xd-Bessel for X.

Definition 3.6. Let X be a Banach space and let Xd be an associated Banach space
of scalar valued sequences indexed by I. Let {fij}i∈I,j∈[m] ⊂ X∗ and S : Xd → X be
given. The pair

(
{fij}i∈I,j∈[m], S

)
is called a woven Banach frame for X with respect

to Xd if the pair
(
{fij}i∈σj ,j∈[m], S

)
is a Banach frame for each partitions {σj}j∈[m] of

I.

The lack of an inner-product in Banach spaces led G. Lumer [23] in 1961 to intro-
ducing the theory of semi-inner product spaces. His procedure suggested the existence
of a general theory which it seemed should be useful in the study of operator (normed)
algebras by providing better insight on known facts, a more adequate language to
”classify“ special types of operators, as well as new techniques. This notion was further
modified by J. R. Giles [16] and other researchers thereon, and the same is presented
below.

Definition 3.7 ([16]). Let X be a complex (real) vector space. A complex (real)
semi-inner product defined on X is a function from [·, ·] : X ×X → C such that for
all f, g, h ∈ X, λ ∈ C complex (real)

(a) [λf + g, h] = λ [f, h] + [g, h], [f, λg] = λ [f, g];
(b) [f, f ] ≥ 0 for f ∈ X and [f, f ] = 0 implies f = 0;
(c) | [f, g] |2 ≤ [f, f ] [g, g] .
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We call X a complex (real) semi-inner product space, abbreviated with S.I.P.S. An
S.I.P.S need not satisfy the following properties

(a) [f, g] = [g, f ];
(b) [f, g + h] = [f, g] + [f, h] .

If [·, ·] is a S.I.P.S. on X then ‖f‖ := [f, f ]
1
2 is a norm on X. Conversely, if X is a

normed vector space then it has a S.I.P.S. that induces its norm in this manner which
is called the compatible semi-inner product [23]. Let X be a Banach space. We define
a duality map ΦX : X → X∗ as follows. Given f ∈ X, by the Hahn-Banach theorem,
there exists an f ∗ ∈ X∗ such that ‖f‖ = ‖f ∗‖ and f ∗(f) = ‖f‖2. Set ΦX (f) = f ∗,
and ΦX (λf) = λf ∗, and define ΦX on the rest of X in the same manner. In general,
ΦX is not unique, linear or continuous. The duality map ΦX induces a semi-inner
product [·, ·] if we set [f, g] = g∗ (f) [29]. We shall use this definition for g∗, g ∈ X.
Note that if X is a Banach space, then the duality map is unique [29]. Recall that a
Banach space X is called strictly convex, if for any pair of vectors f, g 6= 0 in X, the
equation ‖f + g‖ = ‖f‖X + ‖g‖X , implies that there exists a λ > 0 such that f = λg
[12]. In these spaces, the duality mapping from X to X∗ is unique and bijective when
X is reflexive [12,14].

In 2011, H. Zhang and J. Zhang [35] introduced frames in Banach space X via
S.I.P.S. that is presented in the following definition. The extra condition in Definition
3.5 means that S is a left-inverse of U and thus US is a bounded linear projection of
Xd onto the range R (U) of the operator U .

Lemma 3.2 ([10]). If Xd is a CB-space with the canonical unit vectors ei, i ∈ J , then
the space X~d := {{G(ei) }∞i=1 : G ∈ X∗d} with the norm ‖{G(ei) }∞i=1‖X~

d
:= ‖G‖X∗

d
is

a BK-space isometrically isomorphic to X∗d . Also, every continuous linear functional
Ψ on Xd has the form

Ψ({cj}) =
∑
j

cjdj,

where {dj} ∈ X~d is uniquely determined by dj = Ψ(ej), ‖Ψ‖ = ‖{Ψ(ei)}∞i=1‖X~
d
. When

X∗d is a CB-space then its canonical basis is denoted by {e∗j}.

