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ON SPECTRAL RADIUS ALGEBRAS AND CONDITIONAL TYPE
OPERATORS

MOHAMMAD REZA JABBARZADEH AND BAHMAN MINAYI

Abstract. In this note, we study both the spectral radius and Deddens algebras
associated to the normal weighted conditional type operators on L2(Σ). Also, in
this setting, some other special properties of these algebras will be investigated.

1. Introduction and Preliminaries

Let (X, Σ, µ) be a complete σ-finite measure space. All comparisons between two
functions or two sets are to be interpreted as holding up to a µ-null set. If B ⊂ X,
let AB = A ∩ B denote the relative completion of the sigma-algebra generated by
{A ∩ B : A ∈ A}. We denote the linear spaces of all complex-valued Σ-measurable
functions on X by L0(Σ). The support of f ∈ L0(Σ) is defined by σ(f) = {x ∈
X : f(x) ̸= 0}. Let A be a sub-σ-finite algebra of Σ and let f be a non-negative
Σ-measurable function on X. By the Radon-Nikodym theorem, there exists a unique
A-measurable function EA(f) such that

∫
A fdµ =

∫
A EA(f)dµ, where A is any A-

measurable set for which
∫

A fdµ exists. Note that E(f) depends both on µ and
A. A real-valued measurable function f = f+ − f− is said to be conditionable if
µ({x ∈ X : E(f+)(x) = E(f−)(x) = +∞}) = 0. If f is complex-valued, then
f ∈ D(E) = {f ∈ L0(Σ) : f is conditionable} if the real and imaginary parts of f are
conditionable and their respective expectations are not both infinite on the same set
of positive measure. For 1 ≤ p ≤ +∞, one can show that every Lp(Σ) function is
conditionable. We use the notation Lp(A) for Lp(X,A, µ|A) and henceforth we write
µ in place µ|A .
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The mapping EA : Lp(Σ) → Lp(A) defined by f 7→ EA(f), is called the conditional
expectation operator with respect to A. In the case of p = 2, it is the orthogonal
projection of L2(Σ) onto L2(A). For further discussion of the conditional expectation
operator see [13].

From now on we assume that u and w are conditionable. Operators of the form
MwEMu(f) = wE(uf) acting in L2(Σ) with D(MwEMu) = {f ∈ L2(Σ) : wE(uf) ∈
L2(Σ)} are called weighted conditional type (or weighted Lambert type) operators.
Several aspects of this operator were studied in [4, 6–8]. Put K = E(|u|2)E(|w|2).
Estaremi in [3] proved that MwEMu : D(T ) → L2(Σ) is densely defined if and only
if K − 1 is finite valued (a.e.). Moreover, T := MwEMu is bounded if and only if
D(T ) = L2(Σ). In this case T ∗ = MūEMw̄ and ∥T∥2 = ∥K∥∞. For a bounded linear
operator T , spec(T ) denote its spectrum. We say that λ ∈ C belongs to the essential
range of a measurable function f if for each neighborhood G of λ, µ(f−1(G)) > 0.
Positive, self-adjoint and normal bounded weighted conditional type operators and
their spectrum have recently been characterized in [7] as follows.

Lemma 1.1 ([7]). Let T = MwEMu ∈ B(L2(Σ)). Then the followings hold.
(a) T is positive if and only if T = MgūEMu for some 0 ≤ g ∈ L0(A).
(b) T is self-adjoint if and only if T = MgūEMu for some ḡ = g ∈ L0(A).
(c) T is normal if and only if T = MgūEMu for some g ∈ L0(A).
(d) spec(T ) \ {0} = ess range(E(uw)) \ {0}.

