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TOTALLY WEAKLY CHAIN SEPARATED SETS IN A
TOPOLOGICAL SPACE

E. DURMISHI1, Z. MISAJLESKI2, AND A. VELKOSKA3

Abstract. In this article, by using the notion of chain, we give some characteriza-
tions of totally separated spaces. Then, we give some examples, study the properties
of those spaces and give new proofs.

Furthermore, by using the notion of chain, we introduce the notions of totally
weakly chain separated and totally chain separated sets in a topological space, we
state some useful aspects of these sets as well as the various relationships between
them and by using these notions we give some characterizations of discrete and
totally separated spaces.

1. Introduction

Unlike the standard definition of connectedness, which is given by a negative sen-
tence, the characterization of connectedness by using the coverings is given by an
affirmative sentence (see [4]), and it is a useful tool for proving some particular prop-
erties of connected spaces. In [3, 5] connectedness is generalized to the notion of
chain connected set in a topological space and some properties are obtained. In [3]
a pair of chain separated sets, and in [7] a pair of weakly chain separated sets in a
topological space are introduced and, by using these notions, two characterizations
of connected space are obtained. In [1] the notion of isolated point in a T1 space is
characterized by using coverings. In [7] a totally separated space and the discrete
space are characterized by coverings.

So, by using the notion of chains in coverings we can successfully characterize some
topological notions and study their properties.
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In this paper we continue from the articles [1, 3, 5–7] to investigate the notions
related to connectedness and its generalizations by using the notion of chain. The
statements in this section, except the last two paragraphs, are from these articles.

The basic notions related to chain connectedness together with some important
results are introduced in the first chapter. In the second chapter we give a char-
acterization of totally separated spaces by using the notion of chain in a covering,
which later we use to study the properties of those spaces. The discrete space and
totally separated spaces are also characterized, in the fourth chapter, with the help
of the newly introduced notions of totally chain separated and totally weakly chain
separated sets in a topological space, respectively. The fifth chapter introduces the
space of chain components of a topological space and the space of chain component
of a set in a topological space.

In this paper by a covering we understand an open covering. By a covering U of
X, if it is not otherwise stated, we mean a covering U of X in X.

The following definition is given in [4].

Definition 1.1. Let U be a covering of the set X and x, y ∈ X. A chain in U that
connects x and y (from x to y or from y to x) is a finite sequence of sets U1, U2, . . . , Un

of U such that x ∈ U1, y ∈ Un and Ui ∩ Ui+1 ̸= ∅ for every i = 1, 2, . . . , n − 1.

Let X be a topological space and C ⊆ X.

Definition 1.2. The set C is chain connected in X, if for every covering U of X and
every x, y ∈ C, there exists a chain in U that connects x and y.

The following theorems are proved in [3, 5].

Theorem 1.1. Let C ⊆ Y ⊆ X. If C is chain connected in Y , then C is chain
connected in X.

Theorem 1.2. If C is chain connected in X and f : X → Y is a continuous function,
then f (C) is chain connected in f (X).

We denote by VCX (x,U) the set that consists of all elements y ∈ C such that there
exists a chain in U, that connects x and y. If C = X, we use the notation V (x,U)
instead of VCX (x,U).

Theorem 1.3. The set VCX (x,U) is nonempty, open, and closed in C.

Definition 1.3. Let x, y ∈ X. The element x is chain related to y in X, and we
denote it by x∼

X
y or x ∼ y, if for every covering U of X there exists a chain in U that

connects x and y.

If x is not chain related to y in X we use the notation x ̸∼
X

y or x ̸∼ y.
The chain relation in a topological space X is an equivalence relation, and it depends

on the set X and the topology τ of X. The chain component VCX (x) of the element
x of C in X is the largest chain connected set in C that contains x.
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When C = X we use the notation VX (x) or V (x) for VCX (x).
Let X be a topological space. The quasicomponent of x ∈ X, is the intersection

of all clopen (closed and open) neighborhoods of x. We denote that with QX(x) or
Q(x). Quasicomponents are closed sets.
Theorem 1.4. Let X be a topological space and C ⊆ X. Then, for every x ∈ C,

VCX (x) =
⋃

y∈VCX(x)
QC (y).

