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ON RAPID EQUIVALENCE AND TRANSLATIONAL RAPID
EQUIVALENCE

VALENTINA TIMOTIĆ1, DRAGAN DJURČIĆ2, AND MALIŠA R. ŽIŽOVIĆ2

Abstract. In this paper we will prove some properties of the rapid equivalence and
consider some selection principles and games related to rapidly varying sequences.

1. Introduction

Let S be the set of sequences of positive real numbers, and S1 be the set of nonde-
creasing sequences from S [5]. Let c = (cn)n∈N ∈ S. A sequence c is said to be rapidly
varying in the sense of de Haan, if

(1.1) lim
n→+∞

c[λn]

cn
= +∞

holds for each λ > 1. The set of all these sequences is denoted by R∞,s. These
sequences are objects in rapid variation theory in the sense of de Haan, which is very
important in asymptotic analysis and applications (see, e.g., [1–3, 8, 10, 15]). The
theory of rapid variation is an important modification of Karamata’s theory of regular
variation [13], and its relation can be seen on example of slow and rapid variation
within generalized inverse (see, e.g., [7]). Elements of the class R∞,s are important
objects in dynamic systems theory [10,11,15], infinite topological games theory and
selection principles theory [3–6].

A sequence c is translationally slowly varying (in the sense of Karamata) if

(1.2) lim
n→+∞

c[λ+n]

cn
= 1
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holds for each λ > 1. Translationally slowly varying sequences form the class Tr(SVs)
(see, e.g., [4–6]), and it holds R∞,s∩Tr(SVs) 6= ∅, R∞,s \Tr(SVs) 6= ∅ and Tr(SVs)\
R∞,s 6= ∅.

A sequence c is translationally rapidly varying (in the sense of de Haan) if

(1.3) lim
n→+∞

c[λ+n]

cn
= +∞

holds for each λ > 1.
The class of translationally rapidly varying sequences is denoted by Tr(R∞,s). It

holds Tr(R∞,s) ( R∞,s for each λ > 1 (see, e.g., [5]).
The classes of sequences mentioned above have nice and deep connections with

selection principles theory and infinitely long two-person game theory (see, for example,
[2, 3, 5, 6]).

Motivated by the study of some equivalence relations on classes of functions and
sequences given in [7, 8, 14], in this paper we define a relation on the class of transla-
tionally rapidly varying sequences and investigate some properties of this relation. In
particular, we study relationships of this relation with selection principles and game
theory complementing the research in [2,3,5,6]. We also obtain some additional infor-
mation on the classes of rapidly varying and translationally rapidly varying sequences.

Definition 1.1. Sequences c and d of positive real numbers are mutually translation-
ally rapidly equivalent, denoted by

c
tr∼ d as n→ +∞,

if
(1.4) lim

n→+∞

c[λ+n]

dn
= +∞

and

(1.5) lim
n→+∞

d[λ+n]

cn
= +∞

hold for each λ > 1.

The previous relation is a modification of the rapid equivalence relation between
sequences c and d given by

(1.6) lim
n→+∞

c[λn]

dn
= +∞

and

(1.7) lim
n→+∞

d[λn]

cn
= +∞,

for each λ > 1. We denote it by c r∼ d as n→ +∞ (see, e.g., [8, 14]).
Let c be a nondecreasing sequence from a subset V of S. The capacity of c with

respect to V is the subfamily of S given by MV
c = {x = (xn) ∈ S | cn 6 xn 6

cn+1 for each n ∈ N}.
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Let A and B be nonempty subfamilies of S. Let us adduce two selection principles
which we need in this paper:

(a) (Rotberger, see, e.g.,[12]) S1(A,B): for each sequence (An)n∈N of elements
from A there is an element b ∈ B, so that bn ∈ An for each n ∈ N;

(b) (Kočinac, see, e.g., [9]) α2(A,B): for each sequence (An)n∈N of elements from
A, there is an element b ∈ B, so that b ∩ An is infinite for each n ∈ N.

Games associated to the previous two selection principles are the following.
G1(A,B). Two players, I and II, play a round for each positive integer. In mth

round, m ∈ N, the player I plays a sequence Am ∈ A, and the player II plays an
element bm ∈ Am. II wins the play A1, b1;A2, b2; . . . if and only if b = (bn) ∈ B.

