KRAGUJEVAC JOURNAL OF MATHEMATICS VOLUME 43(2) (2019), PAGES 259–265.

FURTHER IMPROVEMENTS OF HERMITE-HADAMARD INTEGRAL INEQUALITY

SLAVKO SIMIĆ¹

ABSTRACT. We give here improvements of Hermite-Hadamard inequality by an arbitrary mean value. In particular, improvements involving well known classes of quasi-arithmetic, integral and Lagrange means are considered.

1. INTRODUCTION

A function $f: I \subset \mathbb{R} \to \mathbb{R}$ is said to be convex on an non-empty interval I if the inequality

(1.1)
$$f(px+qy) \le pf(x) + qf(y)$$

holds for all $x, y \in I$ and all non-negative weights p, q; p + q = 1.

If the inequality (1.1) reverses, then f is said to be concave on I [1].

Let $f : I \subset \mathbb{R} \to \mathbb{R}$ be a convex function on an interval I and $a, b \in I$ with a < b. Then

(1.2)
$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(t)dt \le \frac{f(a)+f(b)}{2}.$$

This double inequality is well known in the literature as Hermite-Hadamard (HH) integral inequality for convex functions. See, for example, [3] and references therein.

There is a number of refinements and possible generalizations of HH inequality. Some recent trends can be found in [2] and [5].

If f is concave, both inequalities in (1.2) hold in the reversed direction.

Recall that M(a, b) is a mean on I if the inequality

$$\min\{a, b\} \le M(a, b) \le \max\{a, b\},\$$

Received: July 31, 2017.

Key words and phrases. Hermite-Hadamard integral inequality, convex function, mean value. 2010 *Mathematics Subject Classification.* Primary: 26D07. Secondary: 26D15.

Accepted: November 15, 2017.

S. SIMIĆ

holds for each $a, b \in I$.

Most known ordered family of means on $I = \mathbb{R}^+$ is the following family Δ_0 of elementary means,

$$\Delta_0: \ H \le G \le L \le I \le A \le S,$$

where

$$H = H(a,b) =: 2(1/a + 1/b)^{-1}, \quad G = G(a,b) =: \sqrt{ab}, \quad L = L(a,b) =: \frac{b-a}{\log b - \log a},$$
$$I = I(a,b) =: \frac{(b^b/a^a)^{1/(b-a)}}{e}, \quad A = A(a,b) =: \frac{a+b}{2}, \quad S = S(a,b) =: a^{\frac{a}{a+b}}b^{\frac{b}{a+b}},$$

are the harmonic, geometric, logarithmic, identric, arithmetic and Gini mean, respectively.

Most known families of functional means are: quasi-arithmetic mean $\mathcal{A}_f = \mathcal{A}_f(a,b) =: f^{-1}\left(\frac{f(a)+f(b)}{2}\right)$, integral mean $\mathcal{I}_f = \mathcal{I}_f(a,b) =: f^{-1}\left(\frac{1}{b-a}\int_a^b f(t)dt\right)$, and Lagrange mean $\mathcal{L}_f = \mathcal{L}_f(a,b) =: (f')^{-1}\left(\frac{f(b)-f(a)}{b-a}\right)$, where it is supposed that the function f is invertible on I.

Our goal in this paper is to improve the inequality (1.2) by an arbitrary mean M(a, b) defined on I.

2. Results and Proofs

We shall give improvements of this kind for both sides of Hermite-Hadamard inequality. The result for right-hand side follows.

