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INEQUALITIES FOR STRONGLY »-CONVEX FUNCTIONS ON
TIME SCALES

S. G. GEORGIEV!, V. DARVISH?3 M. RAZEGHI*, AND B. KAYMAKCALAN?®

ABSTRACT. In this paper, first we establish the Hermite-Hadamard type inequality
based on diamond-« integral for a subset of strongly r-convex functions. Then
we prove several new inequalities for n-times continuously differentiable strongly
r-convex functions on time scales by virtue of some techniques and introducing new
quantities.

1. INTRODUCTION

The analysis on time scales is a relatively new area of mathematics that unifies and
generalizes discrete and continuous theories. Moreover, it is a crucial tool in many
computational and numerical applications.

The differential calculus on time scales generalizes classical both continuous and
discrete differential calculus depending on the structure of the time scale under con-
sideration. There are several common generalizations of classical derivative to time
scales. For example, one of them is the so-called A-derivative, which simultaneously
generalizes the forward divided difference of the first order, while the first-order back-
ward divided difference is generalized by the V-derivative. There is also the so-called
diamond-a dynamic derivative or, shortly, ¢, -derivative being, in turn, the linear
combination of A and V-derivatives with the coefficients o and 1 — «, respectively,
for some « € [0, 1]. For each type of derivatives on time scales there is its own notion
of the integral. Thus, the diamond-« integral corresponds to the ,-derivative.
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The main purpose of this discussions is to reflect some certain inequalities for
strongly r-convex functions and it is inspired by the papers [3,7-10] where the authors
focused on to obtain several new integral inequalities for different class of convex
functions which are n-times differentiable on an interval in R. Since many continuous
models in biology, physics, chemistry and etc. have discrete analogues, our aim in this
paper is to unify these inequalities in the discrete and continuous case.

This paper is organized as follows. In the next section, we briefly recall key notions
and notations on time scales and then we introduce diamond-a derivatives by recalling
the basic property of this combined dynamic derivatives. We also present definition of
diamond-« integral and several theorems concerning the properties of it. In Section 3,
which is devoted to our main results, we deduce some integral inequalities by applying
the definition of strongly r-convexity and the integral identity which we prove in the
sequel. We also introduce some new quantities and use well-known inequalities to
present our results.

2. TIME SCALES REVISITED

A time scale T is an arbitrary nonempty closed subset of the real numbers. The
forward jump and backward jump operators o and p can be defined respectively by
o(t)=inf{s € T:s>t}, p(t)=sup{seT:s <t}

Note that for any ¢ € T, o(t) > t and p(t) < t. Moreover, for t € T, we say the
graininess function p: T — [0, +00) to be as follows

u(t) =o(t) —t.
We define the interval [a,b]r in T as follows
[a,blr ={t€T:a<t<b}.

Open intervals and half open intervals etc. are defined accordingly.
For t € T, we have the following cases.

o If o(t) > t, then we say that t is right-scattered.

o Ift <supT and o(t) = t, then we say that ¢ is right-dense.
o If p(t) < t, then we say that t is left-scattered.

o If t > inf T and p(t) = t, then we say that t is left-dense.

We define T* = T if sup T is left-dense and T* = T\ {sup T} if sup T is left-scattered.
Similarly, we define Tj = T if inf T is right-dense and T = T \ {inf T} if inf T is
right-scattered. We denote T* 0T}, = T¥.

Assume that f : T — R is a function and let t € T*. We define f2(¢) to be a
number, provided it exists, as follows: for any € > 0 there is a neighbourhood U of t,
U= (t—46,t+0)NT for some § > 0, such that

[f(a()) = f(s) = fFAt)(a(t) = 5)| < elo(t) — s,
for all s € U. We say f2(t) is the delta or Hilger derivative of f at t. Also, we
say f is delta differentiable on T* if f2(¢) exists for all t+ € T*. Similarly, we say
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that a function f defined on T is V differentiable at ¢t € Ty if for ¢ > 0 there is a
neighborhood V' of ¢ such that for some v the following inequality holds:

£ (p(t) = f(s) = (p(t) — s)| < elp(t) — s],
for all s € V and in this case, we write f¥(t) = 7. We say that f is V differentiable
on Ty, if fV(t) exists for any t € T}.