The symbol Gα2(A,B) denotes the following infinitely long game for two players, I
and II, who play a round for each natural number n. In the first round the player I plays
an arbitrary element A1 ∈ A, and the player II chooses a subsequence Ar1(j), j ∈ N,
of the sequence A1. At the kth round, k > 2, the player I plays an arbitrary element
Ak ∈ A and the player II chooses a subsequence Ark(j) of the sequence Ak, such
that Ark(j) ∩ Arp(j) = ∅ is satisfied, for each p 6 k − 1. The player II wins the play
A1, Ar1(j); . . . ;Ak, Ark(j); . . . if and only if all elements from Y = ∪k∈N∪j∈NArk(j) form
a subsequence y ∈ B.

Note that if II has a winning strategy (even if I does not have a winning strategy)
in a game defined above, then the corresponding selection principle holds.

Note that in the paper [5] it is proven that the player II does not have a winning
strategy in the game G1(Tr(SVs), T r(SVs)).

2. Results

Proposition 2.1. If c ∈ S, d ∈ S and c tr∼ d as n → +∞ holds, then c ∈ Tr(R∞,s)
and d ∈ Tr(R∞,s).

Proof. Let c, d ∈ S and c
tr∼ d as n → +∞ hold. Therefore, for λ = 1, it holds

limn→+∞
cn+1
dn

= +∞ and limn→+∞
dn+1
cn

= +∞. For λ > 1 it holds limn→+∞
c[λ+n]
cn

=

limn→+∞

(
c[λ]+n
d[λ]+n−1

· d[λ]+n−1
c[λ]+n−2

· · · dn+1
cn

)
= +∞ for each λ ∈ [k, k + 1), k = 2s, s ∈ N. It

means, for λ = 2, limn→+∞
cn+2
cn

= limn→+∞
(
cn+2
dn+1
· dn+1

cn

)
= +∞. Therefore, +∞ =

limn→+∞
(
cn+2
cn+1
· cn+1

cn

)
= lims→+∞

(
cs+1
cs

)2
=
(
lims→+∞

cs+1
cs

)2
. Thus, lims→+∞

cs+1
cs

=
+∞, so for each λ > 1, lims→+∞

c[λ+s]
cs

= +∞ holds. Therefore, c ∈ Tr(R∞,s).
Analogously we prove that d ∈ Tr(R∞,s). �

Proposition 2.2. The relation tr∼ is a reflexive, symmetric and nontransitive relation
in Tr(R∞,s).

Proof. 1. (Reflexivity) According to Proposition 2.1, from c
tr∼ d as n→ +∞ it follows

c, d ∈ Tr(R∞,s). The asymptotic relation limn→+∞
c[λ+n]
cn

= +∞ holds for each λ > 1
in the class Tr(R∞,s), thus c tr∼ c as n→ +∞.
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2. (Symmetry) According to the definition of tr∼, symmetry holds.
3. (Nontransitivity) The following example shows that the relation is not transitive.

Consider the sequences cn = (n − 1)! ln(n + 1), dn = n! and en = (n+1)!
ln(n+1) , n ∈ N. It

holds c tr∼ d, d tr∼ e as n→ +∞, but c tr∼ e does not hold as n→ +∞. �

Proposition 2.3. Let c, d ∈ S. If c tr∼ d, then c r∼ d as n→ +∞.

Proof. Let c, d ∈ S and c tr∼ d as n → +∞. According to Proposition 2.1 it follows
c, d ∈ Tr(R∞,s) ( R∞,s. Therefore, limn→+∞

cn+1
dn

= limn→+∞
dn+1
cn

= +∞ holds. It

follows limn→+∞
c[λn]
dn

= limn→+∞

(
c[λn]
c[λn]−1

· c[λn]−1
c[λn]−2

· · · cn+1

dn

)
= +∞ for λ > 1. Analo-

gously it can be proved that limn→+∞
d[λn]
cn

= +∞ holds for each λ > 1, thus c r∼ d as
n→ +∞ holds. �

Proposition 2.4. Let TS = Tr(SVs), x ∈ MTS
c . Then it holds x ∼ c as n → +∞

(∼ is the relation defined by limn→+∞
xn
cn

= 1). Also, MTS
c ( Tr(SVs) holds.