Theorem 2.1. Let $f : I \subset \mathbb{R} \to \mathbb{R}$ be a convex function on an interval I and M = M(a, b) be a mean on I. Then

(2.1)
$$\frac{1}{b-a} \int_{a}^{b} f(t)dt \leq \frac{1}{2} f(M) + \frac{1}{2(b-a)} [(M-a)f(a) + (b-M)f(b)].$$

Proof. We shall derive the proof by Hermite-Hadamard inequality itself. Indeed, applying twice the right part of this inequality, we get

$$\frac{1}{M-a}\int_{a}^{M}f(t)dt \leq \frac{1}{2}(f(a)+f(M))$$

and

$$\frac{1}{b-M} \int_{M}^{b} f(t)dt \le \frac{1}{2}(f(M) + f(b)).$$

Utilizing mean property $a \leq M(a, b) \leq b$, we obtain

$$\begin{aligned} \frac{1}{b-a} \int_{a}^{b} f(t)dt &= \frac{1}{b-a} \int_{a}^{M} f(t)dt + \frac{1}{b-a} \int_{M}^{b} f(t)dt \\ &\leq \frac{1}{2(b-a)} [(M-a)(f(M) + f(a)) + (b-M)(f(M) + f(b))] \\ &= \frac{1}{2} f(M) + \frac{1}{2(b-a)} [(M-a)f(a) + (b-M)f(b)]. \end{aligned}$$

260

The next assertion gives a meaning to the whole paper.

Theorem 2.2. For any mean M the approximation (2.1) is better than original one. *Proof.* We need the following well known assertion.

Lemma 2.1. [4] If f is convex on I and $s, t \in I$, then the ratio

$$\frac{f(s) - f(t)}{s - t}$$

is monotone increasing in both variables.

Now, denote

$$F_f(M) = F_f(a,b;M) =: \frac{1}{2}f(M) + \frac{1}{2(b-a)}[(M-a)f(a) + (b-M)f(b)].$$

It could be easily checked that $F_f(M)$ can be written in the form

$$F_f(M) = \frac{f(a) + f(b)}{2} - \frac{M - a}{2} \left[\frac{f(b) - f(a)}{b - a} - \frac{f(M) - f(a)}{M - a} \right]$$

Since $a \leq M \leq b$, by Lemma 2.1 we get

$$\frac{f(b) - f(a)}{b - a} \ge \frac{f(M) - f(a)}{M - a}.$$

Hence,

$$\frac{1}{b-a} \int_a^b f(t)dt \le F_f(M) \le \frac{f(a) + f(b)}{2}.$$

A possible application involving functional means defined above, yields the next improvements of HH inequality.

Theorem 2.3. Let f be convex and invertible on I. Then for any $a, b \in I$ we have

(2.2)
$$\frac{1}{b-a} \int_{a}^{b} f(t)dt \leq \frac{f(a)+f(b)}{2} - \frac{1}{2} (\mathcal{A}_{f}(a,b) - A(a,b)) \frac{f(b)-f(a)}{b-a}$$

and

(2.3)
$$\frac{1}{b-a} \int_{a}^{b} f(t)dt \leq \frac{f(a) + f(b)}{2} - (\mathfrak{I}_{f}(a,b) - A(a,b)) \frac{f(b) - f(a)}{b-a}$$

where A, J and A denotes quasi-arithmetic, integral and arithmetic means, respectively.

Proof. Note that for $M = \mathcal{A}_f$ we have $f(M) = \frac{f(a)+f(b)}{2}$ and, analogously, for $M = \mathcal{I}_f$, $f(M) = \frac{1}{b-a} \int_a^b f(t) dt$. Putting this in (2.1), after some calculation, the result appears.

Remark 2.1. There is a natural question which of those two approximations is better. Evidently, the answer depends on the inequality

(2.4)
$$\mathfrak{I}_f \gtrless \frac{A + \mathcal{A}_f}{2}.$$

S. SIMIĆ

An interesting fact is that its counterpart, the inequality

$$\frac{1}{b-a} \int_a^b f(t)dt \le \frac{1}{2} \left[f\left(\frac{a+b}{2}\right) + \frac{f(a)+f(b)}{2} \right]$$

is valid for any convex f and represents an improvement of Hermite-Hadamard inequality [4].

Nevertheless, closer examination shows that (2.4) is not true in general. For example, f(x) = 1/x gives

(2.5)
$$L(a,b) \ge \frac{A(a,b) + H(a,b)}{2},$$

and neither of these inequalities is valid for all $a, b \in \mathbb{R}^+$. Therefore, estimations (2.2) and (2.3) are not comparable.

