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ON THE NON-NEGATIVE RADIAL SOLUTIONS OF THE TWO
DIMENSIONAL BRATU EQUATION

MBE KOUA CHRISTOPHE NDJATCHI', PANAYOTIS VYRIDIS', JUAN MARTINEZ?,
AND J. JUAN ROSALES?

ABSTRACT. In this paper, we study the boundary value problem on the unit circle
for the Bratu’s equation depending on the real parameter y. From the parameter
estimate, the existence of non-negative solution is set. A numerical method is
suggested to justify the theoretical result. It is a combination of the adaptation of
finite difference and Gauss-Seidel method allowing us to obtain a good approximation
of u., with respect to the exact theoretical method u. = A = 5.7831859629467.

The vast majority of phenomena that occur in nature are described by a non-linear
differential equation or by a system of non-linear equations. Among these equations,
the Bratu’s equation, given by

V2u+ pe* =0,

is a classical example of equation with a strong nonlinear exponential term and a real
parameter p. This equation arises originally as a simplified model for the description
of the combustion of solid fuels. Also it is often appears in science and engineering
as a model in various physical applications, from chemical reactions, thermal combus-
tion theory, heat transfer radiation until the Chandrasekhar’s model of the universe
expansion and even nanotechnology [2,3,9,13]. In [5], the dynamics of the Bratu
equation were analyzed and the existence of bifurcations was shown. They are also
devoted to describe the Gaussian curvature problem in Riemannian geometry [15], the
mean field limit of vortices in Euler flows [8], the Onsager formulation in statistical
mechanics [6], the Keller-Siegel system of chemotaxis [19] and the Chern-Simon-Higgs
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gauge theory [7,21].

Recently, most of the research has focused on better and more efficient solution
methods for determining solutions, approximate or exact, analytical or numerical to
this non-linear Bratu model [1,4,11,12,17,18,20].

In this paper we study the two-dimensional Bratu’s equation depending on a real
parameter p on the unit circle with the Dirichlet homogeneous boundary condition.
We prove the existence of non-negative radial solutions for a certain range of the real
parameter . A numerical method is suggested to justify the theoretical result.

1. THEORETICAL RESULT: EXISTENCE OF THE SOLUTION

We study the two dimensional Bratu’s equation on the unit circle with the homo-
geneous boundary condition,

—Viu(z,y) = pe ), iyt <1,
(1.1) ’ 5, Do
U([E,y)—07 € +y _]-7

where p is a real parameter. The existence of the solution for the problem (1.1)
beyond a certain limit of the parameter p is based on a general theory of the non-
linear eigenvalue problem

(1 2) —V2U(ZE) = ,LLf(ZE,’LL), S Qa

' u(z) =0, x € 09,
where € is an open bounded region of R™ and f(x, u) is a non-negative and continuous
function on (z,u) € Q x R. We have the next result [17]:

Theorem 1.1. Assume that
(1.3) flzyu) > h(x) +r(@)u, (z,u) € Qx|0,00),

where h and r are non-negative and continuous functions in 2. Then the non-linear
eigenvalue problem (1.2) has no non-negative solutions for any u > X, where \ is the
principal eigenvalue of the linear eigenvalue problem

{ —Vu(z) = Ar(z)u, x€Q,

(1.4) u(z) = 0, x €N,

In particular, due to the estimate

flz,u)=¢€">1+u,

the linear eigenvalue problem (1.4) corresponding to the nonlinear problem (1.1) is
given by h(z) =r(z) =1, i.e.,
~Vu(z,y) = Au(w,y),  2?+y> <1,
(1.5) _ 2 o _
u(z,y) =0, z?+y° =1

Introducing the polar coordinates on the plane

x(r,0) =rcosd, y(r,0)=rsinf, 0<r<1,0<60<2r,
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we obtain the equivalent, to the (1.5), problem

Pu  10u 10%u
— _— —_—— )\ = O 1 6 = O .
o Tror g =0 uLo)
The standard method of separation of variables

u(r,0) = R(r) ©(0),

with the boundary values

(1.6) R(1)=0, ©(0) =060+ 2r),
leads to the ordinary differential equations

(1.7) 0"(0) + KO(6) =0,

and

(1.8) r2R'(r) +rR'(r) + (M?* — K)R(r) = 0

where K is a constant. In order to obtain a periodic solution, according to the second
relation of (1.6) for the equation (1.7), the condition K = n? is necessarily required,
where n € N. Therefore, the equation (1.8) becomes

r?R'(r) + rR'(r) + (\r? —n*)R(r) = 0,
which is the Bessel’s equation with the general solution
R(r) = e1J,(VAT) + Y, (VAT),

where ¢; and ¢y are arbitrary constants. Requiring a bounded solution, when r = 0,
we set ¢y = 0. Furthermore, using the first relation of (1.6) we obtain

