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ON GENERATING RELATIONS ASSOCIATED WITH THE
EXTENDED GAUSS AND CONFLUENT HYPERGEOMETRIC

FUNCTIONS

DIVESH SRIVASTAVA1, MOHD GHAYASUDDIN2, AND WASEEM A. KHAN3

Abstract. In this research note, we establish a new class of generating relations
associated with the extended Gauss and confluent hypergeometric functions using
the concept of Hadamard product. Some deductions of our main results are also
indicated.

1. Introduction and Preliminaries

The generating relations play a very important role in the study of the functions.
In particular, in the field of special functions several important and useful properties
have been investigated by making use of the generating relations (see, for example,
[3,4,7,9,13] and [14]). Due to great importance of such type of relations, in this paper,
we establish some new interesting generating relations of the extended Gauss and
confluent hypergeometric functions using the Hadamard product of two functions.

The Hadamard product of two functions is defined as follows.
Let f(z) = ∑+∞

n=0 anzn and g(z) = ∑+∞
n=0 bnzn be two power series whose radii of

convergence are given by Rf and Rg, respectively. Then, the Hadamard product is
defined by (see [16])

(1.1) (f ∗ g)(z) =
+∞∑
n=0

anbnzn,

whose radius of convergence R satisfies RfRg ≤ R.
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In recent years, numerous extensions of some well known special functions have
been introduced and investigated by a number of authors (see, for example, [1, 2, 5–
8,10–13,17,18] and [19]). In particular, in 2014, Srivastava et al. [3] proposed a very
interesting generalization of the Gauss hypergeometric function as follows:

F (α,β,u,v)
p (a, b; c; z) =

+∞∑
n=0

(a)n

B(α,β,u,v)
p (b + n, c − b) zn

B(b, c − b) n!

(1.2)

(min{Re (α), Re (β), Re (u), Re (v)} > 0; Re (c) > Re (b) > 0; Re (p) ≥ 0; |z| < 1),

where B(α,β,u,v)
p is the extended beta function defined by

B(α,β,u,v)
p (x, y) =

∫ 1

0
tx−1(1 − t)y−1Φ

(
α; β; − p

tu(1 − t)v

)
dt

(1.3)

(min{Re (x), Re (y), Re (α), Re (β)} > 0; min{Re (u), Re (v)} > 0; Re (p) ≥ 0).
With the help of (1.3), we can write the integral representation of (1.2) as follows:

F (α,β,u,v)
p (a, b; c; z) = Γ(c)

Γ(b)Γ(c − b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − zt)−a(1.4)

× Φ
(

α; β; −p

tu(1 − t)v

)
dt,

where (Re (p) ≥ 0; | arg(1 − z)| < π; Re (c) > Re (b) > 0; min{Re (u), Re (v)} > 0).
Moreover, Khan et al. [12] proposed a new generalized form of the confluent hyper-

geometric function as follows:

Φ(α,β;u,v)
p (b; c; z) =

+∞∑
n=0

B(α,β;u,v)
p (b + n, c − b)

B(b, c − b) · zn

n! .(1.5)

They also defined its integral representation as

Φ(α,β;u,v)
p (b; c; z) = Γ(c)

Γ(b)Γ(c − b)

∫ 1

0
tb−1(1 − t)c−b−1 exp(zt)Φ

(
α; β; −p

tu(1 − t)v

)
dt

(1.6)

(Re (c) > Re (b) > 0; Re (u) > 0, Re (v) > 0; Re (p) ≥ 0).
The case u = v in (1.4) and (1.6), respectively, yields the extended Gauss and

confluent hypergeometric functions defined by Parmar [15], which further gives the
known generalization of Gauss and confluent hypergeometric functions given by Öz-
ergin et al. [2] by taking v = 1. Also, it is noticed that, if we set α = β and u = v in
(1.4) and (1.6), respectively, we get the extended Gauss and confluent hypergeometric
functions defined by Lee et al. [1] and if we set α = β and u = v = 1 in (1.4) and (1.6),
respectively, then we get the extended Gauss and confluent hypergeometric functions
defined by Chaudhry et al. [8]. Clearly, for p = 0, (1.4) and (1.6) immediately reduces
to the classical Gauss and confluent hypergeometric functions (see [4]).
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Also, in 2014, Choi et al. [5] introduced the following extension of Gauss and
confluent hypergeometric functions by introducing another parameter:

Fp,q(a, b; c; z) =
+∞∑
n=0

(a)n
Bp,q(b + n; c − b) zn

B(b, c − b) n!(1.7)

(Re (c) > Re (b) > 0; Re (p) ≥ 0, Re (q) ≥ 0; |z| < 1).
and

Φp,q(b; c; z) =
+∞∑
n=0

Bp,q(b + n; c − b) zn

B(b, c − b) n!(1.8)

(Re (c) > Re (b) > 0; Re (p) ≥ 0, Re (q) ≥ 0; |z| < 1),
where

Bp,q(x, y) =
∫ 1

0
tx−1(1 − t)y−1 exp

(
−p

t
− q

1 − t

)
dt(1.9)

Re (p), Re (q), Re (x), Re (y) > 0.

They also give their integral representation by

Fp,q(a, b; c; z) = 1
B(b, c − b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − zt)−a exp

(
−p

t
− q

1 − t

)
dt

(1.10)

(Re (p) > Re (q) > 0; Re (c) > Re (b) > 0)
and

Φp,q(b; c; z) = 1
B(b, c − b)

∫ 1

0
tb−1(1 − t)c−b−1 exp

(
zt − p

t
− q

1 − t

)
dt(1.11)

(Re (p) > Re (q) > 0; Re (c) > Re (b) > 0).
For q = p, (1.7) and (1.8) reduces to the known extension of Gauss and confluent

hypergeometric functions defined by Chaudhary et al. [8], which again for p = 0,
yields the classical Gauss and confluent hypergeometric functions (see [4]).

2. Main Results

In this section, we derive a new class of generating relations of extended Gauss and
confluent hypergeometric functions by using the Hadamard product of two functions.

Theorem 2.1. For min{Re (α), Re (β), Re (u), Re (v)} > 0; Re (c) > Re (b) > 0 and
Re (p) ≥ 0, the following result holds true:

(1 + t)−λF (α,β,u,v)
p

(
a, b; c; z

1 + t

)
(2.1)

=
+∞∑
r=0

(−1)r (λ)rF
(α,β,u,v)
p (a, b; c; z) ∗ 2F1(λ + r, 1; λ; z)tr

r!
(z ∈ C, λ ∈ C\Z−

0 , |t| < 1),
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where 2F1(a, b; c; z) represents the classical Gauss hypergeometric function (see [4, p.
29, Eq. (4)]).

Proof. In order to derive (2.1), we denote the left-hand side of (2.1) by f(s) and (1+ t)
by s, then we get

f(s) = s−λF (α,β,u,v)
p

(
a, b; c; z

s

)
.(2.2)

On expanding F (α,β,u,v)
p with the help of (1.2), we arrive at

f(s) =
+∞∑
n=0

(a)n B(α,β,u,v)
p (b + n, c − b)
B(b, c − b) s−λ−n zn

n! .(2.3)

Now differentiating (2.3) r times with respect to s and after some simplification, we
get

f (r)(s) = (−1)r s−λ−r(λ)r

+∞∑
n=0

(a)n B(α,β,u,v)
p (b + n, c − b)
B(b, c − b)n! · (λ + r)n(1)n

(λ)n n!