Let H be a Hilbert space with inner product ⟨·, ·⟩ and let B(H) denote the algebra
of all bounded linear operators on H. We use A∗, r(A), R(A) and N(A), respectively,
to denote the adjoint, the spectral radius, the range and the null space of A ∈ B(H).
A is normal if A∗A = AA∗ and A is positive if ⟨Ax, x⟩ ≥ 0 holds for each x ∈ H in
which case we write A ≥ 0. Let H = H1 ⊕ H2, A ∈ B(H) and let Pj : H → H

be an orthogonal projection onto Hj for j = 1, 2. Then A =
(

A11 A12
A21 A22

)
, where

Aij : Hj → Hi is the operator given by Aij = PiAPj |Hj
. In particular, A(H1) ⊆ H1 if

and only if A21 = 0. Also, H1 reduces A if and only if A12 = 0 = A21. Let A ∈ B(H)
with r(A) ̸= 0 and let 0 < a < r(A)−1 be an arbitrary but fixed number. Define
Ka(A) = ∑+∞

n=0 a2nA∗nAn. Since for all n ∈ N, ∥a2nA∗nAn∥ = a2n∥An∥2, then we have
limn→+∞∥a2nA∗nAn∥ 1

n = a2
(
limn→+∞∥An∥ 1

n

)2
= a2r(A)2 < 1. This implies that

the series ∑+∞
n=0 a2nA∗nAn is convergent in the norm topology of B(H), and hence

Ka(A) ∈ B(H). Thus, the map fA of (0, r(A)−1) to B(H) defined by fA(a) = Ka(A)
is well-define, increasing and continuous. Also, for any x ∈ H we have that

∥x∥2 ≤
+∞∑
n=0

a2n∥An(x)∥2 = ⟨Ka(A)x, x⟩ =
∥∥∥∥√Ka(A)x

∥∥∥∥2
≤ ∥Ka(A)∥ · ∥x∥2.(1.1)

So, Ka(A) ≥ I and hence Ka(A) is positive and invertible with ∥Ka(A)∥ ≥ 1. Set
Ra(A) = K−1

a (A) and Sa(A) =
√

Ra(A). Replacing x by (Ka(A))−1
2 (x) in (1.1) we
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obtain that ∥Sa(A)∥ ≤ 1 and ∥Ra(A)∥ = ∥S2
a(A)∥ ≤ 1. Consequently, Ra(A) and

Sa(A) are positive and invertible elements of B(H) and

(1.2) ∥Ka(A)∥ = sup
∥x∥=1

⟨Ka(A)x, x⟩ =
+∞∑
n=0

a2n∥An∥2 ≤
+∞∑
n=0

(
∥aA∥2

)n
= 1

1 − ∥aA∥2 ·

Let {Am} ⊆ {T ∈ B(H) : r(T ) ≤ r(A)}. If ∥Am − A∥ → 0, then for each n ∈ N
and 0 < a < r(A)−1, a2nA∗n

m An
m → a2nA∗nAn, and so ∥Ka(Am) − Ka(A)∥ → 0 as

m → +∞. But the converse is not true. Indeed, if A1 and A2 are distinct unitary
operators on H, then Ka(A1) = Ka(A2) = (1 − a2)−1I for all 0 < a < 1. In [9]
A. Lambert and S. Petrović define the spectral radius algebra of a bounded linear
operator A with Sa = Sa(A) and 0 < a < r(A)−1 to be the unital subalgebra

BA = {T ∈ B(H) : sup
a

∥S−1
a TSa∥ < +∞}.

Lastly, define
QA = {T ∈ B(H) : lim

a→r(A)−1
∥S−1

a TSa∥ = 0}.

In [9] it is shown that, ∥Ka(A)∥ → +∞ as a → ∥A∥−1 and for any A, QA ⊆ BA is a
two-sided ideal consisting entirely of quasinilpotent operators. Furthermore, if A is
quasinilpotent, then A ∈ QA.

