A STUDY OF *-PRIME RINGS WITH DERIVATIONS

ADNAN ABBASI ${ }^{1}$, SHAKIR ALI ${ }^{2}$, ABDUL NADIM KHAN ${ }^{3}$, AND MUZIBUR RAHMAN MOZUMDER ${ }^{4}$

Abstract

This paper's major goal is to describe the structure of the $*$-prime ring, with the help of three different derivations α, β and γ such that $\alpha\left(\left[s_{1}, s_{1}^{*}\right]\right)+$ $\left[\beta\left(s_{1}\right), \beta\left(s_{1}^{*}\right)\right]+\left[\gamma\left(s_{1}\right), s_{1}^{*}\right] \in \mathscr{Z}(\chi)$ for all $s_{1} \in \chi$. Further, some more related results have also been discussed. As applications, classical theorems due to Bell-Daif [6] and Herstein [12] are deduced.

1. Introduction

This research is the extension of the work done by Ali et al. in [3]. If (i) $\left(s_{1} s_{2}\right)^{*}=s_{2}^{*} s_{1}^{*}$ and (ii) $\left(s_{1}^{*}\right)^{*}=s_{1}$ holds for all $s_{1}, s_{2} \in \chi$, then an additive map $s_{1} \mapsto s_{1}^{*}$ of χ into itself is said to be an involution. Ring with involution, often known as $*$-ring or ring with involution. $\mathscr{H}(\chi)$ is the collection of hermitian objects $\left(s_{1}^{*}=s_{1}\right)$ and $\mathscr{S}(\chi)$ is the collection of skew-hermitian objects $\left(s_{1}^{*}=-s_{1}\right)$ of χ. If characteristic different from two, then, obviously, $\mathscr{H}(\chi)=\mathscr{S}(\chi)$. Thus, we will consider only $*$-rings χ with $\operatorname{char}(\chi) \neq 2$. If $\mathscr{Z}(\chi) \subseteq \mathscr{H}(\chi)$, the involution is said to be of the first kind; otherwise, it is of the second kind. In the later case, $\mathscr{S}(\chi) \cap \mathscr{Z}(\chi) \neq(0)$ (e.g., involution in the case of ring of quaternions). In [11], there's a mention of these rings as well as additional references.

The origins of commuting and centralising maps can be traced back to 1955, when Divinsky [9] proved that "simple Artinian ring is commutative if it has commuting non-trivial automorphisms". In 1957, Posner [18] found that "existence of nonzero centralizing derivation on a prime ring forces the ring to be commutative". The study of commuting (centralizing) derivation/additive maps/multiplicative maps and several

[^0]extension of such results begins with the results of Posner [18] along with applications to different areas like Lie theory, matrix theory, operator theory etc. For more details of said work see (see $[2,4,8-10,13]$ and references therein).

In [3], Ali et al. proved that "a prime ring χ must be a commutative integral domain if it admits derivations α and β satisfying any one of the identities: (i) $\left[\alpha\left(s_{1}\right), \alpha\left(s_{1}^{*}\right)\right]+$ $\beta\left(s_{1} \circ s_{1}^{*}\right)=0$ for all $s_{1} \in \chi$, (ii) $\alpha\left(s_{1}\right) \circ \alpha\left(s_{1}^{*}\right)+\beta\left(\left[s_{1}, s_{1}^{*}\right]\right)=0$ for all $s_{1} \in \chi$, (iii) $\alpha\left(\left[s_{1}, s_{1}^{*}\right]\right)+\left[\alpha\left(s_{1}\right), \alpha\left(s_{1}^{*}\right)\right]=0$ for all $s_{1} \in \chi$, (iv) $\alpha\left(s_{1} \circ s_{1}^{*}\right)+\alpha\left(s_{1}\right) \circ \alpha\left(s_{1}^{*}\right)=0$ for all $s_{1} \in \chi$ ". Our goal in this work is to continue this line of inquiry and analyse the structure of prime rings with involution satisfying above mentioned $*$-differential identities which are central. In fact, so many results become corollaries of our results which are in $[2,3,6,8,12,16,17]$ and references therein.

2. The Results

Herstein [12] proved a classical result "A prime ring χ of $\operatorname{char}(\chi) \neq 2$ with a derivation $\alpha \neq 0$ satisfying the differential identity $\left[\alpha\left(s_{1}\right), \alpha\left(s_{2}\right)\right]=0$ for all $s_{1}, s_{2} \in \chi$, must be commutative". Further, Daif [7], proved that "Let χ be a 2 -torsion free semiprime ring admitting a derivation α such that $\left[\alpha\left(s_{1}\right), \alpha\left(s_{2}\right)\right]=0$ for all $s_{1}, s_{2} \in I$, where I is a nonzero ideal of χ and α is nonzero on I, then χ contains a nonzero central ideal". Further, this result was extended by second author together with Dar in [8, Theorem 3.1] in case of prime rings involving $*: \chi \mapsto \chi$. Indeed, they proved "Let χ be a prime ring with involution ' $*^{\prime}$ of the second kind such that $\operatorname{char}(\chi) \neq 2$ and satisfying the $*$-differential identity $\left[\alpha\left(s_{1}\right), \alpha\left(s_{1}^{*}\right)\right]=0$ for all $s_{1} \in \chi$, then χ must be commutative". Throughout our discussion $*$ will be of second kind and also as when we consider more than one derivation then it is assume that at least one of them to be nonzero. We begin our investigation with several well-known facts, which lead to the following results repeatedly.

Fact $2.1([3$, Lemma 2.5]). Let χ be a $*$-prime ring and α be a derivation and $\alpha(t)=0$ for all $t \in \mathscr{H}(\chi) \cap \mathscr{Z}(\chi)$. Then $\alpha\left(s_{1}\right)=0$ for all $s_{1} \in \mathscr{Z}(\chi)$.