Proof. Let x ∈ MTS
c . Therefore, it holds cn 6 xn 6 cn+1 for each n ∈ N. It means

that 1 6 limn→+∞
xn
cn
6 limn→+∞

cn+1
cn

= 1, thus c ∼ x as n→ +∞. Thus, MTS
c ( [c]∼

([c]∼ is the class of strong asymptotic equivalence, generated by the sequence c). It
follows c ∈ MTS

c holds (c ∈ Tr(SVs)). So, if x ∈ MTS
c , then x ∈ [c]∼ and thus

xn = hn · cn, where for the sequence h = (hn), n ∈ N, h → 1 holds as n → +∞.
Therefore, it holds limn→+∞

xn+1
xn

= 1, which means x ∈ Tr(SVs).
The sequence d = (dn), n ∈ N, given by dn = cn+1 + 1

n
as n → +∞, belongs to

the class Tr(SVs) and it does not belong to the class MTS
c . It holds also d ∈ [c]∼. It

means that MTS
c ( [c]∼ ( Tr(SVs) holds. �

Proposition 2.5. The player II has a winning strategy in the game G1(MTS
c ,MTS

c ).

Proof. Let m ∈ N. In mth round the player I chooses an element Am ∈ MTS
c . Then

II chooses an element ym ∈ Am, m ∈ N. It holds cm 6 ym 6 cm+1 6 ym+1 6 cm+2, for
m ∈ N. Therefore, 1 6 ym+1

ym
6 cm+2

cm
= cm+2

cm+1
· cm+1

cm
and limn→+∞

ym+1
ym

= 1 hold. Hence,
y ∈ Tr(SVs) and it holds cm 6 ym 6 cm+1, so y ∈MTS

c . �

Corollary 2.1. The selection principle S1(MTS
c ,MTS

c ) holds.

Proposition 2.6. The player II has a winning strategy in the game Gα2(MTS
c ,MTS

c ).

Proof. (mth round, m > 1) Take a sequence p1 < p2 < · · · of prime numbers. In
mth round the player I chooses the sequence Am ∈MTS

c and the player II chooses a
subsequence Akm(n) of the sequence Am, so that km(n) = pnm for n ∈ N. Consider the
set Y = ⋃

m∈N
⋃
n∈NA

km(n) of positive real numbers. We can consider this set as the
subsequence of the sequence y = (yi), i ∈ N, given by

yi =

Akm(n), if i = km(n) for some m,n ∈ N,
ci, otherwise.
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By the construction of the sequence y, we have that y ∈ S, y ∼ c as i → +∞,
ci 6 yi 6 ci+1 for i ∈ N. Therefore, y ∈ MTS

c Also, y ∩ Am has infinitely many
elements for each m ∈ N. This means that II wins the play A1, Ak1(n);A2, Ak2(n), . . .,
i.e., II has a winning strategy in the game Gα2(MTS

c ,MTS
c ). �

Corollary 2.2. The selection principle α2(MTS
c ,MTS

c ) holds.
Consider now an important subclass of R∞,s.
Let c ∈ R∞,s. Therefore, it holds limn→+∞

cn+1
cn

= A > 1. It follows from (1.1),
because c[λn]

cn
= c[λn]

c[λn]−1
· · · cn+1

cn
holds for n ∈ N large enough. On the right side there

are [λn]− n, n ∈ N, factors which tend to +∞ as n→ +∞.
The class of rapidly varying sequences which satisfy the relation limn→+∞

cn+1
cn

=
A > 1, A ∈ R, we will denote by RTR

∞,s and the class of rapidly varying sequences
which satisfy the relation limn→+∞

cn+1
cn

= 1 by RTS
∞,s. We see that

RTR
∞,s ∪RTS

∞,s ( R∞,s, RTS
∞,s ( Tr(SVs) and RTR

∞,s ( Tr(RVs),
where Tr(RVs) is the class of translationally regularly varying sequences in the sense
of Karamata (see, e.g., [5]).
Example 2.1. The sequence (cn) = (en), n ∈ N, is an element of the class RTR

∞,s, and
the sequence (dn) = (e

√
n), n ∈ N, is an element of the class RTS

∞,s.
Proposition 2.7. Let TRV = RTR

∞,s, x = (xn), n ∈ N, and x ∈MTRV
c . Then xn � cn

as n → +∞ (� is the relation defined by 0 < lim infn→+∞
xn
cn
6 lim sup xn

cn
< +∞).

Also, MTRV
c ( R∞,s.

Proof. Let c ∈ RTR
∞,s = TRV , c ∈MTRV

c and for the sequence x it holds cn 6 xn 6 cn+1
for n ∈ N. It means that for some A ∈ R, it holds

1 6 limn→+∞
xn
cn
6 limn→+∞

xn
cn
6 lim

n→+∞

cn+1

cn
= A < +∞.