We now consider the Deddens algebra DA associated with A ∈ B(H), that is, the
family of those operators T ∈ B(H) for which there is a constant M > 0 such that
for every n ∈ N and for every x ∈ H, ∥AnTx∥ ≤ M∥Anx∥. DA is indeed a unital
subalgebra of B(H) with the property that {A}′ ⊆ DA ⊆ BA, where {A}′ is the
commutant of A (see [11]).

Let A ∈ B(H) be normal and 0 < a < ∥A∥−1. Then An and A∗n commute with
Ka(A), Ra(A), Sa(A) and Ka(A∗) = Ka(A) = Ka(|A|), where |A|2 = A∗A. Moreover,

Ka(A) =
+∞∑
n=0

a2n(A∗A)n = (I − a2A∗A)−1,(1.3)

Ra(A) = I − a2A∗A,

Sa(A) =
√

I − a2A∗A,

PA : = lim
a→∥A∥−1

Sa(A) =
√

I − ∥A∥−2A∗A.

For more details on the Deddens and spectral radius algebras see [1,5,11,12]. In the
next section, we investigate the spectral radius and the Deddens algebras related to
the bounded weighted conditional type operators on L2(Σ). All of these are basically
discussed using the conditional expectation properties.

2. BT and DT Associated with T = MwEMu

From now on we assume that E(|u|2) ∈ L∞(A), i.e., T1 := MūEMu ∈ B(L2(Σ)).
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Lemma 2.1. For 0 ≤ b ∈ L0(A), let MbT1 ∈ B(L2(Σ)). Then the followings hold.
(a) If 1 /∈ spec(MbT1), then (I − MbT1)−1 = I + M b

1−bE(|u|2)
T1.

(b) If −1 /∈ spec(MbT1), then (I + MbT1)−1 = I − M b
1+bE(|u|2)

T1.

Proof. We only proof (a), since (b) follows similarly.
Let 1 ∈ spec(MbT1). Using Lemma 1.1 (d), 1 /∈ ess range E(b|u|2) and so (1 −

bE(|u|2))−1 ∈ L∞(A). Put S = I + Mb(1−bE(|u|2))−1T1. Then ∥S∥ ≤ 1 + ∥(1 −
bE(|u|2))−1∥∞∥MbT1∥ < +∞. Also, direct computations show that S(I − MbT1) =
(I − MbT1)S = I. Now, the desired conclusion holds. □

Set N = {MwEMu ∈ B(L2(Σ)) : MwEMu is normal}. By Lemma 1.1 (c) we have
N = {MgT1 ∈ B(L2(Σ)) : g ∈ L0(A), T1 = MūEMu, u ∈ L0(Σ)}.
Corollary 2.1. Let T = MwEMu ∈ N and let 0 < a < r(T )−1. Then Ka(T ) = I +
MvT1 and Ra(T ) = I − MkT1 for some k, v ∈ L0(A) and ∥Ka(T )∥ = 1 + ∥vE(|u|2)∥∞.

Proof. By Lemma 1.1 (c), T = MgT1 for some g ∈ L0(A). Since T ∗T = M|g|2E(|u|2)T1,
then by (1.3) we get that Ka(T ) = (I − MkT1)−1, where k = a2|g|2E(|u|2). Thus,
Ra(T ) = (Ka(T ))−1 = I − MkT1. Also, since 1/a2 > (r(T ))2 = r(T ∗T ), then
1/a2 /∈ spec(T ∗T ) = ess range |g|2(E(|u|2))2. Therefore,

1
1 − kE(|u|2) = 1

a2{ 1
a2 − |g|2(E(|u|2))2}

∈ L∞(A)

and 1 /∈ spec(MkT1). Now, by Lemma 2.1, Ka(T ) = I + MvT1, where v = k
1−kE(|u|2) .

Moreover, since MvT1 is positive, then ∥Ka(T )∥ = 1 + ∥MvT1∥ = 1 + ∥vE(|u|2)∥∞.
This completes the proof. □

Corollary 2.2. Under the assumption of above corollary, Sa(T ) = I − MsT1 and
S−1

a (T ) = I + M s
1−sE(|u|2)

T1 for some s ∈ L0(A).