Anyway, the question which mean M gives best possible approximation of the form (2.1) is answered in the following

Theorem 2.4. The best possible approximation (2.1) is reached by Lagrange mean \mathcal{L}_f .

Proof. Let M(a, b) = c, where $c \in (a, b)$ is arbitrary. Then

$$F_f(M) = F_f(c) = \frac{1}{2}f(c) + \frac{1}{2(b-a)}[(c-a)f(a) + (b-c)f(b)].$$

Since f(c) is a convex function in c, the same holds for $F_f(c)$. Therefore, there exists an unique minimum which is given by the equation $F'_f(c) = 0$, i.e.,

$$f'(c) = \frac{f(b) - f(a)}{b - a}, \quad c = (f')^{-1} \left(\frac{f(b) - f(a)}{b - a}\right) = \mathcal{L}_f(a, b).$$

Remark 2.2. A number of interesting inequalities with means can be obtained from the above assertions. For example, $f(x) = -\log x$, $x \in \mathbb{R}^+$, gives $\mathcal{A} = G$, $\mathfrak{I} = I$, $\mathcal{L} = L$. This is left to the readers.

Note that the inequality (2.2) can be generalized by the mean

$$\mathcal{A}_f^{p,q}(a,b) = f^{-1}(pf(a) + qf(b)),$$

where p and q are arbitrary weights.

Theorem 2.5. Let f be convex and invertible on I. Then for any $a, b \in I$ we have

(2.6)
$$\frac{1}{b-a} \int_{a}^{b} f(t)dt \leq \frac{f(a)+f(b)}{2} - \frac{1}{2} (\mathcal{A}_{f}^{p,q}(a,b) - A^{p,q}(a,b)) \frac{f(b)-f(a)}{b-a},$$

where $A^{p,q}(a,b) = pa + qb$ is the weighted arithmetic mean.

As an illustration we give a new inequality between the difference and the ratio of weighted arithmetic and geometric means.

Theorem 2.6. For any $a, b \in \mathbb{R}^+$ and arbitrary weights p and q, we have

$$0 \le pa + qb - a^p b^q \le 2(A(a, b) - L(a, b))$$

and

$$1 \le \frac{pa+qb}{a^p b^q} \le \left(\frac{I(a,b)}{G(a,b)}\right)^2.$$

As a consequence we get the inequality

 $I \geq \sqrt{HS}.$

Proof. Let $f(x) = -\log x$. Then $\mathcal{A}_f^{p,q}(a,b) = G^{p,q}(a,b) = a^p b^q$ and (2.6) gives

$$-\log I(a,b) \le -\log G(a,b) + \frac{1}{2L(a,b)} (G^{p,q}(a,b) - A^{p,q}(a,b)).$$

Now, the identity

$$\frac{A}{L} - \log \frac{I}{G} = 1,$$

yields the result. The left-hand side of this inequality is obvious.

For the second inequality, let $f(x) = e^x$. Then $\mathcal{A}_f^{p,q}(a,b) = \log(pe^a + qe^b)$ and the relation (2.6) gives

$$\frac{e^b - e^a}{b - a} \le \frac{e^a + e^b}{2} - \frac{1}{2}(\log(pe^a + qe^b) - (pa + qb))\frac{e^b - e^a}{b - a}.$$

Now, by changing variables $a \to \log a, b \to \log b$, we get

$$L(a,b) \le A(a,b) - \frac{1}{2}(\log A^{p,q}(a,b) - \log G^{p,q}(a,b))L(a,b)$$

that is,

$$\log \frac{A^{p,q}(a,b)}{G^{p,q}(a,b)} \le 2\left(\frac{A(a,b)}{L(a,b)} - 1\right) = 2\log \frac{I(a,b)}{G(a,b)},$$

and the proof is done.