J(VA) =0,
which implies that
A(m)m = .](Qm),n .
Thus, the boundary value problem (1.1) has no non-negative solution for p > j(Q’m),n'
Since, the first root of the Bessel’s function Jy(x) is ji0 = 2.40482555769577, then

the threshold is pu. = A = 5.7831859629467.
In the next section we applied this result for the corresponding radial solution.

2. RADIAL POSITIVE SOLUTION OF THE BRATU’S EQUATION

The positive solution on the unit disc By has a radial symmetry i.e. depends only
on r = /2?2 +y%. In order to prove this we follow the technique developed in [10].
First, we observe that the homogeneous boundary condition implies, that 0B, is a
level set of the positive solution u € C?(5;) and therefore for the outer unit normal
vector to 0B;, we have

Vu

jzlv—u’ or (z,y)-Vu==%£|Vul.

v(w,y) = (2,y) =
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Furthermore,

1 g 1
@) = 1 —|—/ —etulmy) gy = 1 + u(w,y)/ et w@y) gy,
o dt 0
Next, we write the Bratu’s equation in the equivalent form
V2u + c(x, y)u = —pu < 0,
where .
c(x,y) = u/ et@w dt > 0.
0

The Serrin’s maximum principle implies, that

(2.1) g;:(x,y)-Vu:—\Vu\ <0, on JB;.
Denote by B = By N {(z,y) € R?> y > 0} the upper unit half disc and By =
BiN{(z,y) € R? y < 0} the lower unit half disc. Thus, (2.1) implies
0
5o o) = = [Vule,y)] — o 52 (o) <0, on OB,

which means that Ou/0y < 0 on dB;". The smoothness of u implies that du/dy < 0
in Bi close to OB;". Thus, the solution u is a decreasing function on the y - direction
close to OB; . Furthermore, define the sets I, = {(x,a), x € R}, for 0 < a < 1 and
E,={(z,y) € B, a <y < 1}. To any (x,y) # (x,a), we assign its reflection with
respect to the line [,, the point (x,2a — y).

Theorem 2.1. If u € C’Q(Bl) is a positive solution of the Bratu’s equation, then u is

a function of r = /22 + y2.

Proof. 1t is sufficient to show that u(x,y) = u(z,2a — y) whenever a = 0 i.e. the line
l, coincides with the axis x. To this end, define

ap = inf{a € [0,1] : u(x,y) <u(z,28—y), (x,y) € Ez, a <[ <1},

The above infimum is well defined, since the solution u is a decreasing function on
the y - direction close to B;". We will prove that ay = 0. Suppose that ag > 0 and
define the function

U(‘ray) :u(x,Zao—y)—U(x,y), (x,y) < Ello‘
Then v(z,y) > 0 and
VQU(‘T7 y) - O(ZL’, y)U((I,’7 y) =0,
where
1
Clx,y) = [ulz,2a0 — y) — ulx,y) | / eltu(m200 =)+ (=Du@wlge > 0,
0

The Serrin’s maximum principle and the above discussion implies that

ov
v(z,y) > 0,,(z,y) € By, afy(%y) <0, (z,y) € lo, N Bf
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and, equivalently

ou
a—y(z,y) <0,(z,y) € l,, N B,

with the partial derivatives with respect to y, always taken close to 9B;. Thus, we

have, that the positive solution u is also decreasing function on l,, N Bi". Choosing
any € > 0, sufficiently small for 0 < f = ag — € < ag, we have

u(z,y) < u(z,2a0 —y), (x,y) € Eq,

u(z,y) < ulz,2a0 —y) < w26 —y), (v,y)€lzN BT,
and by the smoothness of u
u(z,y) <u(@,26—y), (r,y)€ By f <ao,
which contradicts to the definition of ag. Thus, necessarily ag = 0, and
u(z,y) < ulz,—y), (v,y) € By
In the same way, we can obtain

U(Q?,y) Z'U/(.T, _y>7 (xvy) EBfu
which implies u(z,y) = u(z,—y) in the unit disc. Finally, the axis x can be any
diameter of the unit disc, thus we have the radial symmetry of the solution. 0