Definition 2.1 ([12,13]). Let o € [0,1] and f: T — R be A and V differentiable at
t € T. Define the diamond-a dynamic derivative fO of f at ¢ as follows
for(t) = af2 () + (L= a) fY ().

Thus, f is diamond-a-differentiable at ¢ € T if and only if f is A and V differentiable
at t. When a = 1, we have

FOalt) = f2(1)
and for a = 0, we have
FOalt) = FY(2).
In [12], they proved the following criteria for o,-differentiability of a function.
Theorem 2.1 ([12]). Let a € [0, 1].
(a) Ift € T is dense and f'(t) exists, then
feot) =20 = @) = ).
(b) Ift € T is isolated, then f°*(t) ezists and
o fo) = f(t)
@ t —
(c) Ift € T is left-scattered and right-dense, and
iy e JEER) — f()
Fr) = hlg& h

exists, then f°(t) exists and

) =af )+ 1 -a)=—7Z——.
(d) Ift € I is right-scattered and left-dense, and
) = i L0510
exists, then f°(t) exists and
oarpy - S7() = f(2)

+ (1 —a)—~r——=

+ (1 —a)f'(t7).

Below we will list some of the properties of the diamond-a derivative. Let f,g :
T — R be diamond-« differentiable at ¢ € T.
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Theorem 2.2 ([12,13]). f + g is diamond-a differentiable at t and
(f +9)0(t) = fo(t) + g% (t).

Theorem 2.3 ([12,13]). For any c € C, we have cf is diamond-« differentiable at t
and

(cf)7(8) = cf*(b).
Theorem 2.4 ([12,13]). fg is diamond-« differentiable at t and
(f9)?(t) = fO(t)g(t) + af(t)g™ (1) + (1 — @) f/()g" (¢)
= f(£)g% (1) + af2(£)g” () + (1 = a) f¥ (£)g" (D).

Definition 2.2 ([2]). Let a,t € T and f: T — R. A function F' : T — R is called
a A derivative of f provided that F2(t) = f(t) holds for t € T. We define the A
integral of f by

/atf(S)AS:F(t)—F(a), teT.

Let g : T — R. A function G : T — R is called a V derivative of g provided that
GV (t) = g(t) holds for t € T. We define the V integral of g by

/:g(s)Vs _G(t)—Gla), teT.

Definition 2.3 ([12,13]). Let « € [0,1], a,t € T and h : T — R. Define diamond-«
integral of h as follows
t

/at h(s)Qas = a/t h(s)As + (1 — a)/ h(s)Vs.

a a

Remark 2.1. Note that

([ 5610u8) " = ([ 161008) "+ 1 =) ([ 1(61005)

=« <a/atf(s)As+ (1—a) /:f(s)Vs>A

+(1-a) <@ /:f(s)As +(1—a) /atf(s)Vs)
=a’f(t) + a(l — ) f(o(t) + a(l —a)f(p(t)) + (1 — a)*f(t)
= (207 = 20 + 1) f(t) + (1 — a)(f(o(t)) + f(p(1))), teT.

Thus, in the general case we do not have

([ 161005) "= 1)

In [11], they proved the following criteria for ¢,-integrability of a function.

v
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Theorem 2.5 ([11]). (a) Every monotone function f : T — R on [a,b]y is o4-
integrable on [a, b]T.

(b) Every continuous function f: T — R on [a,b|r is oq-integrable on [a, b]t.

(c) Every regulated function f: T — R on [a,blr is o4-integrable on |a, b]t.

Below we suppose that f,g: T — R are diamond-« integrable over [a, b].

Theorem 2.6 ([12,13]). For any ¢ € C, the function cf is diamond-« integrable over
la,b]T and

b b
L) )0as = ¢ [ ()0us.
Theorem 2.7 ([12,13]). f + g is diamond-« integrable over [a,b]r and

[+ )00 = [ F5)0as+ [ 5100
Theorem 2.8 ([12,13]). We have

[ 16005 = [ 1600+ [ 5100
for any t € [a,b]r.