So, chain components of C in X are a union of quasicomponents of the set and if
the set agrees with the space, the chain components match with the quasicomponents,
i.e., for every x ∈ X,

VX (x) = QX (x) .

Theorem 1.5. The topological space X is connected if and only if X is chain connected
in X.

Theorem 1.6. Let X be a topological space and C ⊆ X. If the set C is chain
connected in X, then every subset of C is chain connected in X.

Definition 1.4. Let X be a topological space and A, B ⊆ X. The nonempty sets A
and B are weakly chain separated in X, if for every point x ∈ A and every y ∈ B,
there exists a covering U = U (x, y) of X such that there is no chain in U that connects
x and y.
Definition 1.5. Let X be a topological space and A, B ⊆ X. The nonempty sets A
and B are chain separated in X, if there exists a covering U of X such that for every
point x ∈ A and every y ∈ B, there is no chain in U that connects x and y.

The following definitions are given in many textbooks about connectedness, as
in [2].

A subset of a topological space is disconnected if it is not connected. The topo-
logical space X is totally disconnected if all subsets with more than one element are
disconnected. So, the only connected subsets of X are the singletons and the empty
set. Equivalently, the topological space X is totally disconnected if and only if the
connected components of X are the singletons.

The topological space X is totally separated if its quasicomponents are singletons.
Equivalently, the topological space X is totally separated if and only if for every pair
of distinct points x, y ∈ X there exists a separation X = U ∪ V (i.e., X is represented
as the union of a pair of disjoint open and closed sets U and V ) such that x ∈ U and
y ∈ V .

2. Criterion for Totally Separated Spaces by Using the Notion of
Chain

The next theorem gives a criterion for totally separated spaces by using the notion
of chain.
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It enables the study of these spaces by using the coverings of the space and chains
on them (Chapter 3). The relation of the theorem with other notions enables the
characterization of totally separated spaces through chain components, i.e., quasi-
components, chain relation, chain separated and weakly chain separated sets. Some
examples of topological spaces explained through the characterization given by this
theorem will be considered.

Theorem 2.1. The topological space X is totally separated if and only if for every
two distinct points x, y ∈ X there exists a covering U of X such that there is no chain
in U that connects x and y.

Proof. Let X be totally separated and x, y ∈ X. It follows that there exists a
separation X = U ∪ V such that x ∈ U and y ∈ V . Then for the covering U = {U, V }
there is no chain in U that connects x and y.

Conversely, for every two distinct points x, y ∈ X there exists a covering U of
X such that there is no chain in U that connects x and y. Let U = V (x,U) and
V = X\U . It follows firstly that x ∈ U , y ∈ V and U is an open and closed set in
X and secondly that V is open and closed set in X, i.e., X = U ∪ V is a separation.
Hence, X is a totally separated space. □

The following proposition is given in [7].

Proposition 2.1. The topological space X is totally separated if and only if every
two distinct singletons of X are weakly chain separated in X.

The next proposition follows directly from the definition of totally separated spaces
and Theorem 1.4.

Proposition 2.2. The topological space X is totally separated if and only if the only
chain components of X are singletons, i.e., for every x ∈ X, V (x) = {x}.

From Proposition 2.2 it follows that the topological space X is totally separated if
and only if the only chain connected sets are the singletons.

By CovX we mean the set of all coverings of the space X. Note that by a covering
in this paper we understand an open covering.

Since from the definition of chain components it follows that V (x) = ⋂
U∈Cov X V (x,U),

the next statement holds.

Proposition 2.3. X is a totally separated space if and only if for every x ∈ X,

{x} =
⋂

U∈Cov X

V (x,U).

Proposition 2.4. The topological space X is totally separated if and only if every two
distinct singletons of X are not in a chain relation, i.e., for every distinct x, y ∈ X,
x ̸∼ y.
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Proof. Let x ∈ X. If x ̸∼ y for every y ∈ X, y ̸= x, it follows that for every y ∈ X
there exists a covering Uy of X such that there is no chain in Uy that connects x
and y, i.e., y /∈ V (x,Uy). Then V (x) ⊆ ⋂

y∈X\{x} V (x,Uy) = {x}, i.e., V (x) = {x}.
From arbitrariness of x ∈ X, it follows that X is totally separated.