Remark 3.1. It is easy to see that Lemma 3.2 holds in the following more general
case: If Y is a Banach space and {yi}∞i=1 is a complete system in Y, then Y ~ :=
{{Gyi}∞i=1 : G ∈ Y ∗} normed by ‖{Gyi}∞i=1‖Y ~ := ‖G‖Y ∗ is a BK-space, isometrically
isomorphic to Y ∗. Thus, the dual of every separable Banach space can be considered
as a BK-space, because every separable Banach space has a complete system [28].

In the following theorem, we will see that the Bessel woven condition can be
expressed in terms of the synthesis operator T on Xd. As a prerequisite for analysis,
synthesis and frame operators of weaving frames, we define the following space.
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For j ∈ [m], let (Xd)j :=
{
{cij}i∈σj : σj ⊂ I, ‖{cij}i∈σj ‖Xd <∞

}
. Define the space ∑

j∈[m]
⊕ (Xd)j

 =
{
{cij}i∈I,j∈[m] : {cij}i∈I ∈ (Xd)j for all j ∈ [m]

}
,

with the semi-inner product[
{cij}i∈I,j∈[m], {c′ij}i∈I,j∈[m]

]
=

∑
i∈I,j∈[m]

∣∣∣cijc′ij∣∣∣ .
The following proposition characterizes a woven Bessel in term of a bounded operator.

Theorem 3.1. Let {(Xd)1 , (Xd)2 , . . . } be a sequence of Banach spaces. (Xd)i and
(X∗d)i’s are BK-spaces. Then,

((Xd)1 ⊕ (Xd)2 ⊕ · · · )
∗
Xd

= ((X∗d)1 ⊕ (X∗d)2 ⊕ · · · )X∗
d
.

Proof. We shall establish the result when Xd, X
∗
d are BK-space. Assume that

C = ({ci1} , {ci2} , . . . ) ∈ ((Xd)1 ⊕ (Xd)2 ⊕ · · · )Xd
and

C∗ = ({c∗i1} , {c∗i2} , . . . ) ∈ ((X∗d)1 ⊕ (X∗d)2 ⊕ · · · )X∗
d
.

Then the mapping C∗ 7→ ϕC∗ , where

ϕc∗({ci1} , {ci2} , . . . ) =
∞∑
i=1

c∗in (cin) ,

is an isometry from ((X∗d)1 ⊕ (X∗d)2 ⊕ · · · )X∗
d
onto ((Xd)1 ⊕ (Xd)2 ⊕ · · · )Xd . Fix C∗ ∈

((X∗d)1 ⊕ (X∗d)2 ⊕ · · · )X∗
d
. For each C = ({ci1} , {ci2} , . . . ) in ((Xd)1⊕ (Xd)2⊕ · · · )Xd ,

the mapping ϕC∗({ci1} , {ci2} , . . . ) = ∑∞
i=1 c

∗
in (cin) defines a continuous linear func-

tional on ((Xd)1 ⊕ (Xd)2 ⊕ · · · )Xd satisfying ‖ϕC∗‖ ≤ ‖C∗‖X∗
d
, since using Lemma 3.2

we have
‖ϕC∗({ci1}, {ci2}, . . . )‖ =

∥∥∥∑ c∗in(cin)
∥∥∥

= sup
g∈X∗,‖g‖≤1

∣∣∣g (∑ c∗in(cin)
)∣∣∣

= sup
g∈X∗,‖g‖≤1

∣∣∣Gg

(∑
c∗in(cin)

)∣∣∣
≤ sup

g∈X∗,‖g‖≤1
‖{g(cin)}‖Xd‖{c∗in(cin)}‖X∗

d

≤ ‖g‖‖ {c∗in(cin)} ‖X∗
d
.

Thus,
‖ϕC∗‖ ≤ ‖C∗‖X∗

d
,(3.2)

for all C∗ ∈ ((X∗d)1 ⊕ (X∗d)2 ⊕ · · · )X∗
d
.