Fact 2.2 ([17, Lemma 2.1]). Let χ be a $*$-prime ring and χ is normal for all $s_{1} \in \chi$. Then χ is commutative.

Fact 2.3 ([17, Lemma 2.2]). Let χ be a $*$-prime ring and $s_{1} \circ s_{1}^{*} \in \mathscr{Z}(\chi)$ for all $s_{1} \in \chi$ if and only if χ is commutative.

Theorem 2.4. Let χ be $a *$-prime ring and α, β and γ be derivations of χ satisfying the identity $\alpha\left(\left[s_{1}, s_{1}^{*}\right]\right)+\left[\beta\left(s_{1}\right), \beta\left(s_{1}^{*}\right)\right] \pm\left[\gamma\left(s_{1}\right), s_{1}^{*}\right] \in \mathscr{Z}(\chi)$ for all $s_{1} \in \chi$. Then χ is commutative.

Proof. The proof is divided into the following cases.
Case (i) If $\alpha=0$ and $\beta, \gamma \neq 0$, then we have

$$
\begin{equation*}
\left[\beta\left(s_{1}\right), \beta\left(s_{1}^{*}\right)\right] \pm\left[\gamma\left(s_{1}\right), s_{1}^{*}\right] \in \mathscr{Z}(\chi), \quad \text { for all } s_{1} \in \chi \tag{2.1}
\end{equation*}
$$

Taking t for s_{1} in (2.1), where $t \in \mathscr{H}(\chi)$, we obtain

$$
\begin{equation*}
\pm[\gamma(t), t] \in \mathscr{Z}(\chi), \quad \text { for all } t \in \mathscr{H}(\chi) . \tag{2.2}
\end{equation*}
$$

Linearization of (2.2) gives

$$
\begin{equation*}
\pm\left[\gamma(t), h_{1}\right] \pm\left[\gamma\left(h_{1}\right), t\right] \in \mathscr{Z}(\chi), \quad \text { for all } t, h_{1} \in \mathscr{H}(\chi) . \tag{2.3}
\end{equation*}
$$

Replacing h_{1} by $h_{1} h_{0}$ in (2.3) and combining (2.3), we get $\pm\left[h_{1}, t\right] \gamma\left(h_{0}\right) \in \mathscr{Z}(\chi)$ for all $h_{1}, t \in \mathscr{H}(\chi)$ and $h_{1} \in \mathscr{H}(\chi) \cap \mathscr{Z}(\chi)$. Applying the primeness of the ring χ, we obtain either $\pm\left[h_{1}, t\right] \in \mathscr{Z}(\chi)$ for all $h_{1}, t \in \mathscr{H}(\chi)$ or $\gamma\left(h_{1}\right)=0$ for all $h_{1} \in \mathscr{H}(\chi) \cap \mathscr{Z}(\chi)$. If we consider $\pm\left[h_{1}, t\right] \in \mathscr{Z}(\chi)$ for all $h_{1}, t \in \mathscr{H}(\chi)$, replacing h_{1} by $k h_{1}$, we have $\pm[k, t] h_{1} \in \mathscr{Z}(\chi)$ for all $t \in \mathscr{H}(\chi), k \in \mathscr{S}(\chi)$ and $h_{1} \in \mathscr{S}(\chi) \cap \mathscr{Z}(\chi)$. Since $\mathscr{S}(\chi) \cap \mathscr{Z}(\chi) \neq(0)$ and χ is prime, implies that $\pm[k, t] \in \mathscr{Z}(\chi)$ for all $t \in \mathscr{H}(\chi)$ and $k \in \mathscr{S}(\chi)$. This implies that χ is commutative. Now consider $\gamma\left(h_{1}\right)=0$ for all $h_{1} \in \mathscr{H}(\chi) \cap \mathscr{Z}(\chi)$, this implies that $\gamma\left(h_{1}\right)=0$ for all $h_{1} \in \mathscr{S}(\chi) \cap \mathscr{Z}(\chi)$. Taking $k h_{1}$ in place of t in (2.2), we obtain

$$
\pm[\gamma(k), k] k_{0}^{2} \in \mathscr{Z}(\chi), \quad \text { for all } k \in \mathscr{S}(\chi) \text { and } h_{1} \in \mathscr{S}(\chi) \cap \mathscr{Z}(\chi) .
$$

Since χ is prime and we have $\mathscr{S}(\chi) \cap \mathscr{Z}(\chi) \neq(0)$, we obtain

$$
\begin{equation*}
\pm[\gamma(k), k] \in \mathscr{Z}(\chi), \quad \text { for all } k \in \mathscr{S}(\chi) \text { and } h_{1} \in \mathscr{S}(\chi) \cap \mathscr{Z}(\chi) . \tag{2.4}
\end{equation*}
$$

By linearizing (2.2), we get

$$
\begin{equation*}
\pm\left[\gamma(t), h_{1}\right] \pm\left[\gamma\left(h_{1}\right), t\right] \in \mathscr{Z}(\chi), \quad \text { for all } t, h_{1} \in \mathscr{H}(\chi) . \tag{2.5}
\end{equation*}
$$

Substituting $k h_{1}$ for h_{1} in (2.5), where $k \in \mathscr{S}(\chi)$ and $h_{1} \in \mathscr{S}(\chi) \cap \mathscr{Z}(\chi)$, we obtain

$$
\begin{equation*}
\pm[\gamma(t), k] \pm[\gamma(k), t] \in \mathscr{Z}(\chi), \quad \text { for all } t, h_{1} \in \mathscr{H}(\chi) . \tag{2.6}
\end{equation*}
$$

Consider $4\left[\gamma\left(s_{1}\right), s_{2}\right]=\left[\gamma\left(2 s_{1}\right), 2 s_{2}\right]=[\gamma(t+k), t+k]=[\gamma(t), t]+[\gamma(k), t]+[\gamma(t), k]+$ $[\gamma(k), k]$. Using (2.2), (2.4) and (2.6), we get $4\left[\gamma\left(s_{1}\right), s_{2}\right] \in \mathscr{Z}(\chi)$ for all $s_{1}, s_{2} \in \chi$. Since $\operatorname{char}(\chi) \neq 2$, this implies that $\left[\gamma\left(s_{1}\right), s_{2}\right] \in \mathscr{Z}(\chi)$ for all $s_{1} \in \chi$. Therefore, in view of Posner's result we done.