If the topological space X is totally separated then from Proposition 2.2 it follows
that for every x ∈ X, V (x) = {x}, i.e., for every x ∈ X and every y ∈ X, y ̸= x, it
follows that x ̸∼ y. □

Proposition 2.5. The topological space X is totally separated if and only if every
two distinct singleton sets of X are chain separated in X.

Proof. X is totally separated and x, y ∈ X, x ̸= y if and only if there exists a covering
U of X such that there is no chain in U that connects x and y, i.e., by Definition 1.5,
{x} and {y} are chain separated in X. From the arbitrariness of x, y ∈ X, x ≠ y, it
follows the accuracy of the statement of the theorem. □

Some examples of totally separated spaces explained using Theorem 2.1 follow.

Example 2.1. a) The discrete space X is totally separated space. Indeed, if x, y ∈ X,
x ̸= y, then for the covering U = {{x} | x ∈ X} there is no chain in U that connects
x and y.

b) The space of rational numbers Q with the standard topology is totally separated
space. Namely, if x, y ∈ Q then there exists an irrational number z such that x < z < y
and for the covering U = {(−∞, z) ∩ Q, (z, ∞) ∩ Q} of Q there is no chain in U that
connects x and y. From the arbitrariness of x and y it follows that Q is totally
separated space.

c) The Cantor set C is totally separated space. Indeed, let x, y ∈ C. Then there
exists z /∈ C such that x < z < y and U = {(−∞, z) ∩ C, (z, ∞) ∩ C} is a covering of
C such that there is no chain in U that connects x and y. From the arbitrariness of
x and y it follows that C is totally separated space.

d) Sorgenfrey line Rl is totally separated. Namely, let a, b ∈ R, a < b, and let
c ∈ (a, b). Then U = {(−∞, c), [c, ∞)} is a covering of Rl such that there is no chain
in U that connects a and b. It follows that Rl is totally separated space.

3. Properties of Totally Separated Spaces

In this section we obtain some new proofs for some properties of totally separated
spaces by using the criteria from Theorem 2.1 and Propositions 2.1–5.

Theorem 3.1. If X is a totally separated space, then X is totally disconnected.

Proof. Let X be a totally separated space, i.e., for every x ∈ X, V (x) = {x} , where
V (x) is a chain component of X that contains x. Since C(x) ⊆ V (x), where C (x)
is a connected component of X that contains x, then C (x) = {x} holds for every
x ∈ X, i.e., X is a totally disconnected space. □
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All spaces in Example 2.1 are totally disconnected. The next example (see [8])
shows the existence of a totally disconnected space which is not totally separated.

Example 3.1. Let C be the Cantor set in the unit interval at x-axis and M
(

1
2 , 1

2

)
be

a point in the plane. Let L(N) be the segments with endpoints in M and N ∈ C,
E ⊆ C be the set of endpoints of the removed intervals obtained by the construction
of the Cantor set and F = C\E. Define:

XE = ∪{L(N) | N ∈ E}, XF = ∪{L(N) | N ∈ F},

YE = {(x, y) ∈ XE | y ∈ Q} and YF = {(x, y) ∈ XF | y ̸= Q}.

The Knaster-Kuratowski fan (Figure 1) is the set Y = YE ∪ YF .

Figure 1. The Knaster-Kuratowski fan

The Knaster-Kuratowski fan with the removed point, Y ∗ = Y \{M}, is a totally
disconnected space (see [8]). However, Y ∗ is not totally separated, since for every
N ∈ C, L(N) ∩ Y ∗ is contained in one quasicomponent, i.e., the chain component
V (N) (see Example 129, page 145–147 in [8]).

Theorem 3.2. Let {Xi}i∈I be a family of disjoint totally separated spaces. Then, the
disjoint union (sum) X = ∐

i∈I Xi is a totally separated space if and only if Xi are
totally separated spaces for every i ∈ I.