Proof. Set s = 1−
√

1−kE(|u|2)
E(|u|2) χσ(E(|u|2)). Then, for f ∈ L2(Σ) we have

(I − MsūEMu)2(f) = (I − MsūEMu)(f − sūE(uf))
= f − sūE(uf) − sūE(uf − s|u|2E(uf))
= f − ū(−2s + E(|u|2)s2)E(uf)
= f − ūkE(uf)
= (I − MkūEMu)(f).

It follows that Sa(T ) = (Ra(T ))1/2 = (I + MkT1)1/2 = I − MsT1. Now, the inverse of
Sa(T ) follows from Lemma 2.1 (a). □

For T ∈ N and v ∈ L0(A), it is easy to check that MvT1 commutes with Sa(T ). It
follows that {MvT1 ∈ B(L2(Σ)) : v ∈ L0(A)} ⊆ BT .

Lemma 2.2. Let T = MwEMu ∈ B(L2(Σ)). Then N(T ) =
{
ū
√

E(|w|2)L2(A)
}⊥

.
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Proof. Let f ∈ L2(Σ). Since R(E) = L2(A), then we have

f ∈ N(T ) ⇔ ∥Tf∥2 = 0 ⇔
∫

X
E(|w|2)|E(uf)|2dµ = 0

⇔
∫

X

∣∣∣∣E(u
√

E(|w|2)f)
∣∣∣∣2 dµ = 0

⇔ u
√

E(|w|2)f ∈ N(E) = L2(A)⊥

⇔
〈

u
√

E(|w|2)f, g
〉

= 0, for all g ∈ L2(A)

⇔
〈

f, ū
√

E(|w|2)g
〉

= 0, for all g ∈ L2(A)

⇔ f ∈
{

ū
√

E(|w|2)L2(A)
}⊥

. □

Corollary 2.3. R(MūEMu) = ū
√

E(|u|2)L2(A) = c.l.s.
{
ū
√

E(|u|2)χA : A ∈ Aσ(u)
}
,

where c.l.s. stands for closed linear span. In particular, R(EMu) = ūL2(A).

Let P be an orthogonal projection of L2(Σ) onto M = R(P ) and let Q = I − P .
Direct computations show that

(I − αP )−1 = I + α

1 − α
P, α ̸= 1,(2.1)

(I − αP ) 1
2 = I − (1 −

√
1 − α)P, α ≤ 1.(2.2)

Let 0 < a < 1. Then Ka(P ) = ∑+∞
n=0 a2nP ∗nP n = I + a2

1−a2 P . Using (2.1) and (2.2)
we obtain that

Ra(P ) = (Ka(P ))−1 = I − a2P,

Sa(P ) = (Ra(P )) 1
2 = I − (1 −

√
1 − a2)P,

S−1
a (P ) = I + 1 −

√
1 − a2

√
1 − a2

P.

Note that if we take P = MūE(|u|2)−1EMu, then P 2 = P = P ∗, with R(P ) =

ūE(|u|2)−1/2L2(A). Now, let S =
(

X Y
Z W

)
be the block matrix representation

of S ∈ B(L2(Σ)) with respect the decomposition L2(Σ) = M ⊕ M⊥. Since

Sa(P ) =
(

I 0
0 I

)
−
(

M1−
√

1−a2 0
0 0

)
=
(

M√
1−a2 0
0 I

)
,

then we have

Pa(S) := (S−1
a (P ))S(Sa(P )) =

 M 1√
1−a2

0
0 I

( X Y
Z W

)(
M√

1−a2 0
0 I

)
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=
 X Y M 1√

1−a2

ZM√
1−a2 W

 .