Hence, c � x as n→ +∞. Thus, MTRV
c ( [c]� ([c]� is the class of weak asymptotic

equivalence generated by the sequence c). It holds that c ∈ MTRV
c , c ∈ R∞,s. If

x ∈ MTRV
c , then x ∈ [c]� and xn = hn · cn, and for the sequence h = (hn), n ∈ N, it

holds 1 6 limn→+∞hn 6 limn→+∞hn 6 A < +∞. Thus, for λ > 1,

limn→+∞
x[λn]

xn
> limn→+∞

h[λn]

hn
· limn→+∞

c[λn]

cn
= 1
A
· (+∞) = +∞

holds. The last means that x ∈ R∞,s so MTRV
c ( {c}� ( R∞,s. �

Proposition 2.8. The player II has a winning strategy in the game G1(MTRV
c ,MTRV

c ).
Proof. Let m ∈ N. In mth round I chooses an element Am ∈ MTRV

c . II chooses
an element ym ∈ Am, m ∈ N. Thus, we get the sequence (ym). Therefore, for
each m ∈ N, cm 6 ym 6 cm+1 6 ym+1 6 cm+2, so 1 6 ym+1

ym
6 cm+2

cm
. It follows

1 6 limn→+∞
ym+1
ym
6 limn→+∞

ym+1
ym
6 limn→+∞

cm+2
cm+1

· limn→+∞
cm+1
cm

= A · A = A2 and
for each m ∈ N, cm 6 ym 6 cm+1. Hence, y ∈MTRV

c . �
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Corollary 2.3. The selection principle S1(MTRV
c ,MTRV

c ) holds.

Proposition 2.9. The player II has a winning strategy in the game
Gα2(MTRV

c ,MTRV
c ).

Proof. (mth round, m > 1) Let p1 < p2 < · · · be a sequence of prime numbers. In mth

round I chooses the sequence Am ∈MTRV
c , and II chooses a subsequence Akm(n) of the

sequence Am, so that km(n) = pnm for n ∈ N. Consider the set Y = ⋃
m∈N

⋃
n∈NA

km(n)

of positive real numbers. This set we can consider as the subsequence of the sequence
y = (yi), i ∈ N, given by

yi =

Akm(n), if i = km(n) for some m,n ∈ N,
ci, otherwise.

By the construction of the sequence y, we have that y ∈ S, yi � ci as i → +∞,
ci 6 yi 6 ci+1 for i ∈ N. Therefore, y ∈ MTRV

c . Also, y ∩ Am has infinitely
many elements for each m ∈ N. This means that II wins the play A1, Ak1(n);
A2, Ak2(n); . . . ; Am, Akm(n); . . . In other words, II has a winning strategy in the game
Gα2(MTRV

c ,MTRV
c ). �

Corollary 2.4. The selection principle α2(MTRV
c ,MTRV

c ) holds.

Remark 2.1. In Propositions 2.8 and 2.9, and in Corollaries 2.3 and 2.4, improvements
of some results from [3] are given.

Remark 2.2. Propositions 2.5, 2.6, Corollaries 2.1 and 2.2 hold also for the class
RTS
∞,s ( Tr(SVs).

A sequence x = (xn) ∈ S is said to be logarithmic rapidly varying, with base 2,
if (log2 xn), n ∈ N, is an element of the class R∞,s (see, e.g., [6]). The class of all
logarithmic rapidly varying sequences is denoted by L2(R∞,s). It holds L2(R∞,s) (
R∞,s.

Proposition 2.10. Let x, y ∈ S1 and x r∼ y as n→ +∞. If x ∈ L2(R∞,s) holds, then
y ∈ L2(R∞,s).

Proof. Let sequences x, y ∈ S1 be given, and let the sequence (log2 xn), n ∈ N, be
rapidly varying. Define the functions f(t) = x[t] and g(t) = y[t], t > 1. Therefore,
it holds f(t) r∼ g(t) as t → +∞, and log2 f(t) is rapidly varying function. The
functions f and g are also nondecreasing. It holds log2 g(λt)

log2 g(t) >
log2(f(λ

2
3 ·t))

log2(f(λ
1
3 ·t))
→ +∞ as

t → +∞, for each λ > 1. For t large enough, g(t) < f(λ 1
3 · t) and f(λ 2

3 · t) < g(λt)
hold for λ > 1. Therefore, log2 g(t) = h(t), t > 1, belongs to the class R∞,f and hence
(log2 yn) ∈ R∞,s. �

Corollary 2.5. Proposition 2.10 holds when xn tr∼ yn as n→ +∞.
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