Proof. Let Xi be sets such that for all i, j ∈ I, i ̸= j, Xi ∩ Xj = ∅. We assume that X
is a totally separated space. Then, by Theorem 2.1, Xi are totally separated spaces
for all i ∈ I.

Conversely, let Xi, i ∈ I, be totally separated spaces. Let A be an arbitrary chain
connected subset in X. We assume that there exist i, j ∈ I, i ̸= j, such that A∩Xi ̸= ∅
and A ∩ Xj ̸= ∅. In this case there is no chain from x ∈ A ∩ Xi to y ∈ A ∩ Xj in
the covering U = {Xi | i ∈ I}, which is opposite of the assumption that A is a chain
connected set in X. Therefore, there exist only one index i ∈ I such that A ⊆ Xi,
and since Xi is a totally separated space, A is a singleton. From the arbitrariness of
A, it follows that X is totally separated. □
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We notice that the sufficient condition in the previous theorem is valid also if
{Xi}i∈I is not a family of disjoint spaces. Moreover, Theorem 3.2 is true if only we
consider the sum of topological spaces. Specifically, this theorem is not valid for
X = ⋃

x∈[0,1]{x}, where [0, 1] is considered with the standard topology.

Theorem 3.3. Let f : X → Y be an injective continuous function. If Y is a totally
separated space, then X is totally separated.

Proof. Let f : X → Y be an injective continuous function and Y be a totally separated
space. Let C be a chain connected set in X. Then f (C) is chain connected in Y , and
since Y is totally separated, f (C) is singleton. Since f is an injection, the set C is
a singleton. Hence, all chain connected sets in X are singletons, i.e., X is a totally
separated space. □

The following example shows why injectivity of the function is a necessary condition
on the previous theorem.

Example 3.2. Let X = [0, 1] ∪ {2}, Y = {1, 2} and f : X → Y defined by

f(x) =

1, if x ∈ [0, 1],
2, if x = 2.

Then f is a continuous non-injective function, Y is a totally separated space, but X
is not.

Theorem 3.4. Let f : X → Y be a homeomorphism. Then X is totally separated
space if and only if Y is totally separated.

Proof. Let X be a totally separated space. Then the chain components of X are
singletons.

Let C be a chain connected set in Y . Then f−1 (C) is a chain connected set in X,
and therefore, f−1 (C) is a singleton. Since f is bijection, it follows that the set C is
a singleton. From the arbitrariness of C it follows that all chain connected sets in Y
are singletons, i.e., Y is a totally separated space.

The converse statement can be proved analogously, if we work with f instead of
f−1. □

However, if X and Y are homotopic equivalent, it doesn’t imply that both spaces
are totally separated. This statement is proved by the following example.

Example 3.3. Let X = {1, 2} and Y = [0, 1] ∪ [2, 3]. Then, X and Y are homotopic
equivalent and X is totally separated but Y is not.

Theorem 3.5. Let τ1 and τ2 be two topologies on X such that τ1 ⊂ τ2. Then, if
(X, τ1) is a totally separated space, so is (X, τ2).

Proof. Assume that (X, τ2) is not a totally separated space, i.e., there exist x, y ∈ X
such that for all coverings of (X, τ2) there exists a chain from x to y. Since τ1 ⊂ τ2,
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all coverings of (X, τ1) are also coverings of (X, τ2). Therefore, for any covering of
(X, τ1) there exists a chain from x to y, i.e., (X, τ1) is not totally separated space. □

In order to point out that the converse statement of the above theorem is not valid
we consider the real line R with the standard topology and the Sorgenfrey line Rl.
Namely, R ⊂ Rl, Rl is a totally separated space but R is not totally separated via
Theorem 3.1, since R is connected.

4. Totally Chain Separated and Totally Weakly Chain Separated
Sets in a Topological Space

Now, we will define the notion of a totally weakly chain separated set in a topological
space.

Let X be a topological space and C ⊆ X.
Definition 4.1. The set C is totally weakly chain separated in X if for every two
distinct points x, y ∈ C there exists a covering U = U(x, y) of X such that there is no
chain in U that connects x and y.

