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A GENETIC ALGORITHM MODEL IMPROVED WITH
ZECKENDORF REPRESENTATIONS FOR PREVENTIVE

MAINTENANCE SCHEDULING PROBLEM
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Abstract. This study introduces a novel Genetic Algorithm (GA) model enhanced
with Zeckendorf representation and Fibonacci number-based encoding to optimize
preventive maintenance scheduling (PMS) problems. Conventional maintenance
scheduling methods, based on random or linear encoding techniques, often fail to
optimize maintenance processes effectively.

Therefore, the proposed model aims to systematically plan maintenance periods
and minimize production interruptions by encoding maintenance intervals using
Zeckendorf representation.

By optimizing maintenance processes, the proposed model enhances system pro-
duction continuity. Experimental analyses indicate that the proposed model en-
hances existing production capacity and facilitate a more balanced management of
maintenance operations. The electricity and water production capacities increased
by 11% and 10%, respectively, while the reserve capacity improved by 9% for elec-
tricity and 17% for water.

These results show that the proposed method is a new optimization strategy for
maintenance planning by enhancing the applicability of GA in preventive mainte-
nance scheduling problems. Optimizing maintenance scheduling with Zeckendorf
representation enables systematic and balanced execution of maintenance operations,
thereby ensuring more efficient planning in industrial facility maintenance processes.
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1. Introduction

Industrial facilities, power plants, and other critical infrastructures emphasize main-
tenance strategies due to their need for operational continuity. Maintenance processes
not only extend the lifespan of equipment but also play a critical role in ensuring
operational continuity and preventing sudden failures. In this context, Preventive
Maintenance (PM) is a strategy that involves the planned and periodic maintenance
of machines or systems. PM aims to inspect equipment at specific intervals, perform
maintenance or repairs, and minimize unexpected failures and interruptions [7].

When compared to other maintenance strategies such as reactive maintenance
(running to failure) and predictive maintenance (forecasting using sensor data), PM
stands out for its planned and systematic nature. Preventive Maintenance Scheduling
(PMS), on the other hand, involves planning when and how the specified maintenance
activities will be carried out. Effective implementation of PMS optimizes maintenance
processes, reduces operational costs, increases productivity, and ensures system relia-
bility [1]. Traditional PMS approaches often employ deterministic methods, leading to
the development of linear and nonlinear optimization models. Research utilizing Mixed
Integer Linear Programming (MILP) and heuristic methods has been published [5,13].
Studies have been conducted to optimize maintenance planning for power generation
units, minimize maintenance costs, and create appropriate maintenance schedules
[16].

However, in large-scale and complex maintenance planning problems, traditional
methods are often computationally intensive and time-consuming in achieving opti-
mal solutions. Therefore, heuristic and meta-heuristic algorithms, such as Genetic
Algorithm (GA), Tabu Search (TS), and Particle Swarm Optimization (PSO), are
widely preferred. In recent years, hybrid models combining these approaches have
been introduced, improving solution quality and the efficiency of the optimization
process [2, 3].

The rapid growth of computational optimization has led to the development of
numerous algorithms aimed at solving complex scheduling and resource allocation
problems. Among these, Genetic Algorithms (GAs) have emerged as versatile and
powerful tools for addressing various optimization challenges due to their ability to
explore large search spaces and locate near-optimal solutions [3, 18]. Traditional GAs
typically rely on binary or floating-point representations to encode solutions, but these
methods often struggle to balance diversity and convergence.

The methods employed to solve PMS problems remain open to further improvement.
Enhancing the solution quality and success of proposed methods is both feasible and
necessary. Motivated by this, the study proposes a novel preventive maintenance
scheduling method by incorporating Fibonacci-based Zeckendorf and k-Zeckendorf
representations into a hybrid GA-TS approach. Fibonacci-based representations aim
to improve system performance by distributing maintenance durations and intervals
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more systematically and evenly. The effectiveness of the proposed approach is analyzed
in terms of the supply-demand balance in electricity and water production.