3. NUMERICAL METHOD

To find the numerical solution of (1.1), we have used an adaptation of the second-
order Finite Difference Method (FDM). First, we consider a rectangular region (R)
defined by

—1<x<1,

{—1§y§L
in the cartesian system (OXY'), and we insert into (R) the circle (€) defined by
22 + y* = 1. Next, the region (R) is subdivided into the grid n x n equal subregions:

h x h where 5
h=—,

n
i.e, the axis (OX) and (OY) are partitioned in n equal part each one. So, each point
or node (x;,y;) of the grid is the intersection of the z = x; vertical line and the y = y;
horizontal line, where
r;=—14+1th, 1=0,...,n,
and
yj=—14+jh, j=0,...,n
Then, it is not difficult to see the following.
(a) For an exterior point or endpoint P ; = (x;, y;) of the circle (C), i.e., z7 +y; > 1.
See the Figure 1.
We have

(3.1) Py u(xi,y;) = wi; = 0.
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FIGURE 1.

(b) For each interior point P;; of the circle (€), i.e., z7 + y]z < 1, we apply the
Finite Difference Method (FDM) using the Taylor series with the variable x around
x;, and with the variable y around y; [16], i.e., without loss of generality, around of
this point P;; we suppose the next four points Py j, P ji1, Pi—1,, Pij—1 which are
known respectively as East(E), North(N), South(S), West(W) point with respect to

P, ;, see Figure 2.

Piji1

1

})i——l,]
—1

P,

—1

FIGURE 2.

So, we define:
Py rul@ + hyy) = w(wig, yy) =
Piji1tu(z,y + h) = u(w, ?Ja+1) Wijt1,
Pij1u(@,y —h) = u(wz;,y;-1) =
Py u(@ —h,y;) = u(zi,y;) =
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Next, for every interior point (x,y) of the circle, we have

0*u 1
5z ~ ﬁ[u(x + h,y) — 2u(z,y) + u(z — h,y)],
0*u 1

(3.2) g~ @y th) = 2u(ey)+u(ey - h).

By adding these two equations (3.2), the equation (1.1) for all interior point of the
circle can be replaced by the difference equation:

AT ANE TN
ox?  OJy*> h?
=(=p)(1 +u(z,y)).
Then, it is easy to see that

v+ h,y) +u(z,y+h) +u(r—hy) +ule,y —h) —4u(z,y)]

(33) 411)1"]' — Wiy, — Wi—1,5 — Wij4+1 — Wij—-1 = (—M)(—h2)<1 + U}i’j),
where u(z;,y;) = w;; and ¥ =14+ w; ; + -

So, (3.3) implies that for each interior point P ; of the circle (€), we have
(3.4) (4 = ph®)wij — Wis1j — Wim1j = Wiger — Wijy = ph?,
where t =0,...,n,and 7 =0,...,n.

The reader may find an illustrative example in the Appendix.

To find the value u(z;,y;) = w;; of the point P, ; on the region (R), the system
of linear equations (3.1) and (3.4) is established, moreover, the solution of (1.1) is
reduced to the solution w; ; of the system of linear equations (3.1) and (3.4), depending
on the parameter p. Finally, to solve the system of linear equations (3.1) and (3.4),
the Gauss-Seidel’s Method is used [4].

Since (1.1) and (3.4) depends on the parameter u, we determine the threshold g,
giving the grid n x n of (R), and also giving a value the parameter p for the grid
n x n of (R) the norm |w; j| = Upq, is found.
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Algorithm

1 Input: Value n of the subdivision of the region (R); Initial value of p = po;
k =step of pu.

2 Output: Value of the threshold f.; Approximate solution u(z;,y;) > 0 of the
interior point of the circle for certain range of p; Maximum value t,,q, of the
solution u(x;, y;).

