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UNI- AND BI-PARAMETRIC TWO-STEP ITERATIVE METHOD
WITH MEMORY FOR SOLVING NONLINEAR EQUATIONS

NISHANT KUMAR1 AND JAI PRAKASH JAISWAL2

Abstract. In this paper, we have suggested a two-step with memory method
for solving nonlinear equations by transforming an extant optimal fourth-order
without memory method. The acceleration of the order of convergence is attained
by employing a single and two self-accelerating parameters. These parameters are
estimated by a Hermite interpolating polynomial to enhance the convergence order
of iterative method without memory. This order of convergence acceleration is
achieved without the use of any additional functional evaluations, precisely the
convergence order of the suggested two-step with memory method is reached from 4
to 5.70156. The rate of convergence is also verified by Herzberger’s matrix method.
Finally, various examples are taken into consideration to support the theoretical
outcomes.

1. Introduction

In today’s real world, solving the nonlinear equation g(y) = 0, is a very momentous
problem. Numerous iterative methods have been presented to find the nonlinear
equation’s solution (see [1–4]). These iterative methods show a very important role
in the area of numerical analysis because they are utilized in a wide range of pure
and applied science fields. The most popular one-point without memory iterative
technique among them is the Newton-Raphson method, which is described by

wn+1 = wn − g(wn)
g′(wn) ,
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for the solution of g(y) = 0, w0 is the initial approximation and n = 0, 1, 2, . . . , whose
convergence order is 2. One issue with this method is the presumption g′(wn) ̸= 0,
which restricts it’s application. One-point iterative scheme established by Kumar et
al. [5] is described as follows:

wn+1 = zn − g(wn)
g′(wn) − λg(wn) ·

Taking λ = 0 in the above equation, we achieve the Newton-Raphson method. The
error expression of the aforesaid scheme is

en+1 = (λ − c2)e2
n + O(e3

n),

where en = wn − γ, ci = g(i)(γ)
i!g′(γ) , i = 2, 3, . . . , and γ is a zero of nonlinear equation

g(w) = 0. The convergence order of the aforesaid method can be increased by taking
λ = c2 in the above error expression. For the classification of iterative methods one
can go through the references [6, 7].

Several researchers are currently concentrating on creating with memory iterative
techniques that uses one or more self-accelerating parameters. There are some excellent
contributions dedicated to derivative free with memory iterative techniques, such as
[8–12]. Unfortunately, there are very few memory-based derivative iterative techniques
for solving nonlinear equations are available in the literature. The development
of the multipoint iterative technique with memory is the main goal of this paper
because it may raise the order of convergence of the optimal without memory methods
without requiring any additional computations and has a high computational efficiency.
In this paper, we present a uni- and bi-parametric two-step iterative method with
memory for solving nonlinear equations, followed by a convergence analysis. The
Hermite interpolating polynomial is used to calculate the parameters, and the order
of convergence of the optimal two-point method is increased from 4 to 5 and 5.70156,
respectively. The convergence rate is also verified by an alternate approach called
Herzberger’s matrix method [13]. At the last, the derived theoretical results are
validated by numerical testing.

2. With Memory Method and its Convergence Analysis

In the following part, we will add the parameter α to the iterative method presented
by Khattri [14] to improve it’s convergence rate. First, we take into account the fourth-
order without memory method, which is given in the article [14]:

zn = wn − g(wn)
g′(wn) ,

wn+1 = zn − g(zn)
2
(

g(zn)−g(wn)
zn−wn

)
− g′(wn)

·(2.1)
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The error expressions for each sub-step of (2.1) are:
en,z = zn − γ = c2e

2
n + O(e3

n),

en+1 = (c3
2 − c2c3)e4

n + O(e5
n),

where en,z = zn − γ, en = wn − γ and ci = g(i)(γ)
i!g′(γ) , for i = 2, 3, 4, . . . , and γ ∈ R. After

adding the parameter αn to the first sub-step of the above scheme, we can write the
following with memory iterative scheme:

zn = wn − g(wn)
g′(wn) − αng(wn) ,

wn+1 = zn − g(zn)
2
(

g(zn)−g(wn)
zn−wn

)
− g′(wn)

·(2.2)

The error expressions for each sub- step of (2.2) are:
en,z =zn − γ = (−αn + c2)e2

n + O(e3
n),(2.3)

en+1 =(αn − c2)((αn − c2)c2 + c3)e4
n + O(e5

n),(2.4)

where en,z = zn − γ, en = wn − γ and ci = g(i)(γ)
i!g′(γ) , for i = 2, 3, 4, . . . , and γ ∈ R. It is

symbolized by OWM4. It is clear from (2.4) that the order of convergence of (2.2)
is four for αn ̸= c2 and when αn = c2 = g′′(γ)