This study introduces a novel enhancement to the standard GA framework by
integrating Zeckendorf representations, a numerical encoding technique based on
Fibonacci numbers. Unlike traditional representations, Zeckendorf encoding leverages
the unique properties of Fibonacci numbers to provide a compact, efficient, and
inherently diverse representation of solutions. This method has been applied to the
preventive maintenance scheduling problem, a critical optimization challenge faced
by industries such as cogeneration plants that rely on continuous operations. The
scheduling problem requires balancing equipment availability, resource utilization, and
demand fulfillment while minimizing operational disruptions.

The significance of this study lies in the potential to improve the performance of
genetic algorithms through a structured yet adaptable coding schema. The proposed
method not only achieves better optimization results by reducing redundancy and
increasing the diversity of the search space, but also provides a new perspective on
how numerical representations can affect algorithmic efficiency.

In the following sections of this paper, existing PMS approaches in the literature
are discussed, the details of the proposed method are explained, and the performance
of the method is evaluated based on experimental results.

2. Mathematical Model

This section explains how the proposed genetic algorithm approach has been de-
veloped with a mathematical approach. For this purpose, detailed explanations of
Fibonacci base and Zeckendorf representations are provided, and the computation
processes are demonstrated.

In number theory, there exist various alternative methods for representing a num-
ber A. These representations often depend on the properties of A and the specific
mathematical framework being employed. Such methods can provide deeper insights
into the structure and behavior of numbers, offering tools for analyzing their rela-
tionships and applications. Among these representations, one of the most notable is
the representation using Fibonacci numbers, commonly referred to as the Fibonacci
representation. It is well established [12] that the Fibonacci sequence, denoted by
{Fn}, is defined recursively as follows:

Fn = Fn−1 + Fn−2, if n > 1,

with initial values F0 = 0 and F1 = 1. Excluding the initial values F0 = 0 and
F1 = 1 of the Fibonacci sequence, the subsequent 12 Fibonacci numbers and their
corresponding indices are summarized as follows in Table 1.

For example, every positive integer A can be written as
A = Fn1 + Fn2 + · · · + Fnr , n1 > n2 > · · · > nr ≥ 2,

which is called a Fibonacci representation of A.
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Table 1. The Fn Fibonacci numbers for 2 ≤ n ≤ 13

n 2 3 4 5 6 7 8 9 10 11 12 13
Fn 1 2 3 5 8 13 21 34 55 89 144 233

The most widely recognized method for representing non-negative integers using
only the digits {0, 1} is the binary numeral system. However, alternative methods
exist for representing integers using just {0, 1}, some of which are less immediately
intuitive. One notable example is Zeckendorf’s Fibonacci representation.

Zeckendorf’s theorem is a well-known result that states every positive integer can be
uniquely expressed as a sum of distinct Fibonacci numbers, provided that the indices
of the Fibonacci numbers satisfy the condition nj − nj−1 ≥ 2, j = 1, 2, . . . , r, nr ≥ 2.
This unique representation is referred to as Zeckendorf’s Fibonacci representation
[10,11]. The Zeckendorf theorem offers an alternative to the binary numeral system,
providing a unique representation of integers that has practical applications in areas
such as data transmission and compression [17].

Zeckendorf’s theorem states that every positive integer A can be uniquely expressed
as the sum of one or more distinct Fibonacci numbers. This representation ensures
that the sum excludes any two consecutive Fibonacci numbers [10]. Zeckendorf’s
Fibonacci encoding utilizes this unique representation. Specifically, any positive
integer A = (. . . d3d2d1)fib can be expressed as

A =
n∑

i=1
diFni

where Fni
, ni ≥ 2 is the nth

i Fibonacci number, ni − ni−1 ≥ 2, di ∈ {0, 1}, and
dn = 1. This encoding is referred to as Zeckendorf’s Fibonacci coding and is denoted
as A = (di)fib, i = 1, 2, . . .