For a,b € T, a < b, denote
1 b
a = 10 t,
v b—a/a
1 b
a,a — t2<>at>
e, b—(l/zz
1 b 1 "
a,r,— — b—t;Oat,
tun- = (g [[0= 07 out)
1 b \ "
a,r+ — t— ;Oata
tuns = (5 [ (0= o)

ho(z,a) =1,

ha(z, a) = / her(r,a)AT, k €N,z € [a,blr.

We have
(x —a)"

hn(z,a) < —

, neNzé€labr.

Definition 2.4 ([2]). A function f : T — R is called rd-continuous provided it is
continuous at right-dense points in T and its left-sided limits exist (finite) at left-dense
points in T. The set of rd-continuous functions f : T — R will be denoted by €,4(T).

The set of functions f : [a, bl — R that are n-times rd-continuously A-differentiable
on [a,b] is denoted by C([a, b]T).

For some of our main results we will use Taylor’s formula.
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Theorem 2.9 ([2], Taylor’s formula). Let f € €"*([a,b]r). Then
n n(x) el
flx)=> hk(a:,a)fM(a) + /p b (z,0(T)) f2 i (T)AT, =z € [a,b]T.
k=0 a

We also need the following well-known inequality for proving our results.

Theorem 2.10 ([4], Holder’s inequality). Let a,b € T, a < b. For rd-continuous
functions f, g : [a,b]lr — R we have

[ vstonne = ([ i) ([ o)’

where p,q > 1 and%%—%:l.

3. MAIN RESULTS

In this section, we attempt to establish several new inequalities for strongly r-convex
functions on time scales by virtue of some notions and results and by introducing new
quantities.

A function f: I CR — R is said to be convex if the inequality

fOz+ (1= Ny) <Af(2) + (1= f(y)
holds, for all z,y € I and X € [0, 1]. Also, for the convex function f : [a,b] — R the
following inequality is known as Hermite-Hadamard inequality:

() o < o320

Definition 3.1. Let I C R be an interval and ¢ be a positive number. A function
f I — R is called strongly r-convex function with modulus ¢, if

FOz+ 1 =Ny) < Af(@) + 1= —ed(d =Nz —y)?
for any pair of x,y € I, ¢t € [0,1] and r # 0. If we take ¢ = 0, we have the definition
of r-convexity of the function f.

We can extend the above definition on any time scale T. From now on, we suppose
that [a, b]r is an interval in T. Note that, if f : [a, b]r — R is positive strongly r-convex
function with modulus ¢, we have

U e L () I R R

Now we are in a position to present our first result.

Theorem 3.1. Suppose that 0 < r < 1 and f : [a,blr — R is a positive strongly
r-convex function and o,-integrable on [a,bly. Then

o et <Gyt (o V(@) + ar (FO))

3=
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+c(ab—(a+b)xg+ Taa)-
Proof. By taking the diamond-« integral side by side in (3.1), we have

/abf(t> oats/ab (Z:SL(f(a))w z:Z(f(b))T>r ou t
_c/ab(b—t)(t—a)oat

1

: (/: ((@:fb)iﬂa))r " <(23)if<b>)r)i<>a t)r

—c/ab(b—t)(t—a)oat.

Now, by applying Minkowski’s inequality, we find

b (</ G:i)im ” t)r+ i (=2) sye. t>r>*
_c/ab(b—t)(t—a) on t
= (v (£ 55) ) w0 (1 G2) )
—C/ab(b_t)(t—a)oat

— o (vt ([o-0tout)

—c/ab(b—t)(t—a)oat

, 1
T

w0y ([e-atent) )

b—a 1 b
= gyt (o @) 0 (FOF)" = [ (b= ab = ar) 0
b—a ; 1
==t G- (@) +2ars(FO)))
— (b= a)e(—ab+ (a -+ B)a — Tug).
whereupon we obtain the desired inequality. This completes the proof. O

Before we establish the next result, we provide the following integral identity.

Lemma 3.1. Let f € C([a,b]r). Then

B2 [ Feds= S hba) > )+ [

k=1 a

o b (b, O'(T))fAn(T)AT.
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Proof. Let
g(x) :/a f(s)As, =z € [a,blr.