2!g′(γ) , the convergence order of (2.2) is five.
Now the issue is that the exact values of g′(γ) and g′′(γ) are not available for this form
of acceleration of convergence but we can use the data available from the most recent
iteration and the one before it, and it satisfies the condition limn→+∞ αn = c2 = g′′(γ)

2!g′(γ)
for the asymptotic error constant to be zero in the equation (2.4). For calculating αn,
consider the best possible approximation:

(2.5) αn = H4
′′(wn)

2g′(wn) ,

where
H4(w) =g(wn) + (w − wn)g[wn, wn] + (w − wn)2g[wn, wn, zn−1] + (w − wn)2

× (w − zn−1)g[wn, wn, zn−1, wn−1] + (w − wn)2(w − zn−1)(w − wn−1)
× g[wn, wn, zn−1, wn−1, wn−1],

and so,
H4

′′(wn) =2g[wn, wn, zn−1] + (wn − zn−1)(4g[wn, wn, zn−1, wn−1]
− 2g[wn, zn−1, wn−1, wn−1]).

Theorem 2.1. Let a Hermite interpolating polynomial Hm of degree m which inter-
polates a function g at nodes wn, wn, t0, . . . , tm−2 located within an interval I, and
the derivative g(m+1) is continuous in I, as well as the Hermite interpolating polyno-
mial satisfying the conditions Hm(wn) = g(wn), Hm

′(wn) = g′(wn), Hm(ti) = g(ti),
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i = 0, 1, . . . , m−2. Indicate the errors et,i = ti −γ, i = 0, 1, 2, . . . , m−2, and presume
that

(1) all nodes wn, t0, . . . , tm−2 are adequately near to the zero γ;
(2) the condition en = O(et,0, et,1, . . . , et,m−2) holds.

Then

Hm
′′(wn) =2g′(γ)

(
c2 − (−1)m−1cm+1

m−2∏
i=0

et,i + 3c3en

)
,

αn =H ′′
m(wn)

2g′(wn) ∼
(

c2 − (−1)m−1cm+1

m−2∏
i=0

et,i + (3c3 − 2c2
2)en

)
and

αn − c2 ∼
(

−(−1)m−1cm+1

m−2∏
i=0

et,i + (3c3 − 2c2
2)en

)
.

Proof. The Hermite interpolation error expression can be written as follows:

g(w) − Hm(w) = g(m+1)(ξ)
(m + 1)! (w − wn)2

m−2∏
i=0

(w − ti), ξ ∈ I.

After differentiating the aforementioned expression twice at the point w = wn, we
succeed

g′′(wn) − H ′′
m(wn) = 2g(m+1)(ξ)

(m + 1)!

m−2∏
i=0

(wn − ti), ξ ∈ I,

or

(2.6) H ′′
m(wn) = g′′(wn) − 2g(m+1)(ξ)

(m + 1)!

m−2∏
i=0

(wn − ti), ξ ∈ I.

Using Taylor’s expansion of derivative of g at the point wn ∈ I and ξ ∈ I around the
root γ of g gives

g′(wn) =g′(γ)(1 + 2c2en + 3c3e
2
n + O(e3

n)),(2.7)
g′′(wn) =g′(γ)(2!c2 + 3!c3en + O(e2

n))(2.8)
and
(2.9) g(m+1)(ξ) = g′(γ)((m + 1)!cm+1 + (m + 2)!cm+2eξ + O(e2

ξ)).

Putting the expressions (2.8), (2.9) in the equation (2.6), we obtain

(2.10) H ′′
m(wn) = 2g′(γ)

(
c2 − (−1)m−1cm+1

m−2∏
i=0

et,i + 3c3en

)
.

Now, dividing (2.10) by (2.7) and the simplifying we get

H ′′
m(wn)

2g′(wn) ∼
(

c2 − (−1)m−1cm+1

m−2∏
i=0

et,i + (3c3 − 2c2
2)en

)
.



