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INEQUALITIES FORMULATED BY A SPECIAL CLASS OF
BAZILEVIC FUNCTIONS COMBINING THE BELL SERIES

G. MURUGUSUNDARAMOORTHY! AND RABHA W. IBRAHIM?

ABSTRACT. We study a family of inequalities formed by the Fekete-Szegd design,
making use of the normalized analytic functions in the open unit disk. We investigate
the following functional:

1-9,//
w(z) = 0

P1=0(2)
where ¥ > 0 acts on a domain having the starlike with respect to the boundary
of the unit disk and symmetric with respect to the real axis. In addition, various
presentations of the central result for functions formulated by convolution are in-
vestigated. As a special instance of this result, Fekete-Szego issue associated with
Special functions (differential operators) is studied. Moreover, by using bounds of

the initial Taylor coefficients, we discussed Second Hankel determinant results.

1. INTRODUCTION

We deal with the class of normalized analytic functions denoting by A taking the
construction series

(1.1) W(2) :z+i1/}kzk (zeA:={zeC||z] <1})

and 8 be the subclass of A owing the univalent functions. Moreover, there is another
class of analytic function in A taking the series

0(2) =1+ Lz + Loz> + L32® +--- (L > 0),
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such that ¢(0) = 1, ¢'(0) > 0, which maps the unit disk A onto a starlike domain,
which is symmetric with respect to the real axis. A subclass of 8§ symbolized by S*(¢)
and recognized by

2 (2)
U(2)
Furthermore, a subclass of § symbolized by C(¢) and defined by

Ziﬂ”( Z)
V' (2)
where < denotes the subordination between analytic functions. These classes were

formulated and investigated by Ma and Minda [14]. They have found the Fekete-Szego
inequality for the function in the class C'(¢). Since

Y eCp) & z'(2) € S*(p),

we get the Fekete-Szego inequality for functions in the class S*(¢). A brief explanation
of the Fekete-Szegd problem for the class of starlike, convex, and close-to-convex func-
tions can be found in the most recent publication by Srivastava et al. [22]. Motivated
by the classes defined above, we consider a function associated with the Bell numbers.

The Bell numbers (BNs) b, having the following binomial coefficients b,.; =

o (})bk. Clearly, [3-6,25-27]

<p(z) (z€A).

1+ < p(z) (z€A),

bo = bl = 1, bg = 27 b3 = 5, b4 = 157 b5 =52 and b6 = 203.

Cho et al. [9] and Kumar et al. [12] considered the function

400 n
(1.2) P(2) i=e® — 1= ZBn% = 1+z+z2+223+gz4+--~ (z € A),

n=0 :
which is starlike and its coefficients generate the BNs and established the first order
differential subordination relations between functions with a positive real part and
starlike functions related to the Bell numbers. We now consider the function ¢(z) :=
e®” — 1 with its domain of definition as the open unit disk A. We shall see that the
function ¢1, defined by

2 g(t) — 1 17 , 245
¢1(Z)=ze><p</0 ¢()t dt>=Z+22+23+1824—288z5+-",

would serve as an extreme function in many problems.

The Fekete-Szegd inequality is obtained in this study for functions in a more
extended class BY(¢) of Bazilevi¢ functions, which we describe below. Furthermore,
we provide our findings with implementations to specific functions specified by the
convolution class.
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Definition 1.1. Let ¢(z) be a starlike function given by (1.2). A function ¢ € A
belongs to the class BY(¢) if

21719 /(4
o - 20

a9 ™
[ (=)'
By fixing ¥ = 0 and ¥ = 1 we state the following.

Ezample 1.1. Let ¢(z) be given by (1.2) and starlike function. A function ¢» € A
belongs to the class &(¢) if

2 ()

U(z)
Example 1.2. Let ¢(z) be a starlike function given by (1.2). A function ¢ € A belongs
to the class Q(¢) if

< ¢(2).

P'(2) < ¢(z) (9 =0).
We request the next result.