By Taylor’s formula, we have

0 = 3 el @+ [ halws o) (1),
k=0 a

for x € [a, b]r. Hence,
P (z)

[ s =S e @+ [T o) nar,

a

for x € [a,blr. By the last equality, for x = b, we find (3.2). This completes the
proof. O

Set

I(a,b,n, f /f AS—thbafAk 1()

tAt,
b—a/
o t2At,
Yo b—a/

= 1 bb— FA '
a,r,— — t)r At )
Yoor, (b—a/a( ) )

1 b A "
et = t—a)rAt] .
e = (52 [0 - 0 ar)

Theorem 3.2. Let f € C([a,b]T), 7 > 0, ¢ > 1 and ‘fAn’q is a strongly r-convex
function with modulus ¢ on |a,blr. Then

1
1 b—a) e _1f_ 1 1
p—ql(@bm ) S(J%(?ﬂfﬁ )y + 271" @)y

Ya =

+ei(b—a) i |yan — (a+b)ya + abyé>.

Proof. Since ‘ A" ‘q is a strongly r-convex function with modulus ¢ on [a, b|T, applying
(3.1), we have

(3.3)

AT q b — X An .1' —Qa AT
@l = (T @ e
Hence, by Lemma 3.1 and the inequality
(x+y)* <2 +yh), 2y k>0,

qr>r —cb—x)(x—a), x€]la,b]r.
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we get

Habn Dl =| [ halb o) (r)Ar

" (b) "
< /p |hn (b, 0 (7)) ‘fA (7')’ A7 (By Holder’s inequality)

<t-ap (ST ([l ar)
<6 (<b QW) (/b ((Z:Z o
e )qr>i—0(b—7)(7—a)>Ar>;
=0t () ([ (s bor
Z:T 72 (@) ) —e(br —ab— 7 + m)>AT>;
<o- S (ML o aper
i)

+c/b72AT —c(a+0) /bTAT—i-abc(b— a))
o

b= (2R
=(b—a) ] ( b—a) (b—a)ys, .+
o | FA" ()| ) .
+ (I)JC_Q();‘(b — a)y;,r,— + C(b - CL) (yma — (a + b)ya + ab))

(b—a) <2fq|f“<b>\ 5

1,1
S(b - a)p a nl (b _ a)r Yo,r,+

m"_‘
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L2
(b—a)w

whereupon we get the desired result. This completes the proof. U

1
Yo — +Cq|yaa — (a+b)ya+ab|;>,

The next result reads as follows.

Theorem 3.3. Letr >0, g > 1, f € C%([a,b]T), fm‘ > 1 on [a, bl and ‘fm !
strongly r-convex function with modulus ¢ on [a,blt. Then

5 @

1 (b—a)" "l NI
m![(a, b, n, f)‘ S nl <(b % (‘fA ) ya,r,—‘r + ‘fA (a)’ ya,r,)
+ ¢ (Yoo — (@ + b)Yy + ab) >

Proof. Because ‘ fAn‘q is a strongly r-convex function with modulus ¢ on [a, b]T, the
inequality (3.3) holds. Hence,

Habm P =| [ halh,0(r) £ ()7
g/apn(b)h N @lar< [ " b, o) |12 ()| Ar
g/ab ]fA" |'A7 < halbea) [ |2 ()" A7
<t ;!‘”" [ 17> @ ar
<0 ;ﬂa)”(/a (b_T\f“ b) ‘")’{AT

- c/ab(b ) — @m).

Now, using the inequality

(w+y)" <2"(F+¢"), 2y>0k>0,

we have
b-a) @[ rmf e
T(a,bn, )] < ( L /a(b—r) FAT 4 2F b_a)i/a(f )t AT
_C/b<—ab+(a+b)T—T2>AT>
_b-ar O gt ot PTOL
Y ( (b—a)% (b —a)ys,— +2 (b—a)% (b—a)ya,+
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+ (b —a)c (Yoo — (a + b)yq + ab) )

From here,
n n q
1 (b—)< A @) s A0 1
7](1,()77% S 1 ozr’r— 2r (;7“
et DS (2 2t
el (a0 Dy ) )
This completes the proof. O

Now we present another inequality for this class of functions by different approach.