Case (ii) If $\beta=0$ and $\alpha, \gamma \neq 0$, then we have $\alpha\left(\left[s_{1}, s_{1}^{*}\right]\right) \pm\left[\gamma\left(s_{1}\right), s_{1}^{*}\right] \in \mathscr{Z}(\chi)$ for all $s_{1} \in \chi$. Substituting t for s_{1}, we obtain $\pm[\gamma(t), t] \in \mathscr{Z}(\chi)$ for all $t \in \mathscr{H}(\chi)$, which is same as (2.2), following the line of proof as we did after (2.2), we get χ is commutative.

Case (iii) If $\gamma=0$ and $\alpha, \beta \neq 0$, then from hypothesis we obtain

$$
\alpha\left(\left[s_{1}, s_{1}^{*}\right]\right)+\left[\beta\left(s_{1}\right), \beta\left(s_{1}^{*}\right)\right] \in \mathscr{Z}(\chi), \quad \text { for all } s_{1} \in \chi
$$

Substituting $s s_{1}$ for s_{1} in above equation, where $s \in \mathscr{Z}(\chi) \cap \mathscr{S}(\chi)$, we get

$$
\begin{equation*}
\left[s_{1}, s_{1}^{*}\right] 2 s \alpha(s)+\left[\alpha\left(s_{1}\right), s_{1}^{*}\right] s \beta(s)+\left[s_{1}, \beta\left(s_{1}^{*}\right)\right] s \beta(s)+\left[s_{1}, s_{1}^{*}\right](\beta(s))^{2} \in \mathscr{Z}(\chi) \tag{2.7}
\end{equation*}
$$

Linearization of (2.7), gives us

$$
\begin{align*}
& {\left[s_{1}, s_{2}^{*}\right] 2 s \alpha(s)+\left[s_{2}, s_{1}^{*}\right] 2 s \alpha(s)+\left[\alpha\left(s_{1}\right), s_{2}^{*}\right] s \alpha(s)+\left[\alpha\left(s_{2}\right), s_{1}^{*}\right] s \alpha(s)} \tag{2.8}\\
& +\left[s_{1}, \beta\left(s_{2}^{*}\right)\right] s \beta(s)+\left[s_{2}, \beta\left(s_{1}^{*}\right)\right] s \beta(s)+\left[s_{1}, s_{2}^{*}\right](\beta(s))^{2}+\left[s_{2}, s_{1}^{*}\right](\beta(s))^{2} \in \mathscr{Z}(\chi) .
\end{align*}
$$

Now taking $s_{2} s$ for s_{2} in (2.8), where $s \in \mathscr{Z}(\chi) \cap \mathscr{S}(\chi)$, and combining it with the obtained result, we find that

$$
\begin{align*}
& 4\left[s_{2}, s_{1}^{*}\right] s^{2} \alpha(s)+2\left[\beta\left(s_{2}\right), s_{1}^{*}\right] s \beta(s)^{2}+2\left[s_{2}, s_{1}^{*}\right] s(\beta(s))^{2} \tag{2.9}\\
& -\left[s_{1}, s_{2}^{*}\right] s(\beta(s))^{2}+2\left[s_{2}, \beta\left(s_{1}^{*}\right)\right] s^{2} \beta(s)+\left[s_{2}, s_{1}^{*}\right] s(\beta(s))^{2} \in \mathscr{Z}(\chi) .
\end{align*}
$$

Substituting $s_{2} s$ for s_{2} in (2.9) and solving with the help of (2.9), we have

$$
\begin{equation*}
2\left[s_{1}, s_{2}^{*}\right] s^{2}(\beta(s))^{2}+2\left[s_{2}, s_{1}^{*}\right] s(\beta(s))^{3} \in \mathscr{Z}(\chi), \quad \text { for all } s_{1}, s_{2} \in \chi \tag{2.10}
\end{equation*}
$$

Again taking $s_{2} s$ for s_{2} in (2.10), where $s \in \mathscr{Z}(\chi) \cap \mathscr{S}(\chi)$, and combining it with (2.10), we get $4\left[s_{2}, s_{1}^{*}\right] s^{2}(\beta(s))^{3} \in \mathscr{Z}(\chi)$ for all $s_{1}, s_{2} \in \chi$. Replacing s_{2} by s_{1}, we obtain $4\left[s_{1}, s_{1}^{*}\right] s^{2}(\beta(s))^{2} \in \mathscr{Z}(\chi)$, for all $s_{1} \in \chi$ and $s \in \mathscr{Z}(\chi) \cap \mathscr{S}(\chi)$. Since char $(\chi) \neq 2$ and $\mathscr{Z}(\chi) \cap \mathscr{S}(\chi) \neq(0)$, the above relation forces that either $\left[s_{1}, s_{1}^{*}\right] \in \mathscr{Z}(\chi)$ for all $s_{1} \in \chi$ or $\beta(s)=0$ for all $s \in \mathscr{Z}(\chi) \cap \mathscr{S}(\chi)$. If $\left[s_{1}, s_{1}^{*}\right] \in \mathscr{Z}(\chi)$, then by Fact $2.2, \chi$ is commutative. On the other hand, we consider the situation $\beta(s)=0$ for all $s \in \mathscr{Z}(\chi) \cap \mathscr{S}(\chi)$. Using this in (2.7), we get $2\left[s_{1}, s_{1}^{*}\right] s \alpha(s) \in \mathscr{Z}(\chi)$. By the primeness of the ring χ, we conclude that either χ is commutative or $\alpha(s)=0$ for all $s \in \mathscr{Z}(\chi) \cap \mathscr{S}(\chi)$. Linearization of $\alpha\left(\left[s_{1}, s_{1}^{*}\right]\right)+\left[\beta\left(s_{1}\right), \beta\left(s_{1}^{*}\right)\right] \in \mathscr{Z}(\chi)$ for all $s_{1} \in \chi$, gives us