(
z

s

)n

.(2.4)

By applying (1.1) in (2.4), we have

f (r)(s) = (−1)r s−λ−r(λ)r F (α,β,u,v)
p

(
a, b; c; z

s

)
∗ 2F1

(
λ + r, 1; λ; z

s

)
.(2.5)

Now, on replacing s by s + t in (2.2), and then expanding f(s + t) by Taylor’s series,
we get

(s + t)−λ F (α,β,u,v)
p

(
a, b; c; z

s + t

)
=

+∞∑
r=0

tr

r! f (r)(s).(2.6)

Using (2.5) in (2.6), we obtain

(s + t)−λF (α,β,u,v)
p

(
a, b; c; z

s + t

)
=

+∞∑
r=0

(−1)r s−λ−r(λ)r

× F (α,β,u,v)
p

(
a, b; c; z

s

)
∗ 2F1

(
λ + r, 1; λ; z

s

)
tr

r! .(2.7)

Finally, on setting s = 1 in (2.7), we get our claimed result (2.1). □

Theorem 2.2. For min{Re (α), Re (β), Re (u), Re (v)} > 0; Re (c) > Re (b) > 0 and
Re (p) ≥ 0, the following result holds true:

(1 + t)−λΦ(α,β,u,v)
p

(
b; c; z

1 + t

)
=

+∞∑
r=0

(−1)r (λ)rΦ(α,β,u,v)
p (b; c; z) ∗ 2F1(λ + r, 1; λ; z)tr

r!

(2.8)

(z ∈ C, λ ∈ C\Z−
0 , |t| < 1).
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Theorem 2.3. For Re (c) > Re (b) > 0, Re (p) ≥ 0 and Re (q) ≥ 0, the following
result holds true:

(1 + t)−λFp,q

(
a, b; c; z

1 + t

)
=

+∞∑
r=0

(−1)r(λ)rFp,q(a, b; c; z) ∗ 2F1(λ + r, 1; λ; z)tr

r!(2.9)

(z ∈ C, λ ∈ C\Z−
0 , |t| < 1).

Theorem 2.4. For Re (c) > Re (b) > 0, Re (p) ≥ 0 and Re (q) ≥ 0, the following
result holds true:

(1 + t)−λΦp,q

(
b; c; z

1 + t

)
=

+∞∑
r=0

(−1)r(λ)rΦp,q(b; c; z) ∗ 2F1(λ + r, 1; λ; z)tr

r!(2.10)

(z ∈ C, λ ∈ C\Z−
0 , |t| < 1).

Proof. The proofs of Theorem 2.2, Theorem 2.3 and Theorem 2.4 are similar to
Theorem 2.1. □

3. Special Cases

Corollary 3.1. For min{Re (α), Re (β), Re (v)} > 0, Re (c) > Re (b) > 0 and
Re (p) ≥ 0, we have

(1 + t)−λF (α,β,v)
p

(
a, b; c; z

1 + t

)
(3.1)

=
+∞∑
r=0

(−1)r (λ)rF
(α,β,v)
p (a, b; c; z) ∗ 2F1(λ + r, 1; λ; z)tr

r!
(z ∈ C, λ ∈ C\Z−

0 , |t| < 1),

where F (α,β;v)
p (·) is the extended Gauss hypergeometric function defined by Parmar [15].

This corollary can be established with the help of (2.1) by putting u = v.

Corollary 3.2. For min{Re (α), Re (β)} > 0, Re (c) > Re (b) > 0 and Re (p) ≥ 0,
we have

(1 + t)−λF (α,β)
p

(
a, b; c; z

1 + t

)
(3.2)

=
+∞∑
r=0

(−1)r (λ)rF
(α,β)
p (a, b; c; z) ∗ 2F1(λ + r, 1; λ; z)tr

r!
(z ∈ C, λ ∈ C\Z−

0 , |t| < 1),

where F (α,β)
p (·) represents the extended Gauss hypergeometric function given by Özergin

et al. [2].

This corollary can be derived with the help of (2.1) by putting u = v = 1.



1536 D. SRIVASTAVA, M. GHAYASUDDIN, AND W. A. KHAN

Corollary 3.3. For Re (c) > Re (b) > 0, Re (v) > 0 and Re (p) ≥ 0, we have

(1 + t)−λF v
p

(
a, b; c; z

1 + t

)
=

+∞∑
r=0

(−1)r (λ)rF
v
p (a, b; c; z) ∗ 2F1(λ + r, 1; λ; z)tr

r!(3.3)

(z ∈ C, λ ∈ C\Z−
0 , |t| < 1),

where F v
p (·) denotes the extended Gauss hypergeometric function introduced by Lee et

al. [1].