UNI- AND BI-PARAMETRIC TWO-STEP ITERATIVE METHOD... 517

Therefore,

αn ∼
(

c2 − (−1)m−1cm+1

m−2∏
i=0

et,i + (3c3 − 2c2
2)en

)
,

and so,

αn − c2 ∼
(

−(−1)m−1cm+1

m−2∏
i=0

et,i + (3c3 − 2c2
2)en

)
. □

Theorem 2.2. If the errors of approximations ei = wi − γ generated by an iterative
technique satisfy:

ek+1 ∼
m−2∏
i=0

(ek−i)mi , k ≥ k(ek),

then the R-order of convergence of iterative technique, denoted with OR(γ), satisfies
the inequality OR(γ) ≥ q∗, where q∗ is the unique positive solution of the equation
qn+1 −∑n

i=0 miq
n−i = 0.

As a result, we arrive at the following conclusion on the convergence theorem for
the iterative technique with memory (2.2).

Theorem 2.3. Let αn represent the variable in the iterative technique (2.2), which is
calculated by (2.5). If an initial approximation w0 is close enough to a simple root of
g(w), the iterative method (2.2)–(2.5) with memory has an R-order of convergence of
at least 5.

Proof. Initially, we will suppose that the R-order convergence of the sequences {wn}
and {zn} is at least r and p. Hence, en+1 ∼ En,re

r
n, where En,r is an asymptotic error

constant. The above relation may be also re-written as

(2.11) en+1 ∼ En,r(En−1,re
r
n−1)r ∼ En,rE

r
n−1,re

r2

n−1

and
en,z ∼ En,pep

n,

or

(2.12) en,z ∼ En,p(En−1,re
r
n−1)p ∼ En,pEp

n−1,re
rp
n−1.

By error expressions (2.3) and (2.4), it may be written as

en,z ∼zn − α ∼ (−αn + c2)e2
n + O(e3

n),(2.13)
en+1 ∼Dn,4(αn − c2)e4

n + O(e5
n),(2.14)

where Dn,4 is a varying quantity. Now, applying Theorem 2.1 for the case of m = 4,
where t0 = zn−1, t1 = wn−1 and t2 = wn−1, we get

(2.15) αn − c2 ∼ c5et,0et,1et,2 = c5en−1,ze2
n−1.
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Substituting the relation (2.15) into the expressions (2.13) and (2.14), we obtain

en,z ∼ c5en−1,ze2
n−1e

2
n ∼ c5en−1,ze2

n−1(En−1,re
r
n−1)2 ∼ c5en−1,ze2

n−1E
2
n−1,re

2r
n−1

∼ c5(En−1,pep
n−1)e2

n−1E
2
n−1,re

2r
n−1

∼ c5E
2
n−1,rEn−1,pe2r+p+2

n−1(2.16)

and

en+1 ∼ Dn,4c5en−1,ze2
n−1e

4
n ∼ Dn,4c5(En−1,pep

n−1)e2
n−1(En−1,re

r
n−1)4

∼ Dn,4c5En−1,pE4
n−1,re

4r+p+2
n−1 .(2.17)

By comparing the components of en−1 in the two sets of relations (2.12)–(2.16) and
(2.11)–(2.17), we arrive at the following system of equations:

2r + p + 2 = rp,

4r + p + 2 = r2.(2.18)

The positive solution to the system (2.18) is provided by the values p = 3 and r = 5.
As a result, when αn is determined by (2.5), the R-order of the method with memory
(2.2) is reached to at least 5. □

An alternative proof. The method discussed in reference [15], known as the Herzbe-
rger’s matrix approach, is now being utilized on the order of single step s-point method
xk = Ψ(xk−1, xk−2, . . . , xk−s). A matrix A(s) = (aij), associated with this method, has
the elements

a1,j = amount of information required at point xk−j, j = 1, 2, 3, . . . , s,

ai,i−1 = 1, i = 2, 3, . . . , s,

ai,j = 0, otherwise.(2.19)

The order of an s-step method Ψ = Ψ1 ◦ Ψ2 ◦ · · · ◦ Ψs is the spectral radius of the
product of matrices A(s) = A1 · A2 · · · As. We may express each estimate wn+1, zn as a
function of available information g(zn) and g(wn) from the n-th iteration and g(zn−1)
and g(wn−1) from the previous iteration, depending on the accelerating technique. We
construct the relevant matrices from the relations (2.2), (2.5) and (2.19) as follows:

wn+1 =Ψ1(zn, wn, zn−1) ⇒ A1 =

1 2 0
1 0 0
0 1 0

 ,

zn =Ψ2(wn, zn−1, wn−1) ⇒ A2 =

2 1 2
1 0 0
0 1 0

 .
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Thus, we acquire

A(2) = A1 · A2 =

4 1 2
2 1 2
1 0 0

 ,

whose eigenvalues are (5, 0, 0) and spectral radius of the matrix A(2) is 5. Therefore,
the order of convergence of with memory method (2.2) is five. □