$$
\begin{equation*}
\alpha\left(\left[s_{1}, s_{2}^{*}\right]\right)+\alpha\left(\left[s_{2}, s_{1}^{*}\right]\right)+\left[\beta\left(s_{1}\right), \beta\left(s_{2}^{*}\right)\right]+\left[\beta\left(s_{2}\right), \beta\left(s_{1}^{*}\right)\right] \in \mathscr{Z}(\chi), \quad \text { for all } s_{1}, s_{2} \in \chi . \tag{2.11}
\end{equation*}
$$

Replacing s_{2} by $s s_{2}$ in (2.11) where $s \in \mathscr{Z}(\chi) \cap \mathscr{S}(\chi)$ and using the fact that $\alpha(s)=0$ and $\beta(s)=0$ for all $s \in \mathscr{Z}(\chi) \cap \mathscr{S}(\chi)$, we arrive at

$$
2\left(\alpha\left(\left[s_{2}, s_{1}^{*}\right]\right)+\left[\beta\left(s_{2}\right), \beta\left(s_{1}^{*}\right)\right]\right) s \in \mathscr{Z}(\chi), \quad \text { for all } s_{1}, s_{2} \in \chi .
$$

Since $\operatorname{char}(\chi) \neq 2$ and $\mathscr{Z}(\chi) \cap \mathscr{S}(\chi) \neq(0)$, the above relation yields

$$
\alpha\left(\left[s_{2}, s_{1}^{*}\right]\right)+\left[\beta\left(s_{2}\right), \beta\left(s_{1}^{*}\right)\right] \in \mathscr{Z}(\chi), \quad \text { for all } s_{1}, s_{2} \in \chi .
$$

This implies that

$$
\alpha\left(\left[s_{2}, s_{1}\right]\right)+\left[\beta\left(s_{2}\right), \beta\left(s_{1}\right)\right] \in \mathscr{Z}(\chi), \quad \text { for all } s_{1}, s_{2} \in \chi .
$$

Replacing s_{2} by s_{1}^{2} in the last relation, we get $\left[\beta\left(s_{1}^{2}\right), \beta\left(s_{1}\right)\right] \in \mathscr{Z}(\chi)$ for all $s_{1} \in \chi$. This further implies that $\left[\left(\beta\left(s_{1}\right)\right)^{2}, s_{1}\right] \in \mathscr{Z}(\chi)$ for all $s_{1} \in \chi$. Thus in view of [14, Theorem 1.1], we get χ is commutative. This proves the theorem.

Case (iv) If $\alpha=0, \beta=0$ and $\gamma \neq 0$, we have $\pm\left[\gamma\left(s_{1}\right), s_{1}^{*}\right] \in \mathscr{Z}(\chi)$ for all $s_{1} \in \chi$, then by [17, Theorem 3.7] χ is commutative.

Case (v) Consider $\beta=0, \gamma=0$ and $\alpha \neq 0$, then from hypothesis, we have $\alpha\left(\left[s_{1}, s_{1}^{*}\right]\right) \in \mathscr{Z}(\chi)$ for all $s_{1} \in \chi$. By [16, Theorem 2.3], we obtain χ is commutative.

Case (vi) Taking $\gamma=0, \alpha=0$ and $\beta \neq 0$, then by hypothesis we have $\left[\beta\left(s_{1}\right), \beta\left(s_{1}^{*}\right)\right]$ $\in \mathscr{Z}(\chi)$ for all $s_{1} \in \chi$. Hence, result follows by [17, Theorem 3.1].

Case (vii) Consider the following if $\alpha=0, \beta=0$ and $\gamma \neq 0$. Substituting t for s_{1} in assumption, we obtain $[\gamma(t), t] \in \mathscr{Z}(\chi)$ for all $s_{1} \in \mathscr{H}(\chi)$, which is same as (2.2). Therefore χ is commutative by follow the same argument.

We deduce the following corollaries from Theorem 2.4.
Corollary 2.1 ([8, Theorem 3.1]). Let χ be $a *$-prime ring and $\alpha \neq 0$ be a derivation of χ such that $\left[\alpha\left(s_{1}\right), \alpha\left(s_{1}^{*}\right)\right]=0$ for all $s_{1} \in \chi$. Then χ is commutative.

Corollary 2.2 ([2, Theorem 2.2]). Let χ be $a *$-prime ring and $\alpha \neq 0$ be a derivation of χ such that $\alpha\left(\left[s_{1}, s_{1}^{*}\right]\right)=0$ for all $s_{1} \in \chi$. Then χ is commutative.

Corollary 2.3 ([3, Theorem 3.5]). Let χ be $a *$-prime ring and α and β be derivations of χ satisfying the identity $\alpha\left(\left[s_{1}, s_{1}^{*}\right]\right)+\left[\beta\left(s_{1}\right), \beta\left(s_{1}^{*}\right)\right]=0$ for all $s_{1} \in \chi$. Then χ is commutative.