Lemma 1.1 ([13]). If p(z) = 1 + c12 + c22* + - -+, with Re (p(z)) > 0, then the
following sharp estimate holds
(1.3) len| <20 (n=1,2,3,...),
ey — ve?| <2max{1, |2v — 1|},
and the result is sharp for the functions given by
1+ 22 (2) = 1+ 2
1o PETI T,

Lemma 1.2 ([14]). Suppose that p1(z) = 1 + c12 + ¢2® + -+ is a function with
positive real part in A. Then,

p(2)

e forv <0 orv>1, the equality

—4dv+2, ifv<0,
lco —vei] < {2 if0<wv<1,

4v — 2, ifv>1,
holds if and only if p1(2) is (14 2)/(1 — 2) or one of its rotations;
e for 0 <wv < 1, then equality holds if and only if
1+ 22
Pl =7

or one of its rotations;
e for v =0, the equality holds if and only if
1 1 \1+4+z2 1 1 \N1—-=2
=(=+=\) — ——=A 0<A<1
nz) <2+2 )1—z+<2 2 )1+z (0sAs1)
or one of its rotations;
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e for v =1, the equality holds if and only if pi is the reciprocal of one of the
functions such that the equality holds in the case of v = 0.

Furthermore, the top bound above is sharp; it may be made better when 0 < v < 1:
lco — vt |+ vl <2 (0 < v <0.5)
and
lco —ved |+ (1 =) P <2 (0.5<v<1).
2. COEFFICIENT BOUNDS AND FEKETE-SZEGO PROBLEM

Our main result is the following.

Theorem 2.1. Let ¢(z) be given by (1.2). If 1(z) given by (1.1) belongs to BY(¢),

then
as] <—
a S —
2 _19+ 1)
as] < 1 . 9?2 + 30 + 4
a ——— max — .
=2 20+ 1)
Further,
1 /R 1-9 Zf <
200~ (0P T 210 . H = 01,
|a3_ﬂa§| < 2(2+119)7 L if o1 < p < oy,
9 T (1f19)2 ~ 20T if = 0,
where
(1-19)(2+9)
g1 = s
2(24 )
. 2140+ (1—-0)(2+9)
2 2(2 +9) '

The result is sharp.

Proof. Since 1) € B(¢) there exists an analytic function w with w(0) = 0 and
|lw(z)] < 1in A such that

1-9,/,/
(2.1) W — Sw(2)).
Define the function p; by
pi(z) = izgz; =14 cz+c22+e328+--- 7

or, equivalently

2)—1 1 c? c
(2.2) w(z):]p;iEZgHZQ lC1Z+<02—21> Z2+<C3—0102+41> 23—1--"].
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Given p;(0) = 1 and Re (p1(2)) > 0, p; is analytic in A. Obviously, we have

(2.3) p(w(z)) = ¢ <m) =1+ %z + %27:2 + ; (Cs ;11 > 25+

Since

A L (@-DE+2) , 2 2
) 1+2w+l)+< 5 2+W+mg>

9—1)(0—2)(9+3
(2.4) +{a4(19+3)+(19+1)(79—3)a2a3+ ( ) 5 ) )ag}zg’—l—
Equating the coefficients of z, z? in (2.3) and (2.4), we get
1
2. =
(2:5) 2w 1)
1 (-1 +2) ,
2. = |d¢y —
( 6) as 8(19"‘2)[02 (19+1)2 Cl
1 . _02(19—1)(19+2)
2042 |7 Y 4w+ |
In view of Lemma 1.1, we have
1
<
ozl < 577
and
|a | < Lmax 1 w
=942 2012 |
Further, we have
1
(2.7) az — paz = 20+ 9) {02 — vc?} )
where
2+ 9)2u+0-1)
B 4(1+0)?
Our result now follows by Lemma 1.2. The upper bounds are sharp in terms of the
following conclusion. Formulate the functional K;Zn, n=23,..., by
K (2) _
—¢1—19 = Cb(zn 1)> Kon(O) =0= [K:Zn]/(o) -1
[K2.(2)]

and the function FY and G%, 0 < A < 1, by

S1- 19[Fﬁ]( ) Z(Z+)\) /
W_ ( 1+ Az >’ F\(0)=0=F(0)—1
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and

AGY () (_z(z + )
Gl LA

Clearly, the functions K3, FY,GY € B(¢). Also, we write K} := KJ,. We have the
following inequalities

» GA(0) = 0 = G4(0) — 1.

e 11 < 0y0r ft> 0y ifand only if ¢ € K}Z or its rotations;
® 01 < i < 0y if and only if ¢ € Kgg or its rotations;

e ;= oy if and only if ¢ € FY or its rotations;

e /= 0y if and only if ¢ € GY or its rotations.