The above corollary can be obtained with the help of (2.1) by setting α = β and
u = v.

Corollary 3.4. For Re (c) > Re (b) > 0 and Re (p) ≥ 0, we have

(1 + t)−λFp

(
a, b; c; z

1 + t

)
=

+∞∑
r=0

(−1)r (λ)rFp(a, b; c; z) ∗ 2F1(λ + r, 1; λ; z)tr

r!(3.4)

(z ∈ C, λ ∈ C\Z−
0 , |t| < 1),

where Fp(·) is the extended Gauss hypergeometric function defined by Chaudhry et al.
[8].

This corollary can be proved with the help of (2.1) by setting α = β and u = v = 1.

Corollary 3.5. For min{Re (α), Re (β), Re (v)} > 0; Re (c) > Re (b) > 0 and
Re (p) ≥ 0, we have

(1 + t)−λΦ(α,β,v)
p

(
b; c; z

1 + t

)
=

∞∑
r=0

(−1)r (λ)rΦ(α,β,v)
p (b; c; z) ∗ 2F1(λ + r, 1; λ; z)tr

r!

(3.5)

(z ∈ C, λ ∈ C\Z−
0 , |t| < 1),

where Φ(α,β;v)
p (·) is the extended confluent hypergeometric function defined by Par-

mar [15].

This corollary can be established with the help of (2.8) by putting u = v.

Corollary 3.6. For min{Re (α), Re (β)} > 0, Re (c) > Re (b) > 0 and Re (p) ≥ 0,
we have

(1 + t)−λΦ(α,β)
p

(
b; c; z

1 + t

)
=

+∞∑
r=0

(−1)r (λ)rΦ(α,β)
p (b; c; z) ∗ 2F1(λ + r, 1; λ; z)tr

r!(3.6)

(z ∈ C, λ ∈ C\Z−
0 , |t| < 1),

where Φ(α,β)
p (·) represents the extended confluent hypergeometric function given by

Özergin et al. [2].

This corollary can be derived with the help of (2.8) by putting u = v = 1.
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Corollary 3.7. For Re (c) > Re (b) > 0, Re (v) > 0 and Re (p) ≥ 0, we have

(1 + t)−λΦv
p

(
b; c; z

1 + t

)
=

+∞∑
r=0

(−1)r (λ)rΦv
p(b; c; z) ∗ 2F1(λ + r, 1; λ; z)tr

r!(3.7)

(z ∈ C, λ ∈ C\Z−
0 , |t| < 1),

where Φv
p(·) denotes the extended confluent hypergeometric function introduced by Lee

et al. [1].

This corollary can be established with the help of (2.8) by setting α = β and u = v.

Corollary 3.8. For Re (c) > Re (b) > 0 and Re (p) ≥ 0, we have

(1 + t)−λΦp

(
b; c; z

1 + t

)
=

+∞∑
r=0

(−1)r (λ)rΦp(b; c; z) ∗ 2F1(λ + r, 1; λ; z)tr

r!(3.8)

(z ∈ C, λ ∈ C\Z−
0 , |t| < 1),

where Φp(·) is the extended confluent hypergeometric function defined by Chaudhry et
al. [8].

This corollary can be obtained with the help of (2.8) by setting α = β and u = v = 1.

Remark 3.1. If we set q = p in (2.9) and (2.10), then we can easily get our known
results given in (3.4) and (3.8), respectively.

Conclusion

In this paper, we have derived a set of generating relations associated with the
extended Gauss and confluent hypergeometric functions, which are defined by some
well known authors namely Srivastava et al. [3], Khan et al. [12] and Choi et al. [5].
Also, we have investigated the special cases of our main findings. Very recently, nu-
merous authors have introduced and studied several extensions of Gauss and confluent
hypergeometric functions (see, for example, [1,2] and [3]). Therefore, it is noticed that
by using the method outlined in this paper we can establish some more interesting
generating relations for the functions given in [1, 2] and [3]. Thus, the technique
adopted in this article provides a very flexible and powerful tool of yielding the new
results in the theory of special functions.
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