Now, by making some more modification in the scheme (2.2) at this time, we are
attempting to enhance its convergence order. Consider the following new updated
version of the scheme (2.2), where an additional parameter βn is added in the second
sub-step, we get a new bi-parametric two-step iterative method with memory given
by:

αn = H4
′′(wn)

2g′(wn) ,

zn = wn − g(wn)
g′(wn) − αng(wn) ,

wn+1 = zn − g(zn)
2
(

g(zn)−g(wn)
zn−wn

)
− g′(wn) − βng(wn)2

.(2.20)

It’s error equation is:

(2.21) en+1 = (αn − c2)(g′(γ)βn + (αn − c2)c2 + c3)e4
n + O(e5

n),

where en = wn − γ and ci = g(i)(γ)
i!g′(γ) , for i = 2, 3, 4, . . . , and γ ∈ R. It is symbolised

by OWM6. It is clear from (2.21) that the order of convergence of scheme (2.20)
is five for βn ̸= −c3

g′(γ) and when βn = − c3
g′(γ) = − g′′′(γ)

3!g′(γ)2 , the convergence order of
method (2.20) would be higher. However, exact values of g′(γ) and g′′′(γ) are not
available for this type of convergence acceleration and so we can use the data available
from the most recent iteration and the one before it, and it satisfies the condition
limn→+∞ βn = − c3

g′(γ) = − g′′′(γ)
3!g′(γ)2 for the asymptotic constant to be zero in the relation

(2.21). For the calculation of βn, we consider the following best possible expression:

(2.22) βn = − H5
′′′(zn)

3!g′(wn)2 ,

where

H5(w) =g(zn) + (w − zn)g[zn, wn] + (w − zn)(w − wn)g[zn, wn, wn]
+ (w − zn)(w − wn)2g[zn, wn, wn, zn−1] + (w − zn)(w − wn)2(w − zn−1)
× g[zn, wn, wn, zn−1, wn−1] + (w − zn)(w − wn)2(w − zn−1)(w − wn−1)
× g[zn, wn, wn, zn−1, wn−1, wn−1],
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and so,

H ′′′
5 (zn) =6g[zn, wn, wn, zn−1] + (12(zn − wn) + 6(zn − zn−1))g[zn, wn, wn, zn−1, wn−1]

+
(
6(zn − wn)2 + 12(zn − wn)(zn − zn−1) + 12(zn − wn)(zn − wn−1)

+ 6(zn − zn−1)(zn − wn−1)
)
g[zn, wn, wn, zn−1, wn−1, wn−1].

Theorem 2.4. Let a Hermite interpolating polynomial Hm of degree m which inter-
polates a function g at nodes zn, wn, wn, t0, . . . , tm−3 located within an interval I, and
the derivative g(m+1) is continuous in I, as well as the Hermite interpolating polyno-
mial satisfying the conditions Hm(zn) = g(zn), Hm

′(zn) = g′(zn), Hm(wn) = g(wn),
Hm

′(wn) = g′(wn), Hm(ti) = f(ti), i = 0, 1, . . . , m−3. Indicate the errors et,i = ti −γ,
i = 0, 1, 2, . . . , m − 3, and presume that

(1) all nodes zn, wn, t0, . . . , tm−3 are adequately near to the zero γ;
(2) the condition en = O(et,0, et,1, . . . , et,m−3) and en,z = zn − γ =

O (e2
n, et,0, . . . , et,m−3) hold.

Then

Hm
′′′(zn) = 3!g′(γ)

(
c3 − (−1)m−2cm+1

m−3∏
i=0

et,i + 4c4en,z

)
and

g′(γ)βn + c3 ∼
(

−(−1)m−2cm+1

m−3∏
i=0

et,i

)
.

Proof. The error expression for Hermite interpolating polynomial can be written as

g(w) − Hm(w) = g(m+1)(ξ)
(m + 1)! (w − zn)(w − wn)2

m−3∏
i=0

(w − ti), ξ ∈ I.

After differentiating the aforementioned expression thrice at the point w = zn will
give

g′′′(zn) − H ′′′
m(zn) = 3!g

(m+1)(ξ)
(m + 1)!

m−3∏
i=0

(zn − ti), ξ ∈ I,

or

(2.23) H ′′′
m(zn) = g′′′(zn) − 3!g

(m+1)(ξ)
(m + 1)!

m−3∏
i=0

(zn − ti), ξ ∈ I.