For A ≤ 233, a 12-bit {0, 1} array is generated in Zeckendorf’s Fibonacci represen-
tation. For instance, the representation of A = 123 is given by the sum 89 + 34. In
Zeckendorf’s Fibonacci coding, this can be written as 123 = (1010000000)fib.

A number representation system is generally most effective when it provides a unique
representation for every integer. Zeckendorf’s Fibonacci encoding ensures uniqueness
by prohibiting consecutive 1’s in the representation. However, if this condition is
relaxed, while every number can still be expressed as a sum of Fibonacci numbers,
some numbers will have multiple possible sums, leading to non-unique representations.

It can be observed that the number A = 123 can be expressed in 7 different ways
using various combinations of Fibonacci numbers. To address this non-uniqueness,
let us slightly modify Zeckendorf’s Fibonacci encoding to establish a new {0, 1}-based
representation that ensures a single, unique form for each number.

In [4], a Zeckendorf-Wythoff sequence is introduced, which organizes positive inte-
gers into columns based on their Zeckendorf representations. The nth column of the
Zeckendorf-Wythoff sequence consists of integers A, listed in ascending order, whose
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Zeckendorf representations terminate with Fn+1. The Zeckendorf-Wythoff sequence
is defined such that each row corresponds to a Fibonacci sequence. If the largest
Fibonacci number in the Zeckendorf representation of A is Fn, then A begins with Fn.

Each row of the sequence consists of A integers, all having Zeckendorf representa-
tions of the same structure. In particular, for any two consecutive numbers in the
row, the indices of the Fibonacci numbers Fn corresponding to the digits in their
Zeckendorf representations differ by exactly one [9, 10].

Let R(A) represent the number of ways the non-negative integer A can be expressed
as the sum of distinct Fibonacci numbers. It is given that for integers A in the
odd-numbered columns of a row, the successive values of R(A) form an arithmetic
progression, and R(A − 1) remains constant. Moreover, if there exists an A such
that Fn < A < Fn+1 − 1 in a column of the Zeckendorf-Wythoff sequence, then
A + Fn+k, k ≥ 2, also belongs to the same column. These properties of Zeckendorf
representations and Wythoff pairs are utilized to determine R(A) [10, 11].

The Zeckendorf-Wythoff sequence is presented in Table 2, arranged into 14 columns,
as it corresponds to the use of 8, 12, and 14-bit arrays.

Table 2. Zeckendorf-Wythoff sequence

w(i,j) 1 2 3 4 5 6 7 8 9 10 11 12 13 14
w(1,j) 1 2 3 5 8 13 21 34 55 89 144 233 377 610
w(2,j) 4 7 11 18 29 47 76 123 199 322 521 843 1364 2207
w(3,j) 6 10 16 26 42 68 110 178 288 466 754 1220 1974 3194

Table 3 provides the number of distinct Fibonacci representations for each number
A, organized according to the columns in Table 2.

Table 3. R(A) values for numbers A given in Table 2

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14
R(w(1,j)) 1 1 2 2 3 3 4 4 5 5 6 6 7 7
R(w(2,j)) 1 1 3 3 5 5 7 7 9 9 11 11 13 13
R(w(3,j)) 2 2 4 4 6 6 8 8 10 10 12 12 14 14

The number of representations of A as sums of distinct Fibonacci numbers can
be derived from the Zeckendorf representation of A. Specifically, if the Zeckendorf
representation of A ends with Fn, where n ≥ 2, then a constant q satisfies:

R(A) = R(A − 1)R(Fn) − q, 0 ≤ q ≤ R(A − 1).
Here, R(Fn) = ⌊n/2⌋ and R(Fn − 1) = 1 for n ≥ 1, where ⌊x⌋ denotes the greatest

integer less than or equal to a real number x.
Table 3 clearly demonstrates that the different Fibonacci representations of the

numbers A in each row increase to the right, following the pattern outlined in Table 2.
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Furthermore, this increase occurs at a faster rate in the lower rows. This indicates that
smaller numbers in the lower rows can possess a greater number of representations.
For instance, the number A can have six different representations if A = 144, seven
different representations if A = 123, and eight different representations if A = 110.