Corollary 2.4. Let χ be $a *$-prime ring and α and β be a nonzero derivation of χ satisfying $\alpha\left(s_{1} s_{1}^{*}\right)+\beta\left(s_{1}\right) \beta\left(s_{1}^{*}\right) \in \mathscr{Z}(\chi)$ for all $s_{1} \in \chi$. Then χ is commutative.
Proof. By the assumption, we have $\alpha\left(s_{1} s_{1}^{*}\right)+\beta\left(s_{1}\right) \beta\left(s_{1}^{*}\right) \in \mathscr{Z}(\chi)$ for all $s_{1} \in \chi$. Replace s_{1} by s_{1}^{*} in the last expression to get $\alpha\left(s_{1}^{*} s_{1}\right)+\beta\left(s_{1}^{*}\right) \beta\left(s_{1}\right) \in \mathscr{Z}(\chi)$ for all $s_{1} \in \chi$. Combining the last two relations, we obtain $\alpha\left(\left[s_{1}, s_{1}^{*}\right]\right)+\left[\beta\left(s_{1}\right), \beta\left(s_{1}^{*}\right)\right] \in \mathscr{Z}(\chi)$ for all $s_{1} \in \chi$. Hence, application of Case (vi) of Theorem 2.4 yields the required result.

Theorem 2.5. Let χ be $a *$-prime ring and α and β be two derivations of χ satisfying the identity $\alpha\left(s_{1} \circ s_{1}^{*}\right)+\beta\left(s_{1}\right) \circ \beta\left(s_{1}^{*}\right) \in \mathscr{Z}(\chi)$ for all $s_{1} \in \chi$. Then χ is commutative.

Proof. By the assumption, we have

$$
\begin{equation*}
\alpha\left(s_{1} \circ s_{1}^{*}\right)+\beta\left(s_{1}\right) \circ \beta\left(s_{1}^{*}\right) \in \mathscr{Z}(\chi), \quad \text { for all } s_{1} \in \chi . \tag{2.12}
\end{equation*}
$$

Case (i) Assume that $\alpha \neq 0$ and $\beta=0$. Then it follows from (2.12) that $\alpha\left(s_{1} \circ s_{1}^{*}\right) \in$ $\mathscr{Z}(\chi)$ for all $s_{1} \in \chi$. In view of [16, Theorem 2.5], we get χ is commutative.

Case (ii) Taking $\alpha=0$ and $\beta \neq 0$. Then (2.12) reduces to

$$
\begin{equation*}
\beta\left(s_{1}\right) \circ \beta\left(s_{1}^{*}\right) \in \mathscr{Z}(\chi), \quad \text { for all } s_{1} \in \chi . \tag{2.13}
\end{equation*}
$$

Application of [17, Theorem 3.5] gives the required result.
Case (iii) Assume that both α and β are nonzero. Replacing s_{1} by $s_{1}+s_{2}$ in (2.12), we get

$$
\begin{equation*}
\alpha\left(s_{1} \circ s_{2}^{*}\right)+\alpha\left(s_{2} \circ s_{1}^{*}\right)+\beta\left(s_{1}\right) \circ \beta\left(s_{2}^{*}\right)+\beta\left(s_{2}\right) \circ \beta\left(s_{1}^{*}\right) \in \mathscr{Z}(\chi) . \tag{2.14}
\end{equation*}
$$

Substituting $s_{2} t$ for s_{2} in (2.14), where $t \in \mathscr{Z}(\chi) \cap \mathscr{H}(\chi)$, we get

$$
\left(\left(s_{1} \circ s_{2}^{*}\right)+\left(s_{2} \circ s_{1}^{*}\right)\right) \alpha(t)+\left(\beta\left(s_{1}\right) \circ s_{2}^{*}+s_{2} \circ \beta\left(s_{1}^{*}\right)\right) \beta(t) \in \mathscr{Z}(\chi) .
$$

Taking $s_{2} s_{o}$ for s_{2} where $s_{o} \in \mathscr{Z}(\chi) \cap \mathscr{S}(\chi)$ and combining it with the obtained relation, we get

$$
\left.2\left(\left(s_{2} \circ s_{1}^{*}\right) s_{o} \alpha(t)\right)+\left(s_{2} \circ \beta\left(s_{1}^{*}\right)\right) s_{o} \beta(t)\right) \in \mathscr{Z}(\chi) .
$$

Since $\operatorname{char}(\chi) \neq 2$ and $\mathscr{Z}(\chi) \cap \mathscr{S}(\chi) \neq(0)$, the above relation yields

$$
\begin{equation*}
\left(s_{2} \circ s_{1}^{*}\right) \alpha(t)+\left(s_{2} \circ \beta\left(s_{1}^{*}\right)\right) \beta(t) \in \mathscr{Z}(\chi), \quad \text { for all } s_{1}, s_{2} \in \mathscr{Z}(\chi) . \tag{2.15}
\end{equation*}
$$

This can be further written as

$$
\left[\left(s_{2} \circ s_{1}^{*}\right), r\right] \alpha(t)+\left[s_{2} \circ \beta\left(s_{1}^{*}\right), r\right] \beta(t)=0, \quad \text { for all } s_{1}, s_{2}, r \in \mathscr{Z}(\chi)
$$