It follows that sup{∥Pa(S)∥ : 0 < a < 1} < +∞ if and only if Y = 0. For some
0 < a < 1, Pa(S) = S if and only if Y = Z = 0. Also, lima→1 ∥Pa(S)∥ = 0 if and only
if X = Y = W = 0. Moreover, we have

Pa(SP )=
 M 1√

1−a2
0

0 I

( X Y
Z W

)(
I 0
0 0

)(
M√

1−a2 0
0 I

)
=
(

X 0
ZM√

1−a2 0

)
.

Thus, SP ∈ BP for all S ∈ B(L2(Σ)). Also if X = 0, then SP ∈ QP . Similar
computations show that

Pa(QS) =
(

0 0
ZM√

1−a2 W

)
, Pa(QSP ) =

(
0 0

ZM√
1−a2 0

)
.

Let {Sn} ⊆ BP and let Sn :=
(

Xn 0
Zn Wn

)
→ S as n → +∞. Then

∥Y ∥ ≤ ∥Sn − S∥ =
∥∥∥∥∥
(

Xn − X Y
Zn − Z Wn − W

)∥∥∥∥∥ → 0.

It follows that Y = 0 and hence BP is closed in the norm operator topology on
B(L2(Σ)). Moreover, by definition, S ∈ DP if and only if there exists M > 0 such
that

∥PSf∥ =
∥∥∥∥∥
(

I 0
0 0

)(
X Y
Z W

)(
Pf
Qf

)∥∥∥∥∥
=
∥∥∥∥∥
(

XPf + Y Qf
0

)∥∥∥∥∥ ≤ M

∥∥∥∥∥
(

Pf
0

)∥∥∥∥∥ ,

for all f ∈ L2(Σ). Replacing f by Qf in the above and taking M = M(S) = ∥X∥, we
obtain that S ∈ DP if and only if Y = 0 on N(P ). As an easy consequence of these
observations, we have the following result.

Proposition 2.1. Let P be an orthogonal projection of L2(Σ) onto M = R(P ),
0 < a < 1 and let Q = I − P . Set

Q1 = {SP : S ∈ B(L2(Σ)), PSP = 0},

Q2 = {QS : S ∈ B(L2(Σ)), QSQ = 0},

Q3 = {QSP : S ∈ B(L2(Σ))}.

Then
BP = {S ∈ B(L2(Σ)) : S(N(P )) ⊆ N(P )} = DP ,

QP = {S ∈ B(L2(Σ)) : QSP = T} ⊇ Q1 ∪ Q2 ∪ Q3.

Moreover, Pa(S) = S if and only if M reduces S.
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Set P = EA = E, 0 < a < 1 and Pa = Ea. Let S = MwEMu ∈ B(L2(Σ)). Using
Proposition 2.1 and [7, Proposition 2.30] with respect the decomposition L2(Σ) =
L2(A) ⊕ N(E), we have

ESE = 0 ⇔ ME(u)E(w)|L2(A) = 0,

ESQ = 0 ⇔ uχσ(E(w)) ∈ L0(A),
QSE = 0 ⇔ wχσ(E(u)) ∈ L0(A),

QSQ = 0 ⇔ L2(A)⊥ = R(Q) ⊆ N(S) =
{

ū
√

E(|w|2)L2(A)
}⊥

.

So we have the following corollary.

Corollary 2.4. Let S = MwEMu ∈ B(L2(Σ)) and 0 < a < 1. Then,
(a) S ∈ BE if and only if uχσ(E(w)) ∈ L0(A);
(b) S ∈ QE if and only if S ∈ BE, ME(uE(w))|L2(A) = 0 and R(S) ⊆ L2(A);
(c) Ea(S) = S if and only if {uχσ(E(w)), wχσ(E(u))} ⊆ L0(A).