3 for V(z;,y;) € (R) do

4 if (@;,y;) satisfy x? + yj2- > 1 then
5 | Output: u(z;,y;) = 0.
6 else
7 for V(z;,y;) that satisfy x2 + yJQ- <1ldo
8 (1) Using FDM, establish the system of linear equations AX = B
which depends on parameter .
9 (2) Solve the system of linear equations AX = B by the
Gauss-Seidel’s Method for given initial value p = pp.
10 if Ju(z;,y;) <0 then
11 | Change Initial value of 1 = ji0; goto (2)
12 else
13 (3) while Vu(z;,y;) >0 do
14 (3.1) p=p+k.
15 (3.2) Solve the system of linear equations AX = B by the
Gauss-Seidel’s Method.
16 (3.3) if Fu(z;,y;) <0 then
17 Output: . = p — k; w(xs, yj) > 05 Upar = max(u(z;, yj)).
18 Stop.
19 else
20 | Output: g4 u(z;, y;) = 05 Upae = max(u(z;,y;)).
21 end
22 end
23 end
24 end
25 end

26 end
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4. RESULTS

We developed a software in high-level programming language (in this case, Java)
based on the algorithm mentioned above. The following tables show the result of (1.1)
for the respective partition 40 x 40 and 70 x 70 (see Figure 3).

P6=48.39661429378321

Grid | 40 Step | Graph | s
P7=48.798524118874475 ')
= 1011 | Erase PB= 48.396683592228406
PO= 47.150226754067416

File P10=44.90958334997749
P11= 41.30408584871580
P12= 35.38854305635518

Time 1764835 P13= 24.483348300460512
P14= 27.998225515177694
P15=44.3065499883104
P16= 62.18721793854559

Galcul with Mu | stop | P17=75.25630097895055
P18= 84.32485416592188
| calcul with fixed Mu See Equation P19=00.5407275429539
it P20= 94.61956723909553
point filter

P21= 96.94568339137835
P22=97.70300679353723
3 P23= 96.9458222241003

R R EERR R RRRERRRRRRRRRRRRRRERRRREI B0 Shaiabiaznaiaeg
T 1TI11111111111 P25=00.54111850874712
T NT1111111111117 E20- Sl loeahn
T 1TI11111111111 P27=75.256830777795
AT T 1111111111110 E2E 02 IOl fasd
AT 1111111111111 110 Foa-arloanai0anera0s
001111 111111111111111111111100 b Zroshndolonsi i
0011111111111 1111111111111100 iz 2baelsonsannaas
000111111111 111111111111111111111111000 | Ba0= 121240604 802918
000011111111111141111111111111111110000 L aromioaesset i tia
000011111111111111111111111111111110000 Fama s o
000001111111111111111111111111111100000 C At iR
000000111111111111111111111111111000000 £a6- 110 taozedonobatl
000000001111111141111111111111100000000 D3 12000800 000a0s
0000000001 111111 111111111111 Fa8= 137.02024047 141345 g
[RRRAREEARERRERE] -
111111111111 oy -
L] 13024.0290842215

Max 697.520028217061%

Exact Value of Mu 5.6065999999999985

Iniciar

(a) Result for 40 x 40

4.1. Finding of u.. For each grid, we find the respective u. and the norm t,,,, given
in Table 1.

TABLE 1.

nxn

fhe

umax

30 x 30

5.505499999999999

126.26207775999859

40 x 40

5.6065999999999985

697.6299282170618

50 x 50

5.6065999999999985

114.5670432582935

60 x 60

5.6065999999999985

102.23255929486518

70 x 70

5.6065999999999985

101.79863813473932

75 x 75

5.584800000000021

60.012385961525645
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( File ]

4761762

L e R RN EER R RR R
aooo T T T T A T
00000111111111111111111111111111111 111111111411
00000011111111111111111111111111111 111111111411
00000007111111111111111111111111111 111111111411
00000007111111111111111111111111111 111111111111
00000000111111111111111111 111111111 111111111111
0000000001111 11111 AT AT T AT T
0000000000111 111111 AT AT T A 1T
00000000000111111111111111111111111 111111111411
00000000000011111111111111111111111 111111111411
00000000000000111111111111111111111 111111111111
00000000000000011111111111111111111 111111111111

00000000000000001 1111111111111 A1 1111411
00000000000000000011111 111114111111 441111141411
00000000000000000000111111111111111 1111111111117
00000000000000000000000111111111111 1111111111101

000000000000000000000000001111111111111111100001
<%

Exact Value of Mu 5.6065999999999985

Interactions-=49672
P1=2.0726085456412034
P2=20212514824232218
P3=3.3499620022656352
P4= 3.60514498081968125
P5=37723487572198313
P6=3.8854573223007174
P7=3.959540338734567
P&= 4 001799575486057
PO= 4 015572210434625
P10=4.001838567091867
P11= 3.959617495464889
P12=3.8855708843373105
P13= 3.772495751323607
P14=3.60532043408650924
P15= 3 3501578416903402
P16= 2 921450596638641
P17=2.072859975121031
P18= 2.241349040939976
P19= 3.310396940511468
P20=4.144047161750114
P21= 5 355560153043445
P22=§ 244401021736044
P23= 5.853644912625247
P24=7 27729956190362
P25=7.577062349158075
P26=7.787694840201044