Fix 0 < ε < 1. For each n pick some {cin} ∈ (Xd) with ‖cin‖ = 1 and c∗in(cin) ≥
ε‖c∗in‖.
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Using Lemma 3.2, we have
ε‖c∗in‖X∗

d
= ε sup

g∈X∗,‖g‖≤1
|g(c∗in)| = ε sup

g∈X∗,‖g‖≤1
|Gg(c∗in)|

≤ ε‖g‖‖{c∗in(cin)}‖ ≤ ε‖g‖‖
∞∑
i=1

c∗in(cin)‖.

This implies that C∗ = ({c∗i1} , {c∗i2} , . . . ) ∈ ((X∗d)1 ⊕ (X∗d)2 ⊕ · · · )X∗
d
, ‖C∗‖X∗

d
≤

‖ϕC∗‖. Finally, as a consequence of (3.2), we conclude that C∗ 7→ ϕC∗ is an onto
linear isometry. �

Proposition 3.1. Suppose that Xd is a BK-space, for which the canonical unit
vectors {eij}i∈I,j∈[m] forms a Schauder basis. Then {fij}i∈I,j∈[m] ⊆ X∗ is an X∗d -Bessel
woven for X with universal bound B if and only if the operator

T : { cij} →
∑

i∈I,j∈[m]
cijfij

is well defined (hence bounded) from ∑⊕Xd into X∗ and ‖T‖ ≤ B.

Proof. Let {fij}i∈I,j∈[m] ⊂ X∗ be an X∗d -Bessel woven for X with universal bound B
and let {eij}i∈I,j∈[m] be the canonical unit vector basis of Xd. Define

R : X →
∑
⊕ (Xd)∗

by
R (g) = {fij (g)}i∈I,j∈[m].

We have
‖R (g) ‖ = ‖{fij (g)}i∈I,j∈[m]‖ = sup |fij (g (f)) | = sup

g∈X∗,‖g‖=1
|Gg (fij (g (f))) |

≤ sup ‖Gg‖‖fij (g (f)) ‖.

Then ‖R‖ ≤ B, the linear bounded operator R∗ : ∑⊕ (Xd)∗∗ → X∗ satisfies:
R∗(eij)(g) = eij (R(g)) = fij (g) , for all g ∈ X,

and thus R∗eij = fij. Letting T = R∗|∑⊕Xd , we have

‖T‖ ≤ ‖R∗‖ = ‖R‖ ≤ B.

Finally, T
(
{cij}i∈I,j∈[m]

)
= T

(∑
i∈I,j∈[m] cijeij

)
= ∑

i∈I,j∈[m] cijfij.

Now suppose that T : ∑⊕Xd −→ X∗ given by T ({cij}) = ∑
i∈I,j∈[m] cijfij is well

defined and thus bounded by the Banach-Steinhaus theorem. Then T (eij) = fij and
for every g ∈ X the operator

T ∗ : X∗∗ →
∑
⊕ (Xd)∗ , T ∗(g) (eij) = g (T (eij)) = g (fij) ,

is bounded. That is, {fij (g)}i∈I,j∈[m] = {T ∗(g) (eij)}i∈I,j∈[m] which is identified with
T ∗ (g) (by Lemma 3.2). So, {fij}i∈I,j∈[m] is a X∗d - Bessel sequence for X with a bound
‖T ∗‖ = ‖T‖ ≤ B. �
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Theorem 3.2. The family {ϕij}i∈I,j∈[m] ⊂ X∗ is a Bessel woven with Bessel bound
B if and only if the operator

T : {lij}∞i=1,j∈[m] →
∞∑

i=1,j∈[m]
lijϕij, for all {lij}∞i=1,j∈[m] ∈

 ∑
j∈[m]
⊕ (Xd)j

 ,
is a well-defined bounded operator from

(∑
j∈[m]⊕ (Xd)j

)
into X and ‖T‖ ≤

√
B.