O

Remark 2.1. e For 01 < pu < o9, then, in view of Lemma 1.2, Theorem 2.1 can be
modified.
e For o3, we have
(1+9)2+ (1 —9)(2+9)
2(2+99)

03 =

e For 01 < < 03, we get

Ly (9P [p Y = 1)(249) o 1
a5 — paz| + (2 +9) 2(149) a2 249
o If o3 < < 0y, then
, (140)2 Qu+9—-1)2+0)], , 1
— — < -
a5 = pasl + 577 2(1+ 9) ol < 555

Theorem 2.2. Assume that ¢(z) is defined by (1.2). If 1(2) as in (1.1) belongs to
B?(¢), then for a complex number p1, we have

1 2+Np 9?4+ 30+4
2. — pa;] = —— 1 - :
( 8) |a3 ,uaz2| 2+19maX{ 9 (1_‘_19)2 2(1_1_19)2
In particular,
laz — a3 = Lmaux 1 _v
ST T o4y 120 +9)| )
Proof. Using (2.5), (2.6) and (2.7) we have
1
2 . 2
N TP w2~ vl

where

@24+ 9)2u+Y—1)
_[ 4(1 +0)? ]

In view of Lemma 1.1, we have the desired assertion. O
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3. APPLICATION TO FUNCTIONS ASSOCIATED WITH SPECIAL FUNCTIONS

Let ¢(2) = 242525 ¢hn2", ¥, > 0. Since f(2) = 2+ X% a,2" € BY(¢) if and only
if (f*1) =2+, Ynan2" € BY(¢), we obtain the coefficient estimate for functions
in the class ‘B}Z(qﬁ) from the corresponding estimate for functions in the class B7(¢).
Applying Theorem 2.1 to the function (f *1)(z) = 2z + ¥9as2* + ¥zaz2® + - - -, we get
the following results, Theorem 3.1 after an obvious change of the parameter u. For
various choices of ¥(z) we get different operators, which are listed below.

(a) For ¥(z) = 2+ 3% 5 i“ l’l(ﬁigf)l"l(ﬁ)(:qz*{ 5. ¢, we get the Dziok-Srivastava

operator H, s(a) f(z) introduced by Dziok and Srivastava [11].
(b) For ¥(z) = ¢(a,c,z) = S5 ((a; 2", we get the Carlson-Shaffer operator
L(a,c)f(z) introduced by Carlson-Shaffer [7].
(c) For ¢(z) = oy, we get the Ruscheweyh operator D f(2) introduced by
Ruschweyh [20].
(d) For ¥(2) = 2z + 3/25n™2" m > 0, we get the Saldgean operator D™ f(z)
introduced by Salagean [21].

k
(e) For ¢(z) = 2+ 302, (M) 2", A >0, k € Z, we get the multiplier transfor-

ED)
mation (A, k) introduced by Cho and Srivastava [10].

k
(f) For p(2) = z+>/%5n (@) 2", A >0, k € Z, the multiplier transformation

ES)
J(A, k) introduced by Cho and Kim [§].

(g) For ¥(z) = z + 32 2% 2", where z,a,0 € C, f #0,—1,—2,... and
Re(B8) > 0, Re(«) > 0, the Mittag-Lefller function denoted by E, 3(¢) (see
[2,17]).

(h) For A\ # 2,3,4,..., let ¥(2) = 2+ >, %Wanz", we get fractional

derivatives and fractional integrals operator (Q*f)(z) (also see [23,24].

(i) A variable X is said to be Poisson distributed if it takes the values 0, 1,2,3, ...
with probabilities e™™, m-, m?S5~, m3S-, ..., respectively, where m is
called the parameter. Thus, P(X = r) = mrf;m, r=20,1,23,.... In [18],
Porwal introduced a power series whose coefficients are probabilities of Poisson
distribution

mn— 1

Jsz—z—i—Z m (2 € A),

where m > 0. By ratio test the radius of convergence of above series is infinity.
Due to Porwal [18] (see [15,16,19]) we have

n—l

I 3XKn( z—i—Z a2t (2 € A).

n—l
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(j) The symmetric differential operator [28]

(0Y)(2) = 2+ Z (1 — ) (=1)")]™py 2"~
(k) The conformable d1fferent1al operator [29]
k1(p, 2) Ko (g, 2) /
PR o) ) (o)

_Z+Z ("ﬁ(@a )+kﬁo(@az)>¢k2k

k=2 Rl(@? )+'L€O(pv Z)
(1) The hybrid fractional integro-differential operator is given by [30]