Replacing χ by $s_{2} \circ s_{1}^{*}$ we get $\left[s_{2} \circ \beta\left(s_{1}^{*}\right), s_{2} \circ s_{1}^{*}\right] \beta(t)=0$ for all $s_{1}, s_{2} \in \chi$. Then, by the primeness of χ, we get either $\left[s_{2} \circ \beta\left(s_{1}^{*}\right), s_{2} \circ s_{1}^{*}\right]=0$ for all $s_{1}, s_{2} \in \chi$ or $\beta(t)=0$ for all $t \in \mathscr{Z}(\chi) \cap \mathscr{H}(\chi)$. If $\left[s_{2} \circ \beta\left(s_{1}^{*}\right), s_{2} \circ s_{1}^{*}\right]=0$ for all $s_{1}, s_{2} \in \chi$, then by substituting z for s_{2} in the last relation where $z \in \mathscr{Z}(\chi)$, we obtain $2\left[\beta\left(s_{1}^{*}\right), s_{1}^{*}\right] z=0$ for all $s_{1} \in \chi$. Since $\operatorname{char}(\chi) \neq 2$ and $\mathscr{Z}(\chi) \cap \mathscr{S}(\chi) \neq(0)$, this implies that $\left[\beta\left(s_{1}^{*}\right), s_{1}^{*}\right]=0$ for all $s_{1} \in \chi$. By the application of Posner's [18] we arrived at conclusion. Now consider the case $\beta(t)=0$ for all $t \in \mathscr{Z}(\chi) \cap \mathscr{H}(\chi)$. Then (2.15) reduces to $\left(s_{2} \circ s_{1}^{*}\right) \alpha(t) \in \mathscr{Z}(\chi)$ for all $s_{1}, s_{2} \in \chi$ and $t \in \mathscr{Z}(\chi) \cap \mathscr{H}(\chi)$. By the primness of the ring χ, we get either $s_{2} \circ s_{1}^{*} \in \mathscr{Z}(\chi)$ for all $s_{1}, s_{2} \in \chi$ or $\alpha(t)=0$ for all $t \in \mathscr{Z}(\chi) \cap \mathscr{H}(\chi)$. If $s_{2} \circ s_{1}^{*} \in \mathscr{Z}(\chi)$ for all $s_{1}, s_{2} \in \chi$ by the Fact 2.3 implies that χ is commutative. Finally, we consider the case $\alpha(t)=0$ for all $t \in \mathscr{Z}(\chi) \cap \mathscr{H}(\chi)$. Now replacing s_{2} by t in (2.14) where $t \in \mathscr{Z}(\chi) \cap \mathscr{H}(\chi)$, we get

$$
\left(\alpha\left(s_{1}\right)+\alpha\left(s_{1}^{*}\right)\right) t \in \mathscr{Z}(\chi), \quad \text { for all } s_{1} \in \chi \text { and } t \in \mathscr{Z}(\chi) \cap \mathscr{H}(\chi) .
$$

Thus in view of the fact $\mathscr{Z}(\chi) \cap \mathscr{S}(\chi) \neq(0)$ and primeness of the ring χ, we conclude that $\alpha\left(s_{1}\right)+\alpha\left(s_{1}^{*}\right) \in \mathscr{Z}(\chi)$ for all $s_{1} \in \chi$. This can be written as $\left[\alpha\left(s_{1}\right), \alpha\left(s_{1}^{*}\right)\right]=0$ for all $s_{1} \in \chi$. Hence, χ is commutative by [17, Theorem 3.1].
Corollary 2.5 ([2, Theorem 2.3]). Let χ be $a *$-prime ring and $\alpha \neq 0$ be a derivation of χ satisfying $\alpha\left(s_{1} \circ s_{1}^{*}\right)=0$ for all $s_{1} \in \chi$. Then χ is commutative.

Corollary 2.6. Let χ be $a *$-prime ring and $\alpha \neq 0$ be a derivation of χ satisfying $\alpha\left(s_{1} s_{1}^{*}\right) \in \mathscr{Z}(\chi)$ for all $s_{1} \in \chi$. Then χ is commutative.
Proof. From assumption, we have $\alpha\left(s_{1} s_{1}^{*}\right) \in \mathscr{Z}(\chi)$ for all $s_{1} \in \chi$. For any $s_{1} \in \chi, s_{1}^{*}$ also is an element of χ. Substituting s_{1}^{*} for s_{1} in the given assertion, we obtain $\alpha\left(s_{1}^{*} s_{1}\right) \in \mathscr{Z}(\chi)$ for all $s_{1} \in \chi$. This implies that $\alpha\left(s_{1} \circ s_{1}^{*}\right) \in \mathscr{Z}(\chi)$ for all $s_{1} \in \chi$. Hence, χ is commutative by Corollary 2.5.
Corollary 2.7 ([8, Theorem 3.2]). Let χ be $a *$-prime ring and $\alpha \neq 0$ be a derivation of χ satisfying $\alpha\left(s_{1}\right) \circ \alpha\left(s_{1}^{*}\right)=0$ for all $s_{1} \in \chi$. Then χ is commutative.

Corollary 2.8 ([3, Theorem 3.6]). Let χ be $a *$-prime ring and $\alpha \neq 0$ be a derivation of χ satisfying $\alpha\left(s_{1} \circ s_{1}^{*}\right)+\alpha\left(s_{1}\right) \circ \alpha\left(s_{1}^{*}\right)=0$ for all $s_{1} \in \chi$. Then χ is commutative.
Theorem 2.6. Let χ be a *-prime ring and α and β be derivations of χ satisfying the identity $\left[\alpha\left(s_{1}\right), \alpha\left(s_{1}^{*}\right)\right] \pm \beta\left(s_{1} \circ s_{1}^{*}\right) \in \mathscr{Z}(\chi)$ for all $s_{1} \in \chi$. Then χ is commutative.