Proof. First assume that {ϕij}i∈I,j∈[m] is a Bessel woven with bound B.
Let {lij}∞i=1,j∈[m] be in

(∑
j∈[m]⊕ (Xd)j

)
. We show that T{lij}∞i=1,j∈[m] is well-defined,

that is, ∑∞i=1,j∈[m] lijϕij is convergent. Consider n,m ∈ I, n > m. Then∥∥∥∥∥∥
n∑

i=1,j∈[m]
li,jϕij −

m∑
i=1,j∈[m]

lijϕij

∥∥∥∥∥∥ =

∥∥∥∥∥∥
n∑

i=m+1,j∈[m]
lijϕij

∥∥∥∥∥∥
= sup
‖g∗‖=1,g∈X

g∗

 n∑
i=m+1,j∈[m]

lijϕij

 = ∗.

Using the duality mappings ΦX and its induced semi-inner product [f, g] = g∗(f) we
have

∗ = sup
‖g‖=1

∣∣∣∣∣∣
 n∑
i=m+1,j∈[m]

lijϕij, g

∣∣∣∣∣∣ ≤ sup
‖g‖=1

n∑
i=m+1,j∈[m]

|lij [ϕij, g] |

≤ sup ‖{lij}‖Xd‖ [ϕij, g] ‖X∗
d
≤ sup ‖{lij}‖XdB‖g‖X .

Since {lij}∞i=1,j∈[m] ∈
(∑

j∈[m]⊕ (Xd)j
)
, we know that ‖{lij}ni=1,j∈[m]‖Xd is a Cauchy

sequence in C, The above calculation shows that {∑n
i=1,j∈[m] lijϕij}∞n=1 is a Cauchy

sequence in X, and therefore convergent. Thus, T{lij}∞i=1,j∈[m] is well-defined. Clearly
T is linear, and ∥∥∥T{lij}∞i=1,j∈[m]

∥∥∥ = sup
‖f‖=1

∣∣∣[T{lij}∞i=1,j∈[m], f
]∣∣∣ ,

that is, ‖T‖ ≤
√
B.

Conversely, suppose T well-defined and that ‖T‖ ≤
√
B, for every f ∈ X, we have

[T{lij}, f ] =
[∑

lijfij, f
]

= [{lij}, {[f, fij]}] ,

therefore
T ∗f = {[f, fij]}i∈I,j∈[m]

and ∑
i∈I,j∈[m]

| [f, fij] |2 = ‖T ∗f‖2 ≤ ‖T ∗‖2‖f‖2 ≤
√
B‖f‖2.

Hence, we conclude that the family {ϕij}i∈I,j∈[m] is Bessel woven. �



192 A. RAHIMI, S. BASATI, B. DARABY, AND F. A. SHAH

Theorem 3.3. Let the sequence {ϕij}i∈I,j∈[m] in X be woven for X, and the series∑∞
i=1,j∈[m] lijϕij converges for all {lij}∞i=1,j∈[m] ∈

(∑
j∈[m]⊕ (Xd)j

)
. Then the operator

T :
 ∑
j∈[m]
⊕ (Xd)j

→ X, T{lij}∞i=1,j∈[m] :=
∞∑

i=1,j∈[m]
lijϕij,

defines a bounded linear operator. The adjoint operator is given by

T ∗ : X∗ →
 ∑
j∈[m]
⊕(Xd)j

∗ , T ∗ϕ = {[ϕ, ϕij]}∞i=1,j∈[m].

Furthermore,
∞∑

i=1,j∈[m]
| [ϕ, ϕij] |2 ≤ ‖T‖2‖ϕ‖2.

Proof. Consider the sequence of bounded linear operators

Tn :
 ∑
j∈[m]
⊕(Xd)j

→ X, Tn{lij}∞i=1,j∈[m] :=
n∑

i=1,j∈[m]
lijϕij.