Although R(A) indicates the number of different representations of the number
A, detailed information about these representations can only be explicitly expressed
using the Zeckendorf representation. An alternative canonical representation can
be developed to express any given number as a sum of Fibonacci numbers, while
permitting the inclusion of consecutive Fibonacci numbers within the same sum. This
approach is facilitated by adopting a base system where Fibonacci numbers act as
placeholders, thereby allowing adjacent terms. The validity of this method stems
from the property that the sum of any two consecutive Fibonacci numbers equals the
next Fibonacci number. Consequently, any representation of the form (. . . 100 . . .)fib
can be systematically replaced with (. . . 011 . . .)fib. In this study, each instance of
(. . . 100 . . .)fib was transformed into (. . . 011 . . .)fib. This alternative representation not
only serves as a canonical form but also provides a more compact encoding compared
to Zeckendorf’s Fibonacci representation.

To verify that every number can be represented in this system, one can write down
the k-Zeckendorf representations of several numbers using 12 bits. By constructing
such representations, it becomes evident how numbers can be uniquely expressed
following the rules of the k-Zeckendorf system. For clarity, a table can be provided
to illustrate these representations. Table 4 includes examples of numbers along with
their corresponding k-Zeckendorf representations in 12-bit format.

Table 4. Representations of k-Zeckendorf using Zeckendorf’s Fibonacci coding

N Zeckendorf’s 1-Zeckendorf’s . . . 6-Zeckendorf’s 7-Zeckendorf’s 8-Zeckendorf’s
code code code code code

68 100100000 100011000 . . . 011010110 - -
123 1010000000 1001100000 . . . 0111011000 0111010110 -
178 10010000000 10001100000 . . . 01101100000 01101011000 01101010110
233 100000000000 011000000000 . . . 010101010110 - -

The least number of Fibonacci numbers used in a representation corresponds to
the number of 1’s in Zeckendorf’s Fibonacci coding. This is because Zeckendorf’s
theorem guarantees the use of the minimal number of Fibonacci numbers in any
valid representation, which is why it is also referred to as the minimal Fibonacci
representation. Consequently, any representation of the form (...100...)fib, where a
1 is followed by two or more 0’s, can be systematically replaced with (..011..)fib by
redistributing the terms according to the Zeckendorf rules. This replacement not only
adheres to the uniqueness property of Zeckendorf’s representation but also ensures
the representation remains minimal by avoiding consecutive Fibonacci numbers and
maintaining the fewest possible 1’s in the coding.
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3. Genetic Algorithms for Preventive Maintenance Scheduling

Genetic algorithms (GA) are a powerful computational method inspired by natural
selection and biological evolution processes. This technique is considered one of
the most common applications of evolutionary computing methods used to solve
complex search and optimization problems. The concept of genetic algorithms was
first introduced by John Holland [8] and was further developed by his students and
colleagues in the following years, making it applicable to a wide range of optimization
problems.

The fundamental philosophy of GA is to evolve the population by selecting solutions
with high fitness values and applying genetic operators (such as crossover, mutation,
etc.) [14]. This approach enables effective exploration of the vast solution space while
reducing the risk of getting stuck in local minima. It is particularly advantageous in
terms of flexibility and applicability for combinatorial and constrained optimization
problems.

The Preventive Maintenance Scheduling problem involves optimizing maintenance
activities to ensure the efficient operation of critical systems while minimizing down-
time and costs [15]. Given the combinatorial nature of PMS, exact methods become
computationally infeasible for large-scale problems. Consequently, heuristic and meta-
heuristic approaches, particularly GAs, have garnered significant attention in the
literature due to their ability to provide near-optimal solutions within reasonable
computation timeframes.

GAs are population-based optimization techniques inspired by natural selection and
evolutionary principles. In the context of PMS, GAs encode maintenance schedules as
chromosomes that evolve over multiple generations through selection, crossover, and
mutation operators. The fitness function evaluates each schedule based on criteria
such as total energy production, water supply, maintenance costs, and demand-supply
balance.