The next statement follows from Definition 4.1 and Theorem 2.1.
Corollary 4.1. The topological space X is totally separated if and only if X is totally
weakly chain separated in X.
Proposition 4.1. The set C is totally weakly chain separated in X if and only if
every two distinct singletons in C are weakly chain separated in X, i.e., if and only if
every two distinct singletons in C are chain separated in X.
Proof. The set C is totally weakly chain separated in X, i.e., for every two distinct
points x, y ∈ C there exists a covering U of X such that there is no chain in U that
connects x and y if and only if from Definition 1.5 every two distinct singletons in C
are chain separated in X. Clearly, two singletons are weakly chain separated in X if
and only if they are chain separated in X. □

Proposition 4.2. The set C is totally weakly chain separated in X if and only
if the only chain components of C in X are the singletons, i.e., for every x ∈ C,
VCX (x) = {x}.
Proof. Let x ∈ C. The element y ∈ VCX(x), y ̸= x; if and only if for every covering U

of X there exists a chain in U that connects x and y, i.e., C is not a totally weakly
chain separated in X. □

Theorem 4.1. Every subset of a totally weakly chain separated set in X is a totally
weakly chain separated set in X.
Proof. Let C be a totally weakly chain separated set in X and D ⊆ C. It follows that
for every x, y ∈ C and, as a consequence, for every x, y ∈ D there exists a covering U

of X such that there is no chain in U that connects x and y, i.e., D is a totally weakly
chain separated set in X. □
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Theorem 4.2. Let C ⊆ Y ⊆ X. If C is a totally weakly chain separated set in X,
then C is a totally weakly chain separated in Y .

Proof. Let C be a totally weakly chain separated set in X and let x, y ∈ C. It follows
that there exists a covering U of X such that there is no chain in U that connects x
and y. Then for the covering UY = U ∩ Y = {U ∩ Y | U ∈ U} there is no chain in Y
that connects x and y, i.e., C is totally weakly chain separated in Y . □

Corollary 4.2. If C is totally weakly chain separated set in X, then C is totally
separated.

Proof. If C is totally weakly chain separated set in X, then C is totally weakly chain
separated set in C by Theorem 4.2 and so, by Corollary 4.1, C is totally separated. □

The next example shows that the converse statement of Corollary 4.2 is not true
in general.

Example 4.1. Let X = [0, 1] and C = {0, 1} . Then C is totally separated since C is
the discrete, i.e., VC (0) = {0} and VC (1) = {1}, but it is not totally weakly chain
separated in X since X is connected, i.e., from Theorem 1.5, X is chain connected in
X, and from Theorem 1.6, C is chain connected in X, i.e., for every covering U of X
there exists a chain in U that connects 0 and 1. The conclusion can be done directly,
for arbitrary covering U of X, since X is compact, there exists a finite subcovering
from which we can chose a chain that connects 0 and 1.

Corollary 4.3. The set C is totally weakly chain separated in X if for every distinct
x, y ∈ C, x ̸∼ y.

Proof. Obvious from Corollary 4.1 and Proposition 2.2. □

We want to consider the set that is defined similarly as the totally weakly chain
separated set where the separation is reinforced by the rotation of the quantifiers.

Definition 4.2. The set C is totally chain separated in X if there exists a covering
U of X such that for every two distinct points x, y ∈ C there is no chain in U that
connects x and y.

The difference between Definition 4.1 and Definition 4.2 is that quantifiers are
rotated. A totally chain separated set is separated by one covering, i.e., the separation
is strong. If C is a totally chain separated set, then there exists a covering U such that
the set U ∩ C consists of singletons. A totally weakly chain separated set in general
case does not have to be separated by one covering, i.e., the separation is weak.