Clearly Tn → T pointwise as n→∞, so T is bounded. In order to find the expression
for T ∗, let f, ϕ ∈ X, {lij}∞i=1,j∈[m] ∈

(∑
j∈[m]⊕ (Xd)j

)
. Then

[
ϕ, T {lij}∞i=1,j∈[m]

]
X

=
ϕ, ∞∑

i=1,j∈[m]
lijϕij

 =
∞∑

i=1,j∈[m]
[ϕ, ϕij] lij.

Alternatively, when T :
(∑

j∈[m]⊕ (Xd)j
)
→ X is bounded, then clearly T ∗ is a

bounded operator from X∗ to
(∑

j∈[m]⊕ (Xd)j
)∗
. Therefore, the i-th coordinate func-

tion is bounded from X to C; by Riesz representation theorem, T ∗ has the form

T ∗ϕ = {[ϕ, ϕij]}∞i=1,j∈[m],

for some {ϕij}i∈I,j∈[m] in X. By definition of T ∗, we conclude
∞∑

i=1,j∈[m]
[ϕ, fij] lij =

∞∑
i=1,j∈[m]

[ϕ, ϕij] lij, for all {lij}∞i=1,j∈[m] ∈

 ∑
j∈[m]
⊕ (Xd)j

 , f ∈ X.
It follows from here that fij = ϕij. The adjoint of a bounded operator T is itself
bounded, and ‖T‖ = ‖T ∗‖. Under the assumption in Theorem 3.2, we have

‖T ∗ϕ‖2 ≤ ‖T‖2‖ϕ‖2, for all ϕ ∈ X,

which leads to
∞∑

i=1,j∈[m]
| [ϕ, ϕij] |2 ≤ ‖T‖2‖ϕ‖2, for all ϕ ∈ X. �
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Definition 3.8. Let X be a Banach space and Xd a sequence space. Given a bounded
linear operator S :

(∑
j∈[m]⊕ (Xd)j

)
→ X and a

(∑
j∈[m]⊕ (Xd)j

)
-woven {gij} ⊂ X∗,

we say that ({gij}, S) is a Banach frame for X with respect to
(∑

j∈[m]⊕ (Xd)j
)
if

S ({gij(f)}) = f, for all f ∈ X.(3.3)
Note that (3.3) can be considered as some kind of generalized reconstruction formula,
in the sense that it tells how to come back to f ∈ X via the coefficients {gij(f)}.

The condition, however, does not imply reconstruction via an infinite series, as we
will see later. For more information on Banach frames we refer to [7, 17].

The wovenXd-frame condition implies that one can define the following isomorphism

U : X →
 ∑
j∈[m]
⊕ (Xd)j

 , Uf := {gij(f)}, f ∈ X.

The extra condition in Definition 3.8 means that S is a left-inverse of U, and thus
US is a bounded linear projection of

(∑
j∈[m]⊕ (Xd)j

)
onto the range R(U) of the

operator U.

Proposition 3.2. Suppose that Xd is a BK-space and {gij}i∈I,j∈[m] ⊂ X∗ is a woven
Xd-frame for X. Then, the following conditions are equivalent.

(a) R(U) is complemented in Xd.
(b) The operator U−1 : R(U) → X can be extended to a bounded linear operator

V : Xd → X.
(c) There exists a linear bounded operator S, such that

(
{gij}i∈I,j∈[m], S

)
is a

Banach woven for X with respect to Xd.
Also, the condition

(d) there exists a family {fij}i∈I,j∈[m] ⊂ X such that {∑ cijfij}i∈I,j∈[m] is convergent
for all {cij}i∈I,j∈[m] ∈ Xd and

f =
∑

i∈I,j∈[m]
gij(f)fij, for all f ∈ X;

implies each of (a)-(c).
If we also assume that the canonical unit vectors {eij}i∈I,j∈[m] form a basis

for Xd, (d) is equivalent to (a)-(c).
(e) There exists an X∗d -Bessel woven {fij}i∈I,j∈[m] ⊂ X ⊆ X∗∗ for X∗ such that

f =
∑

i∈I,j∈[m]
gij (f) fij, for all f ∈ X.