The application of GA to PMS problems follows specific fundamental steps [6].
First, maintenance schedules are encoded as chromosomes. In this encoding process,
each gene represents the maintenance status of a unit in a specific week; that is,
the unit is either operational or undergoing maintenance during that week. This
transformation allows maintenance processes to be structured in a format that can
be processed by the genetic algorithm.

Next, an initial population is generated. The initial population is typically produced
randomly; however, certain heuristic methods suitable for the problem’s nature can
also be employed. This process is crucial to enable the genetic algorithm to search a
wide solution set.

In each generation, the chromosomes created are evaluated based on a fitness
function. The fitness value measures how well the maintenance schedules meet energy
and water demands and whether they minimize production interruptions caused by
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maintenance. More suitable maintenance plans create a more balanced production-
consumption relationship by improving the system’s operational efficiency.

One of the key components of genetic algorithms is the selection process, which en-
sures that individuals with high fitness are chosen to reproduce in the next generation.
Among the most commonly used selection methods are roulette wheel selection and
tournament selection, both of which aim to pass on high-performing chromosomes
through generations.

The crossover process is performed by exchanging genetic information between two
selected parent chromosomes. This operation enables the creation of potentially better
maintenance schedules and enhances genetic diversity, facilitating the exploration of
a broader solution space.

The mutation process is applied to prevent premature convergence of the genetic
algorithm and to allow further exploration of the solution space. By introducing
small changes in randomly selected chromosomes, genetic diversity is preserved, and
alternative solutions can be discovered.

Finally, the algorithm terminates when a predefined number of generations is
reached or when the fitness function converges to a certain level. At this point, the
best chromosome obtained is considered the final solution for maintenance scheduling.

4. New Models And Solutions

In this study, a novel GA model based on Zeckendorf representation and Fibonacci
number decomposition is proposed to enhance the efficiency of preventive maintenance
scheduling (PMS). The primary objective of the proposed approach is to optimize
the scheduling of preventive maintenance activities for electricity generation and
water desalination units while minimizing deviations between production and demand.
Unlike traditional GA models that use direct encoding schemes, this study employs k-
Zeckendorf representation to structure maintenance schedules more efficiently, thereby
improving the search process and convergence speed.

The proposed model integrates three key components: (1) initial population gener-
ation using k-Zeckendorf representation, (2) a customized fitness function based on
production-demand deviation, and (3) genetic operations (selection, crossover, and
mutation) adapted to k-Zeckendorf-based scheduling.

Maintenance schedules for turbines and distillers are initialized using k-Zeckendorf
representation, which ensures that each maintenance period is uniquely encoded in
terms of Fibonacci numbers. This encoding reduces redundancy in schedule rep-
resentation and enables the algorithm to explore feasible solutions more efficiently.
Maintenance initiation weeks are selected based on k-Zeckendorf-decomposed values,
ensuring that units undergo preventive maintenance without clustering within the
same periods.
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In preventive maintenance scheduling, electricity and water production are affected
by maintenance periods, leading to fluctuations in meeting demand. Therefore, opti-
mal maintenance scheduling must ensure appropriate allocation of production capac-
ities. The fitness function evaluates the deviation between available electricity and
water production and demand values, defined as follows:

F =
T∑

t=1
[we|Pe(t) − De(t)| + ww|Pw(t) − Dw(t)|] ,

where F represents the fitness function, T denotes the total number of weeks, Pe

and De are the electricity production and demand, respectively, Pw and Dw are the
water production and demand, respectively, we represents the weight coefficient for
the electricity production-demand deviation, and ww denotes the weight coefficient
for the water production-demand deviation.