Proof. We are given that $\alpha, \beta: \chi \rightarrow \chi$ are derivations such that

$$
\begin{equation*}
\left[\alpha\left(s_{1}\right), \alpha\left(s_{1}^{*}\right)\right]+\beta\left(s_{1} \circ s_{1}^{*}\right) \in \mathscr{Z}(\chi), \quad \text { for all } s_{1} \in \chi \tag{2.16}
\end{equation*}
$$

Replacing s_{1} by s_{1}^{*} in the last expression we get

$$
\begin{equation*}
-\left[\alpha\left(s_{1}\right), \alpha\left(s_{1}^{*}\right)\right]+\beta\left(s_{1} \circ s_{1}^{*}\right) \in \mathscr{Z}(\chi), \quad \text { for all } s_{1} \in \chi \tag{2.17}
\end{equation*}
$$

Adding the last two relations and using $\operatorname{char}(\chi) \neq 2$ we obtain

$$
\begin{equation*}
\beta\left(s_{1} \circ s_{1}^{*}\right) \in \mathscr{Z}(\chi), \quad \text { for all } s_{1} \in \chi \tag{2.18}
\end{equation*}
$$

Hence, the result follows from [13, Theorem 2].
Similarly, we prove the other case with the help of [13, Theorem 2].
Corollary 2.9 ([3, Theorem 3.1]). Let χ be $a *$-prime ring and α and β be derivations of χ satisfying the identity $\left[\alpha\left(s_{1}\right), \alpha\left(s_{1}^{*}\right)\right] \pm \beta\left(s_{1} \circ s_{1}^{*}\right)=0$ for all $s_{1} \in \chi$. Then χ is commutative.

Theorem 2.7. Let χ be a *-prime ring and α and β be derivations of χ satisfying the identity $\alpha\left(s_{1}\right) \circ \alpha\left(s_{1}^{*}\right) \pm \beta\left(\left[s_{1}, s_{1}^{*}\right]\right) \in \mathscr{Z}(\chi)$ for all $s_{1} \in \chi$. Then χ is commutative.
Proof. First, we consider that

$$
\alpha\left(s_{1}\right) \circ \alpha\left(s_{1}^{*}\right)+\beta\left(\left[s_{1}, s_{1}^{*}\right]\right) \in \mathscr{Z}(\chi), \quad \text { for all } s_{1} \in \chi
$$

Replacing s_{1} by s_{1}^{*} in the last expression we get

$$
\alpha\left(s_{1}\right) \circ \alpha\left(s_{1}^{*}\right)-\beta\left(\left[s_{1}, s_{1}^{*}\right]\right) \in \mathscr{Z}(\chi), \quad \text { for all } s_{1} \in \chi .
$$

Substracting the last two relation and using $\operatorname{char}(\chi) \neq 2$ we obtain

$$
\beta\left(\left[s_{1}, s_{1}^{*}\right]\right) \in \mathscr{Z}(\chi), \quad \text { for all } s_{1} \in \chi .
$$

Hence, the result follow from [13, Theorem 1].
Similarly, we prove the other case with the help of [13, Theorem 1].
Corollary 2.10. Let χ be $a *$-prime ring and α and β be derivations of χ satisfying the identity $\alpha\left(s_{1}\right) \circ \alpha\left(s_{2}\right) \pm \beta\left(\left[s_{1}, s_{2}\right]\right) \in \mathscr{Z}(\chi)$ for all $s_{1}, s_{2} \in \chi$. Then χ is commutative.

Corollary 2.11 ([3, Theorem 3.3]). Let χ be $a *$-prime ring and α and β be derivations of χ satisfying the identity $\alpha\left(s_{1}\right) \circ \alpha\left(s_{1}^{*}\right) \pm \beta\left(\left[s_{1}, s_{1}^{*}\right]\right)=0$ for all $s_{1} \in \chi$. Then χ is commutative.

3. Some Examples

The first example shows that the restriction of the second kind involution in our theorems is not superfluous.
Example 3.1. Let $\chi=\left\{\left.\left(\begin{array}{ll}\beta_{1} & \beta_{2} \\ \beta_{3} & \beta_{4}\end{array}\right) \right\rvert\, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4} \in \mathbb{Z}\right\}$. Of course, χ with matrix addition and matrix multiplication is a non commutative prime ring. Define mappings *, $\alpha, \beta: \chi \rightarrow \chi$ such that

$$
\left(\begin{array}{ll}
\beta_{1} & \beta_{2} \\
\beta_{3} & \beta_{4}
\end{array}\right)^{*}=\left(\begin{array}{cc}
\beta_{4} & -\beta_{2} \\
-\beta_{3} & \beta_{1}
\end{array}\right), \quad \alpha\left(\begin{array}{ll}
\beta_{1} & \beta_{2} \\
\beta_{3} & \beta_{4}
\end{array}\right)=\left(\begin{array}{cc}
0 & -\beta_{2} \\
\beta_{3} & 0
\end{array}\right)
$$

and $\beta\left(\begin{array}{ll}\beta_{1} & \beta_{2} \\ \beta_{3} & \beta_{4}\end{array}\right)=\left(\begin{array}{cc}0 & \beta_{2} \\ -\beta_{3} & 0\end{array}\right)$. Obviously, $\mathscr{Z}(\chi)=\left\{\left.\left(\begin{array}{cc}\beta_{1} & 0 \\ 0 & \beta_{1}\end{array}\right) \right\rvert\, \beta_{1} \in \mathbb{Z}\right\}$. Then $s_{1}^{*}=s_{1}$ for all $s_{1} \in \mathscr{Z}(\chi)$, and hence $\mathscr{Z}(\chi) \subseteq \mathscr{H}(\chi)$, which shows that the involution
' $*^{\prime}$ is of the first kind. Moreover, α and β are nonzero derivations of χ and satisfying the identities of the theorems. However, χ is not commutative. Hence, the hypothesis of the second kind involution is crucial in our theorems.