Clearly, if the set C is totally chain separated in X, then C is totally weakly chain
separated in X. The next example shows that the converse case does not hold in
general.
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Example 4.2. The sets Cn0 = {0} ∪
{

1
n

| n ≥ n0
}
, n0 ∈ N, are totally weakly chain

separated in X = {0} ∪
{

1
n

| n ∈ N
}
. Namely for arbitrary elements x = 0 or x = 1

n2
,

and y = 1
n1

, n2 > n1 ≥ n0, for the covering

U =
{

{0} ∪
{ 1

n
| n > n2

}
,
{ 1

n2

}
,
{ 1

n2 − 1

}
, . . . ,

{ 1
n0

}
,
{ 1

n0 − 1

}
, . . . , {1}

}
there is no chain in U that connects x and y. But the sets Cn0 , n0 ∈ N, are not totally
chain separated in X. Namely, if U is a covering of X, then the element U ∈ U that
contains 0, contains also an element z = 1

n3
, n3 ∈ N, and U is a chain in U that

connects 0 and z.

Theorem 4.3. Let C ⊆ Y ⊆ X. If C is a totally chain separated set in X, then C
is totally chain separated in Y .

Proof. Let C be a totally chain separated set in X, i.e., there exists a covering U of
X such that for every distinct x, y ∈ C there is no chain in U that connects x and
y. It follows that UY = U ∩ Y is a covering of Y such that there is no chain in UY

that connects x and y for every distinct x, y ∈ C, i.e., C is totally chain separated
in Y . □

Theorem 4.4. The set C is totally chain separated in C if and only if C is the
discrete space.

Proof. Let C be totally chain separated in C, i.e., there exists a covering U of C such
that for every distinct x, y ∈ C there is no chain in U that connects x and y. It
follows that for every x ∈ C the chain component V (x) = V (x,U) = {x} is an open
singleton, i.e., C is the discrete space.

Conversely, let C be the discrete space, i.e., every singleton in C is open. Then
for the covering U = {{x} | x ∈ C} there is no chain in U that connects x and y, for
every distinct x, y ∈ C, i.e., C is totally chain separated in C. □

If the set C is totally chain separated in X, then C is the discrete space. Example
4.1 shows that even if C is a discrete space, it may not be a totally chain separated
in X.

The discrete space is characterized by chain in [1,7]. Here we give a new character-
ization. According to genesis of the notion, by using this criterion, the discrete space
also can be called totally chain separated space.

5. The Space of Chain Components of a Set in a Topological Space

Let X be a topological space and C ⊆ X.
The space of quasicomponents QX of a topological space X consists of the all

quasicomponents of X equipped with the topology generated by the base composed
from the sets QF = {A | A ∈ QX, A ⊆ F} where F is clopen in X.

The next statement is given below Theorem 2.2 in [3].
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Proposition 5.1. The nonempty set A is clopen in X if and only if there exists a
point x ∈ X and a covering U of X such that A = V (x,U).

Proof. Let A be a clopen set and x ∈ A. Then, X\A is also a clopen set and for the
covering U = {A, X\A} it follows that A = V (x,U).

If for the set A holds A = V (x,U) for some covering U of X and x ∈ X, since, by
Theorem 1.3, V (x,U) is nonempty and clopen in X, it follows that A is clopen in X.

□

Let V X be the set of all chain components of the space X. Clearly QX = V X.

Definition 5.1. A space of chain components of X is the set V X with the topology
generated by the base composed from the sets:

{A | A ∈ V X, A ⊆ V (x,U)} , x ∈ X,U ∈ Cov X.

Since, from Proposition 5.1 it follows that for every nonempty clopen set A in X
there exists a covering U of X and a point x ∈ X, such that A = V (x,U), the space
of chain components of a topological space X is well defined and matches with the
space of quasicomponents. So, Definition 5.1 is one more interpretation of the space
of quasicomponents.

If the space X is a totally separated space, then the elements of the corresponding
space of chain components, V X, are singletons {x}, x ∈ X.

In the next definition we generalise the notion of a space of chain components to a
space of chain components of a set in a space.

Let V CX be the set of all chain components of the set C in X.

Definition 5.2. A space of chain components of a set C in a topological space X is
the set V CX with the topology generated by the base composed from the sets:

{A | A ∈ V CX, A ⊆ VCX (x,U)} , x ∈ X,U ∈ Cov X.

Since a chain component of a set in a topological space in general is a union of
quasicomponents [3], the space of chain components of a set in a topological space in
general differs from a space of chain components.
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