L LT-LLE

Da7—

MNorm

3316.805630203534

Max 101.79863813473932

(b) Result for 70 x 70

FIGURE 3. Result for 40 x 40 and 70 x 70

T00

500

Umax

300

200

FIGURE 4. Graph of u,q; vs u, for 40 x 40
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4.2. Graph of u,,,, vs u, for 40 x 40. We have drawn the graph of u,,q. vs u, for
40 x 40, given in Figure 4.

4.3. The graph of the solution u(zx,y), for 50 x 50 and 75 x 75 with u = 4.
The graphs of the solution u(x,y) of the equation (1.1) are drawn with the parameter
1 =4, for the respective partition 50 x 50 and 75 x 75, given in Figure 5.

10

FIGURE 5. Graphs of the solution u(x,y), for 50 x 50 and 75 x 75

So, from the Figure 5, we can see that, as u € C?(B;, = {(z,y) : 22 +y* < 1})
is a positive solution of the Bratu’s equation for u < pu., then u is a function of

r =2+ 12
5. CONCLUSION

In this paper, we have studied the boundary value problem on the unit circle for the
Bratu’s equation which depends on a real parameter u, we show that the boundary
equation has the no non-negative solutions when p > p,. = 5.7831859629467, where we
have implemented the numerical method, that is, the combination of the adaptation of
finite difference and Gauss-Seidel method, which allows us to obtain a good approach
of u. with respect to the exact theoretical method p. = A = 5.7831859629467.

A possible application of these results could be to the simplified stationary model
for energy functional related to thermo-electro-hydrodynamics description of electro-
spinning [14].

6. APPENDIX

:. The grid has 5 x 5 = 25 points, in which 9
) Pl,l) P1,2a P1,37 P2,17 P2,2a P2,3) P3,17 P3,27 P3,3

Example 6.1. Let n = 4, so h =
are interior points of the circle, i.
(see Figure 6).

The points which satisfy 27 + 7 > 1, i.e.,

SEIN

@

Poo 1U(9307y0) =u(-1,-1) = wo,o = 0,
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P14 | P34
PO4 4 P44
03 ‘23 P43
PlS P33
P12 P32
* . ° [ ] ®
P02 P22 P 2
P ‘21 41
\ngn Py,
w_ | Dy
Pyo Psy Pyo

1
5) = w4,3 - 07
U(]_, —]_> = Wy 4 = 0.

)

So, for the interior points of the circle which satisfy x? + yjz- <1

7l
P1,1 : (4 - Z Wy,1 —Wo1 — Wo,1 — W12 — W10 =

4 —

(-4
Ps: (4
(1-
y

W12 — W22 — Wp2 — W13 — W11 =

Wi,3 — W23 — W3 — W14 — W12 =

)

..p

Wz 1 — W31 — Wi1 — W2 — Wo0 =

)

4 — Wo2 — W32 — W12 — W23 — W21 =

)

~— ~—
S B R RN S

»Mt sz »Mt >M
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% I
P2,3 : (4 - 4> W23 — W33 — W13 — Waq — W22 = Z’
Py (4 — M) W31 — Wy — Wo 1 — W32 — W30 = H;
4 4
Py, (4 — 'Z) W3 — W4 — W — W33 — W3] = %,
2 H
P3,3 : (4 - 4> W3,3 — W43 — W3 — W34 — W32 = Z

It is not defficult to establish the system of linear equations AX = B, where

(4-8) -1 0 ~1 0 0 0 0 0
—1 (4-8) -1 0 ~1 0 0 0 0
0 -1 (4= 0 0 ~1 0 0 0
~1 0 0 (4-5 -1 0 ~1 0 0
A=| 0 ~1 0 0 (4-5 -1 0 ~1 0o |,
0 0 ~1 0 -1 (4-5 0 0 ~1
0 0 0 ~1 0 0 (-t -1 0
0 0 0 0 ~1 0 -1 (4-8 -1
0 0 0 0 0 -1 0 1 (4—1)]

T
XZ{wl,l Wi2 W13 W21 W22 W23 W31 W32 w3,3} )

B-| '

pS
RS
=
=
=
RS
RS
RS
=
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