Using Taylor’s series expansion for derivatives of g at the point zn ∈ I and ξ ∈ I
about the root γ of g gives

g′(zn) =g′(γ)
(
1 + 2c2en,z + 3c3e

2
n,z + O(e3

n,z)
)
,

g′′(zn) =g′(γ)
(
2c2 + 3!c3en,z + O(e2

n,z)
)
,

g′′′(zn) =g′(γ)
(
3!c3 + 4!c4en,z + O(e2

n,z)
)

(2.24)
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and
(2.25) g(m+1)(ξ) = g′(γ)

(
(m + 1)!cm+1 + (m + 2)!cm+2eξ + O(e2

ξ)
)
.

Putting the expansions (2.24) and (2.25) in the relation (2.23), we get

(2.26) H ′′′
m(zn) = 3!g′(γ)

(
c3 − (−1)m−2cm+1

m−3∏
i=0

et,i + 4c4en,z

)
.

Now, dividing the relation (2.26) by g′(wn)2, we obtain

− H ′′′
m(zn)

3!g′(wn)2 ∼ − 1
g′(γ)

(
c3 − (−1)m−2cm+1

m−3∏
i=0

et,i

)
or

βn ∼ − 1
g′(γ)

(
c3 − (−1)m−2cm+1

m−3∏
i=0

et,i

)
,

and hence
g′(γ)βn + c3 ∼ (−1)m−2cm+1

m−3∏
i=0

et,i.

Thus the proof is finished. □

Theorem 2.5. Let βn be the changing parameter in the iterative method (2.20), and
be computed by (2.22). If an initial approximation w0 is close enough to a simple root
of g(w), the iterative method (2.20)–(2.22) with memory has R-order of convergence
of at least 5.70156.

Proof. Initially, let us suppose that the R-order convergence of the sequences {wn}
and {zn} is at least r and p. So, that
(2.27) en+1 ∼ En,re

r
n,

where En,r is an asymptotic error constant. Now, the relation (2.27) may be also
re-written as

en+1 ∼ En,r(En−1,re
r
n−1)r ∼ En,rE

r
n−1,re

r2

n−1(2.28)
and

en,z ∼En,pep
n,

en,z ∼En,p(En−1,re
r
n−1)p ∼ En,pEp

n−1,re
rp
n−1.(2.29)

By error expressions (2.3) and (2.21), it may be written as
en,z ∼zn − γ ∼ (−αn + c2)e2

n + O(e3
n),(2.30)

en+1 ∼(αn − c2)
(
g′(γ)βn + (αn − c2)c2 + c3

)
e4

n + O(e5
n).(2.31)

Using Theorem 2.4 for m = 5, t0 = zn−1, t1 = wn−1 and t2 = wn−1, we obtain
(2.32) g′(γ)βn + c3 ∼ c6et,0et,1et,2 = c6en−1,ze2

n−1.
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Using the relations (2.15) into (2.30) and (2.32) in the expression (2.31), it can be
written as

en,z ∼ c5en−1,ze2
n−1e

2
n ∼ c5en−1,ze2

n−1(En−1,re
r
n−1)2,

∼ c5en−1,ze2
n−1E

2
n−1,re

2r
n−1 ∼ c5(En−1,pep

n−1)e2
n−1E

2
n−1,re

2r
n−1

∼ c5E
2
n−1,rEn−1,pe2r+p+2

n−1(2.33)

and

en+1 ∼ (c5en−1,ze2
n−1)

(
c6en−1,ze2

n−1 + c2c5en−1,ze2
n−1

)
e4

n

∼ c5(c6 + c2c5)e2
n−1,ze4

n−1e
4
n ∼ c5(c6 + c2c5)(En−1,pep

n−1)2e4
n−1(En−1,re

r
n−1)4

∼ c5(c6 + c2c5)E2
n−1,pE4

n−1,re
4r+2p+4
n−1 .(2.34)

By comparing the components of en+1 in (2.34)–(2.28) and (2.33)–(2.29), we arrive
at the following system of equations:

4r + 2p + 4 = r2,

2r + p + 2 = rp.(2.35)

The positive solution to the system (2.35) is provided by p = 2.85078, r = 5.70156.
As a result, when βn is determined by formula (2.22), the R-order of the method with
memory scheme (2.20) is at least 5.70156. □

An alternative proof. From the relations (2.20), (2.22) and similar to that used in the
alternative proof of the previous Theorem 2.3, we derive the corresponding matrices:

wn+1 =Ψ1(zn, wn, zn−1, wn−1) ⇒ A1 =


1 2 1 2
1 0 0 0
0 1 0 0
0 0 1 0

 ,

zn =Ψ2(wn, zn−1, wn−1, zn−2) ⇒ A2 =


2 1 2 0
1 0 0 0
0 1 0 0
0 0 1 0

 .