Let M(A) = {Mϑ : ϑ ∈ L∞(A)} and let M′(A) be its commutant. It is known
that M(Σ) is a maximal abelian subalgebra of B(L2(Σ)). But it is invalid if Σ is
replaced by A ̸= Σ. Indeed, for any A ⊂ B, EB ∈ M′(A) \ M(A). Alan Lambert
in [10, Theorem 3.2] proved that S ∈ M′(A) if and only if there exists C > 0 such
that E(|Sf |2) ≤ CE(|f |2) for all f ∈ L2(Σ). Consequently, if S ∈ B(L2(Σ)) and
{ϑn, ϑ−1

n } ⊆ L∞(A), then supn ∥Mϑ−1
n

SMϑn∥ < +∞ whenever S ∈ M′(A).
For a fixed T = MgT1 ∈ N and 0 < a < ∥T∥−1, put A := S−1

a (T ). Then by
Corollary 2.2, A = I + MθT1 for some 0 ≤ θ ∈ L0(A). Since A is bounded, then so
is MθT1. Thus, θE(|u|2) ∈ L∞(A) and hence θE(|u|2)g ∈ L2(A) for all f ∈ L2(A).
Relative to the direct sum decomposition L2(Σ) = R(T1) ⊕N(T1), the matrix form of
A is (Aij)1≤i,j≤2. Set P = P

R(T1) and Q = I − P . Let f ∈ L2(Σ). Then without loss
of generality, we can assume that Pf = ū

√
E(|u|2)g, for some g ∈ L2(A). Then

A11f = P (A(Pf)) = P (Pf + θūE(uPf))

= P (Pf + ū
√

E(|u|2)
(
θE(|u|2)g)

)
= Pf + θE(|u|2)Pf

= M1+θE(|u|2)Pf,

where θ = 1+ s
1−sE(|u|2) . By Corollary 2.2, 1+θE(|u|2) = 1

1−sE(|u|2) = 1√
1−kE(|u|2)

where
k = a2|g|2E(|u|2). Thus, A11 = PAP = M(1−kE(|u|2))−1/2P . Similar computations

show that A12 = A21 = 0 and A22 = I|N(T1) . Let S =
(

X Y
Z W

)
be the block

matrix representation of S ∈ B(L2(Σ)) with respect the decomposition L2(Σ) =
R(T1) ⊕ N(T1). Set La(S) := (S−1

a (T ))S(Sa(T )) and ϑ :=
√

1 − kE(|u|2). Then
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ϑ → 0 as a → ∥T∥−1 and

La(S) =
(

M 1
ϑ

0
0 I

)(
X Y
Z W

)(
Mϑ 0
0 I

)
=
(

M 1
ϑ
XMϑ M 1

ϑ
Y

ZMϑ W

)
.

Since Mϑ → 0 as a → ∥T∥−1, so sup{∥Mϑ−1∥; 0 < a < ∥T∥−1} = +∞. Let
M := sup{∥Mϑ−1Y ∥ < +∞, 0 < a < ∥T∥−1}. Then for all unit vector f ∈ N(T1),
∥Y (f)∥ = ∥MϑMϑ−1Y (f)∥ ≤ M∥Mϑ∥. It follows that ∥Y (f)∥ = 0 and hence Y|N(T1) =
0. In particular, if PSP ∈ M′(A), then S ∈ BT if and only if S(N(T1)) ⊆ N(T1). In
this case, BMg1T1

= BMg2T1
for all {Mg1T1 , Mg1T1} ⊆ N. Note that

La(T ) = S−1
a (T )

(
MgE(|u|2) 0

0 0

)
Sa(T ) =

(
MgE(|u|2) 0

0 0

)
.

It follows that ∥La(T )∥ = ∥gE(|u|2)∥∞ = ∥T∥ = r(T ). In view of these observations
we have the following results.

Theorem 2.1. Let T = MgT1 ∈ N and let ϑ =
√

1 − a2|g|2(E(|u|2))2. Then the
followings hold.