(TP =+ 3 %alo) (TG T o

k=2

. K1(p)t+kro(p)
where :Kk(@) = ;@11(@)—&-'@00(@) '

Theorem 3.1. Assume that ¢(z) is defined by (1.2). If f(2) as in (1.1) belongs to
B (¢), then

% {2#%19 (14:%#)3 z + 2813%2} ) if p <oy,
|ag — paz| < ﬁ ' 2(2119) if o1 < p < 09,
% {_24%19 + (1#@%% - 28;352} ,if p> 0y,
where
o ::zﬁ . (1—=9)(2+7)
V3 22+9)
-\ ::wj 201 +19)2 + (1 —9)(2 +19).
V3 2(2+9)

The result is sharp.

Theorem 3.2. Let ¢(z) be given by (1.2). If f(2) given by (1.1) belongs to %Z(@,
then for complex p we have

1
3.1 — ] 1,
31 lay — padl (zw)%max{

4. SECOND HANKEL DETERMINANT OF ANALYTIC FUNCTIONS

2+ D) 9> +30+4
1+ 2(1+9)2

Here, the Second Hankel determinant of analytic functions 1 € B7(¢).
Lemma 4.1 ([13]). Let p € P with ¢; > 0. Then it satisfies the series

(4.1) 29 =c% + 2(4 — ¢?),
dez3 =3 +2(4 — A)err — e (4 — )a® + 204 — A) (1 — |z%2),

for some x, z, with |x| <1 and |z| < 1.
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Theorem 4.1. Let the function f € BY($) be given by (1.1).

(1) If 9 < 0,
10 (9 — 1) (9?2 — 200 + 3) 449 12
DrDW+3) T @+0I0+3) O 1P0+220+3)  @12)7?

499 — 36
T OT 120122013

then the second Hankel determinant satisfies

<0,

’a2a4 - ag‘ < %
(¥ +1)2

(2) If 9 =0,
10 (9 — 1)(9? — 200 + 3) 449 12

‘(19+1)(19+3)+ G+ Di0+3) @O+ P@+220+3) @+2)7°

B ( 36 ) >0
(4 1)2(9+2)2(9+3)) —
or the conditions ¥ <0,
‘ 10 (0 — 1)(9? — 200 + 3) 4490 12

G+DW+3) T @+ +3) 0104220 +3) @127
49 — 36 .
4+ 1)2(9+2)2(9+3) = 7

then the second Hankel determinant satisfies

+

‘a2a4 — a%‘
s 10 (¥ —1)(9% — 200 + 3) 449 R
12 [(9+1)(9+3) (94 1)4(9 + 3) (9 +1)2(0 +2)2(9+3) (9+2)2
969 (9 + 4) — 320
(94 1)2(9+2)2(9 + 3)°
(3) If ¥ > 0,

10 (9 —1)(9* — 200 + 3) 449 12
G+D0+3) | @+ 0+3) @+ P@+220+3)  @+2)7

56 <0
- <(z9+1)2(19+2)2(19+3)> -

then the second Hankel determinant satisfies

3’ 10 (@-D®2-200+3) 12 | 880108

‘ B 2’ S S A I CaR VI Cazo) TFDT0+3) @+22 | T 05 D2(012)2(0+3)

a2d4 — a3 = 75 10 (0-1)(92—209+3) 12 | _ 36 '
’(19+1)(19+3) T o) 0122 | ~ WI)20+2)2(013)

Proof. Since f € BY(¢) and equating the coefficients of z, 22, 2% in (2.3) and (2.4) we get

B L fa- g {eherny,

2w+l BTew+2) [P 1 w12
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and further by using the above, we get

1 H_l + (“9_1)(—(19 —2)(9 +3) +3(9 + 1)(0 — 3))} ot

“ T80+ 3) 9+ 1)
12(0 — 3
_ (M) c1co + 2403]
1 9 —1)(29% — 79 — 3 12(0 — 3
T B+ 3) _{< )((19+1)3 ) ‘1}6?_ ( (qg+2)))6102+24c3 |
Therefore,
s 1[4 —=1)0%—-200+3) 6
4204 743 Zg6 1 { 20+ AW +3) W+ 10 +2)2(0+3)
5 6 2440 )
T OFDW+3) (ﬂ+2)2} + ((m 1)2(19+2)(19+3)) 226y
24c1c3 243
TOID0+3)  @r22|
Let
g =4
(W+1)(W+3)’
0 489(V + 2)
2T W+ 1200+ 3)(0 + 2)2
—24 1
b T
J (W -1 -200+3) 6 N 5 6
R CEECES) W+ 1)0+220+3)  @+1D0+3) @+2)?2
(4.2) :(19—1)(192—2019+3)_ 1
' 2(0 4+ )49+ 3) (W +1)(9+3)
Then,
(4.3) lagay — a§| =T|dycres + dQC%CQ + dgcg + d4céll|,