If the canonical unit vectors form a basis for both Xd and X∗d , (a)-(e) is equiv-
alent to

(f) there exists an X∗d -Bessel woven {fij}i∈I,j∈[m] ⊂ X ⊂ X∗∗ for X∗ such that

g =
∑

i∈I,j∈[m]
g(fij)gij, for all g ∈ X∗.
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In each of the cases (e) and (f), {fij}i∈I,j∈[m] is actually an X∗d -woven for
X∗.

Proof. For convenience, we index {fij}i∈I,j∈[m] and {gij}i∈I,j∈[m] by the natural num-
bers. Suppose that Xd is a BK-space. (a)→ (b) is trivial. For the converse, assume
(b) and let V : Xd → X be a linear bounded extension of U−1. Now consider the
bounded operator P : Xd → R(U) defined by P = UV. Using the fact that V U = I
(on X), we get P 2 = P. For every f ∈ X, we have

Uf = UV Uf = P (Uf) ∈ R(P ).
Hence R(P ) = R(U), i.e., the range of U equals the range of a bounded projection.
Thus, R(U) is complemented (see [27, page 127]). The equivalence (b)↔ (c) is clear.
We now relate the condition (d) to (a)-(c). First, assume that (d) is satisfied. By
assumption, we can define an operator

V : Xd → X, V : {cij}i∈I,j∈[m] →
∑

i∈I,j∈[m]
cijfij.

By the Banach-Steinhaus theorem, V is bounded. Let {gij (f)}i∈I,j∈[m] ∈ R(U).
Furthermore,

V (gij (f)) =
∑

i∈I,j∈[m]
gij(f)fij = f = U−1Uf = U−1{gij (f)}i∈I,j∈[m],

that is, V is an extension of U−1. That is, (b) holds, according to the equivalences
proved so far, this means that (a)-(c) holds.

Assume now that the canonical unit vectors {eij}i∈I,j∈[m] form a basis for Xd.
Assuming that (b) is satisfied, we show that (d) holds. Let fij := V eij. Since V is
linear and bounded, for all {cij}i∈I,j∈[m] ∈ Xd, we have

n∑
i=1,j∈[m]

cijfij = V

 n∑
i=1,j∈[m]

cijeij

→ V (cij) .

That is, ∑i∈I,j∈[m] cijfij is convergent. Also, by construction, for all f ∈ X we have

f = V Uf =
∑

i∈I,j∈[m]
gij (f) fij.(3.4)

Thus, (d) holds as claimed.
Under the assumption that the canonical unit vectors {eij}i∈I,j∈[m] form a basis for

Xd, we now prove the equivalence of (d) and (e). First, assume that (d) holds. Due
to the equivalence of (b) and (d), we can define fij := Leij, and (3.4) is available. By
Lemma 3.2, for every g ∈ X∗ we have

{g(fij)}i∈I,j∈[m] = {gV (eij)}i∈I,j∈[m] ∈ X
∗
d

and
‖{g (fij)}i∈I,j∈[m]‖X∗

d
= ‖gV ‖ ≤ ‖V ‖ ‖g‖X∗ ,
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hence {fij}i∈I,j∈[m], considered as a sequence in X∗∗, is an X∗d -Bessel sequence for
X∗. Thus, we have proved the claims in (e). On the other hand, if (e) is valid, then
Proposition 3.1 shows that ∑i∈I,j∈[m] cijfij is convergent for all {cij}i∈I,j∈[m] ∈ Xd and
hence (d) holds.