Electricity production may decrease due to maintenance on turbines. The total
electricity production per week is calculated as follows:

Pe(t) =
NT∑
i=1

(Ai(t) · CT,i) ,

where NT is the total number of turbines, Ai(t) is a binary variable indicating whether
the turbine is under maintenance (1 = operational, 0 = under maintenance), and CT,i

denotes the capacity (MW) of the i-th turbine. Similarly, water production decreases
due to maintenance on distillers. The weekly water production is calculated as follows:

Pw(t) =
ND∑
j=1

(Bj(t) · CD,j) ,

where ND is the total number of distillers, Bj(t) is a binary variable indicating whether
the distiller is under maintenance (1 = operational, 0 = under maintenance), and CD,j

represents the capacity (MIGD) of the j-th distiller.
Thus, the fitness function penalizes large production deficits, especially during

critical demand periods, guiding the genetic algorithm towards solutions that optimize
unit maintenance intervals while maintaining supply-demand balance.

The fitness function evaluates the difference between the available electricity and
water production and the corresponding demand values. It is defined as follows:

The proposed GA model is applied to a PMS problem that includes eight turbines
and sixteen distillers operating under predefined demand constraints. Each unit
undergoes scheduled maintenance for a predetermined period-four weeks for turbines
and five weeks for distillers. The numerical values for these units are presented in
Table 5, derived from literature to enable a fair and effective comparison [3].

The GA iterates over 100 generations with a population size of 50, dynamically
adjusting schedules based on varying fitness values.

To evaluate the effectiveness of the proposed approach, weekly electricity and water
production levels are analyzed in comparison with demand values. Additionally,
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Table 5. Numerical Values of Units

Unit
Type

Number of
Units

Maintenance
Duration (Weeks)

Production
Capacity

Turbines 8 4 47,040 MW per unit

Distillers 16 5 50.4 MIGD (12 units)
40.2 MIGD (4 units)

Boilers 8 5
Support Only

(No Direct Production)

total annual production, demand, and production surplus are calculated to assess
system performance. The resulting schedules demonstrate that maintenance activities
are well-distributed, production shortages are prevented, and resource utilization is
optimized.

5. Experimental Results

This section evaluates the performance of the proposed genetic algorithm and
k-Zeckendorf representation-based PMS model. The production and consumption
values of electricity and water, total production surplus, and fitness function values
are analyzed.

5.1. Experimental Setup. The proposed genetic algorithm and k-Zeckendorf rep-
resentation based preventive maintenance scheduling model in this study was imple-
mented on a computer with an Intel Core i7-12700H processor and 16 GB of RAM. The
algorithm was implemented using Python 3.8 programming language, and libraries
such as NumPy and Matplotlib were utilized.

To assess the model’s performance, the optimization process was executed with a
population of 50 individuals over 100 generations. The core parameters of the genetic
algorithm are presented in Table 6.

Table 6. Key parameters of the proposed model

Parameter Value Description

Population Size 50
Number of individuals evaluated

simultaneously

Number of Generations 100
Evolution cycles in the solution

space

Crossover Rate 0.8
Probability of creating new generation

individuals

Mutation Rate 0.1
Probability of applying random

mutation

Selection Method
Tournament

Selection
Method for selecting individuals

for crossover

Encoding Type k-Zeckendorf
Maintenance scheduling encoded using

Zeckendorf representation
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Preventive maintenance schedules were generated for both electricity generation
units (turbines) and water treatment units (distillers). Each turbine was assigned
a maintenance period of four weeks, while each distiller was assigned five weeks.
Using Zeckendorf representation, maintenance intervals were systematically planned in
Fibonacci-based sequences, ensuring a balanced distribution of maintenance operations
across the system.

5.2. Results and Analysis. This section analyzes the experimental results of the
proposed genetic algorithm and the k-Zeckendorf representation-based Preventive
Maintenance Scheduling model. The study evaluates key performance metrics, includ-
ing electricity and water production, supply-demand balance, total fitness function
value, and convergence analysis. Additionally, the proposed method is compared
with the conventional GA to assess the impact of Zeckendorf-based encoding on the
optimization process.

To evaluate the proposed model’s ability to optimize maintenance scheduling, the
weekly electricity and water production values were compared with demand values.
Figure 1 compares electricity production values against demand and also displays the
surplus production amount.