Thus, we acquire

A(2) = A1 · A2 =


4 2 4 0
2 1 2 0
1 0 0 0
0 1 0 0

 ,

whose eigenvalues are (5.70156, −0.701562, 0, 0) and spectral radius of the matrix A(2)

is 5.70156. Therefore, the order of convergence of with memory method (2.20) is
5.70156. □
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3. Numerical Results and Comparisons

In this part, we will numerically compare the considered uni-parametric two-step
with memory scheme OWM4 along with the similar nature schemes XW (16 − 18),
XW (16−19), XW (16−20), XW (17−18), XW (17−19) and XW (17−20) considered
in [16] and NC4(2.4 − 2.5), NC4(2.4 − 2.6) and NC4(2.4 − 2.7) presented in the
article [17] and presented bi-parametric with memory method OWM6 along with
the proposed in [18]. Wang [18] presented two bi-parametric iterative methods with
memory as mentioned below:

zn = wn − g(wn)
g′(wn) − αng(wn) ,

wn+1 = zn − g(zn)
2g[wn, zn] − g′(wn) ·

(
g′(wn)2

g′(wn)2 − βng(wn)2

)
,(3.1)

which is represented by the symbol XW1 and

zn = wn − g(wn)
g′(wn) − αng(wn) ,

wn+1 = zn − g(zn)
2g[wn, zn] − g′(wn)

1 + βn

(
g(wn)
g′(wn)

)2
 ,(3.2)

which is denoted by XW2. In the following form, they have captured the values of
the two parameters αn and βn for both methods.

Method 1:

(3.3) αn = H ′′
4 (wn)

2g′(wn) and βn = −H ′′′
4 (wn)

6g′(wn) ,

where
H ′′′

4 (wn) = 6g[wn, wn, zn−1, wn−1] + 6(2wn − wn−1 − zn−1)g[wn, zn, zn−1, wn−1, wn−1].
Method 2:

(3.4) αn = H ′′
4 (wn)

2g′(wn) and βn = −H ′′′
3 (zn)

6g′(wn) ,

where H ′′′
3 (zn) = 6g[zn, wn, wn, zn−1].

Method 3:

(3.5) αn = H ′′
4 (wn)

2g′(wn) and βn = −H ′′′
4 (zn)

6g′(wn) ,

where H ′′′
4 (zn) = H ′′′

3 (zn) + 6(3zn − zn−1 − 2wn)g[zn, wn, wn, zn−1, wn−1].
Method 4:

(3.6) αn = H ′′
4 (wn)

2g′(wn) and βn = −H ′′′
5 (zn)

6g′(wn) ,

where H ′′′
5 (zn) = H ′′′

4 (zn) + 6[(zn − zn−1)(zn − wn−1) + (zn − wn)2 + 2(zn − wn)(2zn −
zn−1 − wn−1)]g[zn, wn, wn, zn−1, wn−1].
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Table 1. Test functions and their roots.

Nonlinear function Root
g1 = wew2 − sin2 w + 3 cos w + 5 -1.2676. . .
g2 = w5 + w4 + 4w2 − 15 1.3474. . .
g3 = w3 − w2 − 1 1.4655. . .

Table 1 includes the roots of three nonlinear test functions (taken from [18, 19]).
The numerical results shown in Table 2 and 3 are consistent with the theory presented
in this discussion. The absolute errors |wn −γ| upto three iterate have been calculated.
For numerical computation MATHEMATICA 8 is used. Now, according to Weerakoon
[20], the formula below can be used to estimate the computational order of convergence,

COC ≈ log |g(wn+1)/g(wn)|
log |g(wn)/g(wn−1)|

,

to verify the established theoretical rate of convergence. Table 2 and 3 confirms the
significance of the presented with memory scheme over some well published similar
nature algorithms.

4. Conclusion

In this article, we have presented a two-step with memory iterative method for
finding the solution of nonlinear equations. Because our goal is to develop the method
of higher-order convergence without any extra functional computations. To obtain
higher-order convergence without any extra computations, we have employed one
and two self-accelerating parameters that are constructed by Hermite interpolating
polynomials in the well-established optimal fourth-order without memory scheme. The
order of convergence for the new suggested two-step iterative with memory has risen
from 4 to 5.70156, which is also verified by an alternate approach called Herzberger’s
matrix method. The numerical results have been provided to validate the theoretical
outcomes.