Now, assume that the canonical unit vectors form a basis for both Xd and X∗d ; in
this case, we want to prove the equivalence of (e) and (f). Let B denote a Bessel
bound for the Xd-Bessel sequence {gij}i∈I,j∈[m]. Denote the canonical basis for Xd by
{eij}i∈I,j∈[m] and the canonical basis for X∗d by {zij}i∈I,j∈[m]. Assume that (e) is valid.
Let g ∈ X∗. For given n ∈ N∥∥∥∥∥∥g −

n∑
i=1,j∈[m]

g (fij) gij

∥∥∥∥∥∥
X∗

= sup
f∈X,‖f‖=1

∣∣∣∣∣∣g(f)−
n∑

i=1,j∈[m]
g (fij) gij (f)

∣∣∣∣∣∣
= sup

f∈X,‖f‖=1

∣∣∣∣∣∣
∞∑

i=1,j∈[m]
g (fij) gij (f)−

n∑
i=1,j∈[m]

g (fij) gij (f)

∣∣∣∣∣∣
= sup

f∈X,‖f‖=1

∣∣∣∣∣∣
∞∑

i=n+1,j∈[m]
g(fij)gij (f)

∣∣∣∣∣∣
≤ B

∥∥∥∥∥∥
∞∑

i=n+1,j∈[m]
g (fij) zij

∥∥∥∥∥∥→ 0 as n→∞,

and hence (f) holds. Assume (f) and let K be an X∗d -Bessel bound for {fij}i∈I,j∈[m].
For every g ∈ X∗, {g (fij)}i∈I,j∈[m] belongs to X∗d , which by Lemma 3.2 is isometrically
isomorphic to the space {{G (eij)}i∈I,j∈[m] |G ∈ X

∗
d}, and hence {g(fij)}i∈I,j∈[m] can

be identified with {Gg(eij)}i∈I,j∈[m] for a unique Gg ∈ X∗d . Then for every f ∈ X∥∥∥∥∥∥f −
n∑

i=1,j∈[m]
gij (f) fij

∥∥∥∥∥∥
X

= sup
g∈X∗,‖g‖=1

∣∣∣∣∣∣g (f)−
n∑

i=1,j∈[m]
g (fij) gij (f)

∣∣∣∣∣∣
= sup

g∈X∗,‖g‖=1

∣∣∣∣∣∣
∞∑

i=1,j∈[m]
g (fij) gij (f)−

n∑
i=1

g (fij) gij (f)

∣∣∣∣∣∣
= sup

g∈X∗,‖g‖=1

∣∣∣∣∣∣
∞∑

i=n+1,j∈[m]
g (fij) gij (f)

∣∣∣∣∣∣
= sup

g∈X∗,‖g‖=1

∥∥∥∥∥∥Gg

 ∞∑
i=n+1,j∈[m]

gij (f) eij

∥∥∥∥∥∥
≤ sup

g∈X∗,‖g‖=1
‖Gg‖

∥∥∥∥∥∥
∞∑

i=n+1,j∈[m]
gij(f)eij

∥∥∥∥∥∥
= sup

g∈X∗,‖g‖=1

∥∥∥∥∥∥{g (fij)}
∞∑

i=n+1,j∈[m]
gij (f) eij

∥∥∥∥∥∥
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≤ K

∥∥∥∥∥∥
∞∑

i=n+1,j∈[m]
gij (f) eijT

∥∥∥∥∥∥→ 0 as n→∞.

Hence, (f) is valid. Moreover, by a similar calculations as above, for every g ∈ X∗ we
have

‖g‖ = sup
f∈X∗,‖f‖=1

|g (f) | = sup
f∈X∗,‖f‖=1

∣∣∣∣∣∣
∑

i∈I,j∈[m]
g (fij) gij (f)

∣∣∣∣∣∣ ≤ B
∥∥∥{g (fij)}i∈I,j∈[m]

∥∥∥
X∗
d

,

and hence {fij}i∈I,j∈[m] is a woven X∗d -frame for X∗. �
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