(a) S ∈ BT if and only if Y = 0 and sup{∥Mϑ−1XMϑ∥ : 0 < a < ∥T∥−1} < +∞.
In particular, if XMϑ = MϑX, then S ∈ BT if and only if {ū

√
E(|u|2)L2(A)}⊥ is an

invariant subspace for S.
(b) S ∈ QT if and only if Y = W = 0 and ∥Mϑ−1XMϑ∥ → 0, as a → ∥T∥−1.

Moreover, if XMϑ = MϑX, then S ∈ QT if and only if X = Y = W = 0.

Let T = MgT1 ∈ N and S ∈ B(L2(Σ)). Then, for all n ∈ N and f ∈ L2(Σ),
T n = Mgn(E(|u|2))n−1T1 and

T nSf =
(

Mωn 0
0 0

)(
X Y
Z W

)(
Pf
Qf

)
=
(

MωnXPf + MωnY Qf
0

)
,

where ω = gE(|u|2). It follows that S ∈ DT if and only if there exists M > 0 such
that ∥MωnXPf + MωnY Qf∥ ≤ M∥MωnPf∥. If we set f = Qg, for some g ∈ L2(Σ),
then we get ∥Mωn|σ(ω)Y Qg∥ ≤ ∥MωnY Qg∥ = 0 and hence Y |N(T1)= 0. Now, if
MωX = XMω, then ∥MωnXPf∥ ≤ ∥X∥ · ∥MωnPf∥. Note that the commutativity of
Mω and X implies that MϑX = XMϑ. So we have the following result.

Theorem 2.2. Let T = MgT1 ∈ N, ω = gE(|u|2) and let S ∈ B(L2(Σ)). Then S ∈
DT if and only if PSP ∈ DT and PSQ = 0. Moreover, if (PSP )Mω = Mω(PSP ),
then DT = BT .

Corollary 2.5. Let {T, S} ⊆ N. Then S ∈ BT if and only if PSQ = 0.

Proof. Let S = Mg1v̄EMv ∈ BT , with g1 ∈ L0(A). Then PSP = Mγ, where
γ = g1E(u)E(v̄)E(ūv) ∈ L0(A). Since PSP commutes with Mγ, then the desired
conclusion follows from Theorem 2.2. □
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Example 2.1. Let X = {1, 2, 3}, Σ = 2X , µ({n}) = 1/3 and let A be the σ-algebra
generated by the partition {{1, 3}, {2}}. Then L2(Σ) ∼= C3 and

E(f) =
(

1
µ(A1)

∫
A1

fdµ

)
χA1 +

(
1

µ(A2)

∫
A2

fdµ

)
χA2 = f1 + f3

2 χA1 + f2χA2 ,

where A1 = {1, 3} and A2 = {2}. Then matrix representation of E with respect to

the standard orthonormal basis is E =


1
2 0 1

2
0 1 0
1
2 0 1

2

 . It can be easily checked that

E2 = E = E∗, N2(E) = ⟨(a, 0, −a) : a ∈ C⟩, R(E) = ⟨(a, b, a) : a, b ∈ C⟩. For
1 < a < 1 we have

Ka(E) =

 1 0 1
0 1 0
1 0 1

+ a2

1 − a2


1
2 0 1

2
0 1 0
1
2 0 1

2

 =


2−a2

2(1−a2) 0 a2

2(1−a2)
0 1

1−a2 0
a2

2(1−a2) 0 2−a2

2(1−a2)

 ,

Sa(E) = I − (1 −
√

1 − a2)E =


1+

√
1−a2

2 0
√

1−a2−1
2

0
√

1 − a2 0√
1−a2−1

2 0 1+
√

1−a2

2

 ,

PE =
√

I − P = Q =


1
2 0 −1

2
0 1 0

−1
2 0 1

2

 .