Acknowledgements. The authors are sincerely thankful to the reviewers for their
valuable feedback and expertise in reviewing our research paper, their contributions
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scheme FIST program (Ref. No. SR/FST/MS/2022 dated 19.12.2022).



UNI- AND BI-PARAMETRIC TWO-STEP ITERATIVE METHOD... 525

Table 2. Numerical comparison of single parametric two-point with
memory method

Method |w1 − γ| |w2 − γ| |w3 − γ| COC
Example g1, initial guess w0 = −1.6

XW (16) − (18), α0 = −0.01 3.5037e − 2 2.8246e − 6 1.2080e − 25 4.7042
XW (16) − (19), α0 = −0.01 3.5037e − 2 4.7605e − 7 1.7515e − 27 4.1782
XW (16) − (20), α0 = −0.01 3.5037e − 2 3.4949e − 7 4.1255e − 28 4.1649
XW (17) − (18), α0 = −0.01 1.8398e − 2 2.1773e − 7 1.3052e − 30 4.7018
XW (17) − (19), α0 = −0.01 1.8398e − 2 3.0276e − 8 1.7117e − 32 4.1837
XW (17) − (20), α0 = −0.01 1.8398e − 2 3.5032e − 8 2.7935e − 32 4.2025
NC (2.4) − (2.5), α0 = −0.01 1.8880e − 2 2.3820e − 7 1.9513e − 30 4.7005
NC (2.4) − (2.6), α0 = −0.01 1.8880e − 2 3.3604e − 8 2.6359e − 32 4.1835
NC (2.4) − (2.7), α0 = −0.01 1.8880e − 2 3.8273e − 8 4.0253e − 32 4.2025

OWM4 (2.4) − (2.7), α0 = −0.01 1.8309e − 2 2.9275e − 8 5.2296e − 38 5.1217
Example g2, initial guess w0 = 1.4

XW (16) − (18), α0 = −0.01 1.8371e − 5 1.3038e − 22 7.0315e − 101 4.5640
XW (16) − (19), α0 = −0.01 1.8371e − 5 1.5797e − 22 5.6795e − 107 4.3243
XW (16) − (20), α0 = −0.01 1.8371e − 5 6.7085e − 25 1.5685e − 108 4.3026
XW (17) − (18), α0 = −0.01 3.8040e − 6 2.3630e − 25 3.2074e − 113 4.5748
XW (17) − (19), α0 = −0.01 3.8040e − 6 4.3246e − 27 9.8591e − 118 4.3278
XW (17) − (20), α0 = −0.01 3.8040e − 6 2.2214e − 28 7.0328e − 124 4.2953
NC (2.4) − (2.5), α0 = −0.01 3.7144e − 6 2.1871e − 25 2.2845e − 113 4.5752
NC (2.4) − (2.6), α0 = −0.01 3.7144e − 6 3.9924e − 27 7.0907e − 118 4.3279
NC (2.4) − (2.7), α0 = −0.01 3.7144e − 6 1.9614e − 28 4.0581e − 124 4.2951

OWM4 (2.4) − (2.7), α0 = −0.01 3.8734e − 6 2.4314e − 28 2.8924e − 139 4.9961
Example g3, initial guess w0 = 1.3

XW (16) − (18), α0 = −0.01 1.5319e − 2 4.8667e − 10 2.6217e − 44 4.5743
XW (16) − (19), α0 = −0.01 1.5319e − 2 1.7723e − 10 1.6516e − 45 4.4174
XW (16) − (20), α0 = −0.01 1.5319e − 2 1.7723e − 10 3.3034e − 45 4.3794
XW (17) − (18), α0 = −0.01 7.1877e − 4 7.3695e − 16 1.0978e − 70 4.5729
XW (17) − (19), α0 = −0.01 7.1877e − 4 3.5313e − 17 5.5819e − 75 4.3430
XW (17) − (20), α0 = −0.01 7.1877e − 4 3.5313e − 17 1.1164e − 74 4.3204
NC (2.4) − (2.5), α0 = −0.01 7.1305e − 4 7.3404e − 16 1.0912e − 70 4.5737
NC (2.4) − (2.6), α0 = −0.01 7.1305e − 4 3.3934e − 17 4.6559e − 75 4.3431
NC (2.4) − (2.7), α0 = −0.01 7.1305e − 4 3.3934e − 17 9.3119e − 75 4.3205