since the function p(e’), § € R, belongs to the class P for any p € P, there is no loss of
generality in assuming ¢; > 0. Write ¢; = ¢, ¢ € [0, 2]. Substituting the values of ¢y and cs,
respectively, from (1.4) and (1.5) in (2.2), we obtain

T
lagay — a3 =7 ‘&(dl + 2dy 4 d3 + 4dy) + 22c*(4 — 2)(dy + do + d3)
+(4 = )z (—dic? + dy(4 = ) + 2dre(4 — A)(1 — |2*)z|,

Replacing |z| by p and substituting the values of dj, ds, ds and d4 from (2.6) yield

T [ 4|20 —1)(9* — 200 + 3) 20
a2 < = |t
la2a4 — a3 < 7 lc (0 + 140 +3) (W0 +1)(9 +3)
489 24 48¢(4 — ) (1 — u?)

T OF 1022032 (W+22| W+ 1D(9+3)
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12 + 249
(O + 1)+ 2)%(0 + 3))

24¢? + 96(9? + 40 + 3)
—p*(4 =) < (0 4+ 1)(9 +3)(0 + 2)2 >

(4.4) +4pc?(4 — A (

o lc‘* 200 — 1) (92 — 209 + 3) 20
4 (9 +1)4(0 + 3) (0 +1)(9 + 3)
9619 24 12¢(4 — c?)
TOF 0220132 @422 WrD@+3)

12 4+ 29
(4= ) <(ﬁ )@+ 2200+ 3))
6p°(4 — )
T OT D@ +3)(0 +2)
(4.5) = Fl(c,u,9).

[((c—2)(—20(9 +4) + (c - 6))]]

Note that for (c,u,d) € [0,2] x [0, 1], differentiating F'(c, u,?) in (2.8) partially with
respect to p yields

(4.6)
OF A4 —c?) (c—2)(—=29(9 +4) + (c—6))
o = o nr20+3) 2T T G wr sz L CQ”]’

then for 0 < ¢ < 1 and for any fixed ¢ with 0 < ¢ < 2, it is clear from (2.9) that g—i > 0, that

is, F(c, u,v) is an increasing function of p. Therefore, for some special fixed parameters, we
get max F'(c, u,9) = F(e,1,9) = G(c). In addition, we have

C4

!
24 72 29

Twr22| ((19+1)(19+2)2(19+3))} +4c? ((19+ 1)(19—1—2)2(19+3)>
24(12 + 40(9 + 4)) ]

W+ 1)+ 2)%(0+3)

Gle) = i6

2(9 — 1)(9% — 209 + 3) 20 88Y
D+DI0+3) @+ D@+3) @O+ 120+22(0+3)

Moreover, by the conclusion

le{‘2(0—1)(192—200+3) N 20 N 88Y
4 (9 + DA + 3) W+ 1)@ +3) " (9+1)20 +2)2(0 + 3)
24 72
C(9+42)? _((19+1)(z9+2)2(19+3))}’

29

@=4 ((19+ 1)(19+2)2(19+3)) ’
24(12 + 49(0 + 4))

W+ 1)(I9+2)2(09+3)

(47 R=
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We have,
R’ Q < O7P < _%7
lagay — a3| < % 16P+4Q +R, Q<0,P>-%,
4P§;Q27 Q>O7P<_%7
where P, Q and R are given by (4.7). O

5. CONCLUSION

In this investigation, we define a new subclass BY(¢) of normalized analytic functions
in the open unit disk A, which is associated with Bell Numbers. We then successfully
investigate several properties and characteristics, such as estimates for the first few Taylor-
Maclaurin coefficients, the Fekete-Szego problem, and the second-order Hankel determinant
H(2). Finally, we indicate a number of known operators (or special functions) listed in
Section 3, that are already available in the literature on the subject and their application.
The appropriate approximation for functions in the class ’Bﬁ(qﬁ) is used to estimate the
coefficients for functions in %Z(qﬁ).
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