Set u = (1, i, −1), g = (1, 2, 1), 0 < a < 1
2 and let T1 = MūEMu. Then

k = a2|g|2E(|u|2) = a2(1, 4, 1)E(1, 1, 1) = (a2, 4a2, a2),

v = k

1 − kE(|u|2) =
(

a2

1 − a2 ,
4a2

1 − 4a2 ,
a2

1 − a2

)
,

s =
1 −

√
1 − kE(|u|2)
E(|u|2) =

(
1 −

√
1 − a2, 1 −

√
1 − 4a2, 1 −

√
1 − a2

)
,

T1 =

 1 0 0
0 i 0
0 0 −1




1
2 0 1

2
0 1 0
1
2 0 1

2


 1 0 0

0 −i 0
0 0 −1

 =


1
2 0 −1

2
0 1 0

−1
2 0 1

2

 .

Take T = MgT1. Since Ka(T ) = I + MvT1 and Ra(T ) = I − MkT1, then we have

T =

 1 0 0
0 2 0
0 0 1




1
2 0 −1

2
0 1 0

−1
2 0 1

2

 =


1
2 0 −1

2
0 2 0

−1
2 0 1

2

 ,

Ra(T ) =I − diag(a2, 4a2, a2)T1 =


2−a2

2 0 a2

2
0 1 − 4a2 0
a2

2 0 2−a2

2

 ,
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Ka(T ) =I + diag
(

a2

1 − a2 ,
4a2

1 − a2 ,
a2

1 − a2

)
T1 =


2−a2

2(1−a2) 0 −a2

2(1−a2)
0 1

2(1−4a2) 0
−a2

2(1−a2) 0 2−a2

2(1−a2)

 ,

Sa(T ) =I − MsT1 =


1+

√
1−a2

2 0 1−
√

1−a2

2
0 −1 +

√
1 − 4a2 0

1−
√

1−a2

2 0 1+
√

1−a2

2

 ,

S−1
a (T ) =I − M s

1−s
T1 =


√

1−a2+1
2
√

1−a2 0
√

1−a2−1
2
√

1−a2

0 1√
1−4a2 0

√
1−a2−1

2
√

1−a2 0
√

1−a2+1
2
√

1−a2

 .

Since ∥T∥ = ∥gE(|u|2)∥∞ = ∥(1, 2, 1)∥∞ = 2 and T ∗T = M|g|2E(|u|2)T1, then P 2
T =

I − ∥T∥−2T ∗T = I − MzT1, where z = |g|2E(|u|2)
4 = (1

4 , 1, 1
4). It follows that

PT = I − M(1−
√

1−z)T1 = I − diag
(

2 −
√

3
2 , 1,

2 −
√

3
2

)
T1 =


2+

√
3

4 0 2−
√

3
4

0 0 0
2−

√
3

4 0 2+
√

3
4

 .

Note that, r(T ) = 2 > 0 but PT ̸= 0 (see [2]). Also, R(T ) = ū|g|
√

E(|u|2)L2(A) =
{(1, −i, −1)(1, 2, 1)(1, 1, 1)(a, b, a) : a, b ∈ C} = {(a, c, −a) : a, c ∈ C}. Now set
u = (1, 0, 1) and v = (2, −i, −2). Consider the rank-one operator u ⊗ v defined by

(u ⊗ v)w = ⟨w, v⟩u, for all w ∈ C3. Then u ⊗ v =

 2 i −2
0 0 0
2 i −2

 and (u ⊗ v)T ̸=

T (u ⊗ v). However, since

sup
0<a< 1

2

∥S−1
a (T )u∥ · ∥Sa(T )v∥ ≤ sup

0<a< 1
2

∥S−1
a (T )u∥ · ∥v∥ = ∥u∥ · ∥v∥ = 3

√
2,

then by [9, Lemma 3.9], u ⊗ v ∈ BT . Thus, BT properly contains {T}′. In the finite
dimensional case, if A ≠ Σ, then T is not injective and hence the spectral radius
algebra BT always properly contains the commutant of T .
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