OWM4 (2.4) − (2.7), α0 = −0.01 0.7357e − 4 3.9816e − 17 1.8529e − 83 4.9998
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Table 3. Numerical comparison of bi-parametric two-point with
memory scheme

Method |w1 − γ| |w2 − γ| |w3 − γ| COC
Example g1, initial guess w0 = −1.5

XW1 (3.1) − (3.3), α0 = β0 = 0.01 0.527e − 2 1.5696e − 11 2.0984e − 58 5.4952
XW1 (3.1) − (3.4), α0 = β0 = 0.01 0.527e − 2 4.1038e − 12 3.1195e − 62 5.5000

XW1 (3.1) − (3.5), α0 = β0 = 0.01 0.527e − 2 6.2388e − 12 8.6664e − 64 5.8067

XW1 (3.1) − (3.6), α0 = β0 = 0.01 0.527e − 2 2.6379e − 12 1.5543e − 68 6.0433

XW2 (3.2) − (3.3), α0 = β0 = 0.01 0.527e − 2 1.5694e − 11 2.0977e − 58 5.4952

XW2 (3.2) − (3.4), α0 = β0 = 0.01 0.527e − 2 4.1074e − 12 3.1303e − 62 5.5002

XW2 (3.2) − (3.5), α0 = β0 = 0.01 0.527e − 2 6.2364e − 12 8.6536e − 64 5.8067

XW2 (3.2) − (3.6), α0 = β0 = 0.01 0.527e − 2 2.6351e − 12 1.5360e − 68 6.0435

OWM6 (2.30) − (2.32), α0 = β0 = 0.01 0.957e − 2 1.086e − 12 3.0103e − 87 5.9901
Example g2, initial guess w0 = 1.5

XW1 (3.1) − (3.3), α0 = β0 = 0.01 0.2261e − 3 3.1146e − 22 9.2151e − 116 5.2365

XW1 (3.1) − (3.4), α0 = β0 = 0.01 0.2261e − 3 1.0210e − 21 7.3405e − 117 5.4852

XW1 (3.1) − (3.5), α0 = β0 = 0.01 0.2261e − 3 1.7755e − 22 2.1424e − 124 5.6292

XW1 (3.1) − (3.6), α0 = β0 = 0.01 0.2261e − 3 1.5437e − 22 2.7763e − 128 5.8211

XW2 (3.2) − (3.3), α0 = β0 = 0.01 0.2261e − 3 3.1146e − 22 9.2152e − 116 5.2365

XW2 (3.2) − (3.4), α0 = β0 = 0.01 0.2261e − 3 1.0211e − 21 7.3412e − 117 5.4852

XW2 (3.2) − (3.5), α0 = β0 = 0.01 0.2261e − 3 1.7755e − 22 2.1423e − 124 5.6292

XW2 (3.2) − (3.6), α0 = β0 = 0.01 0.2261e − 3 1.5436e − 22 2.7762e − 128 5.8210

OWM6 (2.30) − (2.32), α0 = β0 = 0.01 0.1794e − 4 1.8535e − 29 4.8802e − 166 5.6942
Example g3, initial guess w0 = 1.3

XW1 (3.1) − (3.3), α0 = β0 = 0.2 0.1813e − 3 1.0922e − 23 5.2152e − 139 6.0000

XW1 (3.1) − (3.4), α0 = β0 = 0.2 0.1813e − 3 1.0922e − 23 5.2152e − 139 6.0000

XW1 (3.1) − (3.5), α0 = β0 = 0.2 0.1813e − 3 1.0922e − 23 5.2152e − 139 6.0000

XW1 (3.1) − (3.6), α0 = β0 = 0.2 0.1813e − 3 1.0922e − 23 5.2152e − 139 6.0000

XW2 (3.2) − (3.3), α0 = β0 = 0.2 0.1830e − 3 1.1536e − 23 7.2406e − 139 5.9999

XW2 (3.2) − (3.4), α0 = β0 = 0.2 0.1830e − 3 1.1536e − 23 7.2406e − 139 5.9999

XW2 (3.2) − (3.5), α0 = β0 = 0.2 0.1830e − 3 1.1536e − 23 7.2406e − 139 5.9999

XW2 (3.2) − (3.6), α0 = β0 = 0.2 0.1830e − 3 1.1536e − 23 7.2406e − 139 5.9999

OWM6 (2.30) − (2.32), α0 = β0 = 0.2 0.4008e − 4 2.114e − 28 4.5555e − 168 6.0000
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