Figure 1. Comparison of electricity production values with demand

As seen in Figure 1, electricity production consistently meets demand; however,
short-term production declines occur during maintenance periods. Nevertheless, en-
coding maintenance scheduling using k-Zeckendorf representation ensures a balanced
distribution of maintenance periods across the system, preventing these declines from
causing disruptions.
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Similarly, Figure 2 presents the relationship between water production and demand.
Due to the proposed maintenance planning approach, fluctuations in water produc-
tion have been largely controlled outside critical maintenance periods, ensuring that
demand is met throughout the year. Production deficits during maintenance processes
have not led to any service interruptions.

Figure 2. Comparison of Water Production with Demand

When the results of the proposed method are compared with studies that solve the
same problem using genetic algorithms, it is observed that the proposed approach
achieves superior outcomes. Table 7 provides a comparative evaluation of the results
obtained by the model.

Table 7. Comparative Results of the Proposed Model

Models GA+TS [3]
Proposed

Model
Improvement

Rate
Available Electricity (MW) 17,687,040.00 19,568,640.00 11%
Electricity Demand (MW) 8,590,000.00 8,590,000.00 -
Surplus (MW) 9,097,040.00 10,978,640.00 21%
Reserve Percentage 51% 56% 9%
Available Water (MIGD) 36,321.60 39,811.20 10%
Water Demand (MIGD) 24,130.00 24,130.00 -
Surplus (MIGD) 12,191.60 15,681.20 29%
Reserve Percentage 34% 39% 17%
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The results presented in Table 7 demonstrate that the proposed k-Zeckendorf
representation-based genetic algorithm model provides significant performance im-
provements compared to the conventional Hybrid GA-TS model. According to the
comparisons made in terms of electricity and water production, the proposed model
was observed to increase existing electricity generation by 11% and water production
by 10%.

Notably, in terms of reserve capacity-i.e., the system’s production capacity beyond
demand-an improvement of 9% in electricity and 17% in water was achieved. This
indicates that the operational flexibility of the facility has increased due to a more
balanced distribution of maintenance processes and more effective management of
production interruptions.

Furthermore, the 21% increase in surplus electricity production and the 29% increase
in surplus water production reveal that the system possesses greater backup capacity
and that maintenance processes have a reduced impact on critical production periods.
This finding confirms that the proposed model minimizes production interruptions
and responds more effectively to demand fluctuations.

The findings indicate that the k-Zeckendorf representation-based maintenance sched-
uling enhances system production continuity by structuring maintenance planning
more efficiently. In particular, Zeckendorf encoding, which optimizes the search space
within the evolutionary process of genetic algorithms, has enabled systematic rather
than random scheduling of maintenance periods. Consequently, this has increased
reserve capacity and strengthened production reliability.

Based on these results, it can be concluded that the proposed model offers a feasible,
efficient, and high-performance solution for PMS problems.

6. Conclusion

This study proposed a genetic algorithm model incorporating Zeckendorf represen-
tation and Fibonacci-based encoding to address preventive maintenance scheduling
problems. Traditional methods relying on random or linear encoding approaches often
struggle to systematically plan maintenance periods, leading to production interrup-
tions. By optimizing maintenance scheduling using Zeckendorf encoding, the proposed
model effectively minimized production disruptions and improved the supply-demand
balance.

Experimental results demonstrated that the proposed model increased electricity
production capacity by 11% and water production capacity by 10%. Reserve capacity
improved by 9% for electricity and 17% for water, reinforcing production flexibility.

The optimization process achieved faster convergence than conventional methods,
reducing solution time. This study enhances the applicability of genetic algorithms
for PMS problems, improving their effectiveness in maintenance scheduling. The
integration of Zeckendorf representation with genetic algorithms has proven to be a
more balanced and effective solution, particularly for large-scale maintenance planning
problems. Future research will focus on applying this model to different energy plants,
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production facilities, and infrastructure systems. Further development will explore
hybrid approaches and other metaheuristic optimization techniques to enhance model
performance.
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