Theorem 3.4. Let p,q > 1 such that % + % =1,r>0, f e C%([a,blr) and ‘fAn !
a strongly r-convez function with modulus ¢ on [a,bly. Then

1 1 b—a)\" (1 /2 (@) s
gt 15 (5 =) (557) + (G =) (2 (e

+ mly; , +> + (Yoo — (@ + b)ya + ab))

=

3 % 2 ; n 1 n
# ot O (2 (1 @+ 2 0O
+ C%|ya,a — (a+b)ya + ab|5>,

where ro = mln{; (11}

Proof. Since ’ A" ’ is strongly r-convex with modulus ¢ on [a, b|t, we have (3.3). Now,

using the refinement of Young inequality
2P a
my<7+y7_7ﬂ0(x2_yg) xayzov
p q

we have
p"(b)

|I(CL, b7n7f)| - h (b U( ))fAn(T>AT

</" " hatb,o(r) |72 ()| A7
/ (b, 7) ‘fA ‘ T
< [ (hatt,7)

p

—To/ab (((h )E — ‘fA"
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ool

n!

o) [ (bl o)
~eL o) [0 - @ar s [0 (a7
-efo-a5)

oo o

|(J;M(a;|q /ab(r—a)lm>

4 (; _ m) (b — a)(Yaa — (@ + )y + ab)

+2r (/ab(h (b, pAr) (/ A" (r |qm>1
-ofo-n(t5]

nl
R PR T PR
+ (; - m) (b = @) (Yoo — (0 + b)ye + ab)

np+1

et (LG

. T—a A\
@I+ e o)

- c/ab(b ) — a)m>2
(a5

n!

LN (@l S o) )
+ <q TO) 2 (b a)( (b—a)% ya,r,f + (b— CL)% ya,r,+
+ <611 — r0> c(b— a)(Ya,a — (@ + )y, + ab)

+2T0(b_a)

<n!>52< . (M o=



INEQUALITIES FOR STRONGLY r-CONVEX FUNCTIONS ON TIME SCALES

o [ - o)

a

1
2

+c(b— a)|Yae — (@ +D)ys + ab|>

r)eon(t5)

L e ny (L GOl S i Ol )
+ (q 0)2 (b ><(b—a)i Yor— T+ (b—a)%y rt

1=

L

o <(b Ei@i (UA"(G)‘Q(Z) — a)yir,,

P )b a>yi~,r,+)

1
P

+c(b = a)|[Yaa — (@ +b)ya + ab|>

)

L D ey 4 S CO 1N S Vi (O] )
+ (q o) (b )(2 ((b—a)vl- Yaur— T )t Ve

1=

R

+ (Yoo — (@ + b)Ya + ab))

(b—a%H 2% A qa(t _ %
e (e (1 @ - o

) a>y£,;,,~,+)

[NJ4S]

N

b b= @) s — (a4 D)ya+ ab|)

)

+ <; - m) (b—a) (21 (‘{:i(z))fyir, + |(J;Aj<2;|;y’“,r,+>

=

R

+ (Yoo — (@ + b)ya + ab))

945
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s (b—a)" ( 22
(

+ 227 >
0 (n')i b—a)zr

(W( )1 — )yt

P )b a>yi~,r,+) 2

+e2(b—a)2|yan — (a+b)ya+ab|é>.

This completes the proof. O

Remark 3.1. According to Theorem 3.4 we conclude that:
e If p > ¢, then we have

LRI q (o (12 () 2
(@, b, Pl <= (2 ((b—a)i Yar
‘(J; _(5|;y;r+> + (Yoo — (@ + b)Ya +ab)>
w2 O (2 (1 @i+ 1 O )

+ €7 |Yan — (@ + b)ya + abli)

e If p < ¢, then we obtain

1 g—p ((b—a)")"
mu(avbﬂ%f”g g < )

n!

M=

Loplb—a)®
(n!)z

42 Yoo — (@ + b)ya + ab|§>.

2 Dl
<<b—a> ('f (@) "yer- +1f <>|yar+)

o If p =g =2, then we have

(G (1 @ 17 i)

+ ¢ Yoo — (a4 b)ya + ab|;>-

Remark 3.2. If T = R, then the delta and nabla derivatives coincide with the classical
derivative. Hence, diamond-« integral from a to ¢t of f will be reduced to classical
integral.
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