The next example shows that our theorems are not true for semiprime rings.
Example 3.2. Let $S=\chi \times \mathbb{C}$, where χ is same as in Example 3.1 with involution ' $*^{\prime}$ and derivations α and β same as in Example 3.1, \mathbb{C} is the ring of complex numbers with conjugate involution τ. We can easily observe that S is a non commutative semiprime ring with characteristic different from two. Now define an involution α on S, as $\left(s_{1}, s_{2}\right)^{\alpha}=\left(s_{1}^{*}, s_{2}^{\tau}\right)$. Clearly, α is an involution of the second kind. Further, we define the mappings α and β from S to S such that $D_{1}\left(s_{1}, s_{2}\right)=\left(\alpha\left(s_{1}\right), 0\right)$ and $D_{2}\left(s_{1}, s_{2}\right)=\left(\beta\left(s_{1}\right), 0\right)$ for all $\left(s_{1}, s_{2}\right) \in S$. It can be easily checked that D_{1} and D_{2} are derivations on S and satisfying the identities of the Theorem 2.5 and Theorem 2.6 but S is not commutative. Hence, in our theorems, the hypothesis of primeness is essential.

Conclusions. In this paper we have studied some identities involving derivations on prime rings with involution. Purely algebraic methods have been used to describe the structure of rings and we provide the examples, which shows that the assumptions are not superfluous. Applications point of view some well known results are deduced.

Acknowledgements. The authors are indebted to the referee for his/her useful suggestions.

References

[1] S. Ali and N. A. Dar, On *-centralizing mappings in rings with involution, Georgian Math. J. 1 (2014), 25-28. https://doi.org/10.1515/gmj-2014-0006
[2] S. Ali, N. A. Dar and M. Asci, On derivations and commutativity of prime rings with involution, Georgian Math. J. 23(1) (2016). https://doi.org/10.1515/gmj-2020-2080
[3] S. Ali, A. N. Koam and M. A. Ansari, On *-differential identities in prime rings with involutions, Hacettepe J. Math. Stat. 48(2-4) (2019), 1-8. https://doi.org/10.15672/hujms. 588726
[4] M. Ashraf and M. A. Siddeeque, Posner's first theorem for $*$-ideals in prime rings with involution, Kyungpook Math. J. 56 (2016), 343-347. https://doi.org/10.5666/KMJ.2022.62.1.43
[5] M. Ashraf and N. Rehman, On commutativity of rings with derivations, Results Math. 42(1-2) (2002), 3-8. https://doi.org/10.1007/BF03323547
[6] H. E. Bell and M. N. Daif, On derivations and commutativity in prime rings, Acta Math. Hungar. 66 (1995), 337-343. https://doi.org/10.1007/BF01876049
[7] M. N. Daif, Commutativity results for semiprime rings with derivation, Int. J. Math. Math. Sci 21(3) (1998), 471-474. https://doi.org/10.1155/S0161171298000660
[8] N. A. Dar and S. Ali, On *-commuting mappings and derivations in rings with involution, Turkish J. Math. 40 (2016), 884-894. https://doi:10.3906/mat-1508-61
[9] N. J. Divinsky, On commuting automorphisms of rings, Trans. Roy. Soc. Canada. Sect. III 49 (1955), 19-22.
[10] V. D. Filippis, On derivation and commutativity in prime rings, Int. J. Math. Math. Sci 70 (2004), 3859-3865. https://doi.org/10.1155/S0161171204403536
[11] I. N. Herstein, Rings with Involution, University of Chicago Press, Chicago, 1976. https: //doi.org/10.1007/BF02760175
[12] I. N. Herstein, A note on derivation, Canad. Math. Bull. 21(3) (1978), 369-370. https://doi. org/10.4153/CMB-1978-065-x
[13] A. Idrissi and L. Oukhtite, Some commutativity theorems for rings with involution involving generalized derivations, Asian-Eur. J. Math. 12 (2019), Paper ID 1950001, 11 pages.
[14] M. T. Kosan, T. K. Lee and Y. Zhou, Identities with Engel conditions on derivations, Monatsh Math. 165 (2012), 543-556. https://doi.org/10.1007/s00605-010-0252-6
[15] J. Mayne, Centralizing automorphisms of prime rings, Canad. Math. Bull. 19 (1976), 113-117. https://doi.org/10.4153/CMB-1976-017-1
[16] B. Nejjar, A. Kacha and A. Mamouni, Some commutativity criteria for rings with involution, Int. Open Problems Compt. Math. 10(3) (2017), 6-13.
[17] B. Nejjar, A. Kacha, A. Mamouni and L. Oukhtite, Commutativity theorems in rings with involution, Comm. Algebra 45(2) (2017), 698-708. https://doi.org/10.1080/00927872.2016. 1172629
[18] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc 8 (1957), 1093-1100. https: //doi.org/10.2307/2032686
${ }^{1}$ Department of Mathematics
Madanapalle Institute of Technology \& Science
Andhra Pradesh, India
Email address: adnan.abbasi001@gmail.com
${ }^{2}$ Department of Mathematics
Faculty of Science
Aligarh Muslim University
Aligarh, India
Email address: shakir.ali.mm@amu.ac.in
${ }^{3}$ Department of Mathematics
Faculty of Science
King Abdulaziz University
Saudi Arabia
Email address: abdulnadimkhan@gmail.com
${ }^{4}$ Department of Mathematics
Faculty of Science
Aligarh Muslim University
Aligarh, India
Email address: muzibamu81@gmail.com

[^0]: Key words and phrases. Prime ring, involution, derivation, central identities.
 2020 Mathematics Subject Classification. Primary: 16N60. Secondary: 16W10, 16W25.
 DOI
 Received: June 02, 2022.
 Accepted: November 10, 2022.