Finally, putting

$$p = \frac{b}{a+b}, \quad q = \frac{a}{a+b},$$

we obtain

$$pa + qb = \frac{2ab}{a+b} = H(a,b),$$

and

$$a^{p}b^{q} = a^{\frac{b}{a+b}}b^{\frac{a}{a+b}} = \frac{G^{2}(a,b)}{S(a,b)}.$$

Therefore, applying the last inequality, we get $H(a, b)S(a, b) \leq I^2(a, b)$.

In an analogous way, we obtain improvement of the left-hand side of HH inequality.

S. SIMIĆ

Theorem 2.7. Let f be a convex function on an interval I and N = N(a, b) be a mean on I. Then

(2.7)
$$\frac{1}{b-a} \int_a^b f(t)dt \ge \frac{1}{b-a} \left[(N-a)f\left(\frac{a+N}{2}\right) + (b-N)f\left(\frac{N+b}{2}\right) \right].$$

Proof. Applying the left part of Hermite-Hadamard inequality, we get

$$\frac{1}{N-a} \int_{a}^{N} f(t)dt \ge f\left(\frac{a+N}{2}\right),$$

and

$$\frac{1}{b-N}\int_{N}^{b} f(t)dt \ge f\left(\frac{N+b}{2}\right).$$

Hence,

$$\begin{aligned} \frac{1}{b-a} \int_a^b f(t)dt &= \frac{1}{b-a} \int_a^N f(t)dt + \frac{1}{b-a} \int_N^b f(t)dt \\ &\ge \frac{1}{b-a} \left[(N-a)f\left(\frac{a+N}{2}\right) + (b-N)f\left(\frac{N+b}{2}\right) \right]. \end{aligned}$$

Theorem 2.8. For any mean N the approximation (2.7) is better than the original one.

Proof. Denote

$$G_f(N) = G_f(a,b;N) =: \frac{1}{b-a} \left[(N-a)f\left(\frac{a+N}{2}\right) + (b-N)f\left(\frac{N+b}{2}\right) \right].$$

Since f is a convex function, applying its definition (1.1) with

$$p = \frac{N-a}{b-a}, \quad q = \frac{b-N}{b-a}, \quad x = \frac{a+N}{2}, \quad y = \frac{N+b}{2},$$

we get

$$G_f(N) = \frac{1}{b-a} \left[(N-a)f\left(\frac{a+N}{2}\right) + (b-N)f\left(\frac{N+b}{2}\right) \right]$$
$$\geq f\left(\frac{N-a}{b-a}\frac{a+N}{2} + \frac{b-N}{b-a}\frac{N+b}{2}\right) = f\left(\frac{a+b}{2}\right).$$

Hence,

$$\frac{1}{b-a} \int_{a}^{b} f(t)dt \ge G_{f}(N) \ge f\left(\frac{a+b}{2}\right).$$

Problem of best possible approximation of the form (2.7) is somewhat ambiguous. For example, for the function f(x) = 1/x best possible choice is given by N = G and this yields the inequality

$$L(a,b) \le \left(\frac{\sqrt{a} + \sqrt{b}}{2}\right)^2 = A_{1/2}(a,b)$$

In general case we propose the following.

Open question. Determine the mean $N^* = N_f^*(a, b)$ which gives best possible approximation of the form (2.7).

References

- G. H. Hardy, J. E. Littlewood and G. Polya, *Inequalities*, Cambridge University Press, Cambridge, 1978.
- [2] W. H. Li and F. Qi, Some Hermite-Hadamard type inequalities for functions whose n-th derivatives are (α, m)-convex, Filomat 27(8) (2013), 1575–1582.
- [3] C. P. Niculescu and L. E. Persson, Old and new on the Hermite-Hadamard inequality, Real Anal. Exchange 29(2) (2003/4), 663–685.
- [4] S. Simic, Some refinements of Hermite-Hadamard inequality and an open problem, Krag. J.Math. 42(3) (2018), 349–356.
- [5] M.Ž. Sarikaya and S. Erden, New weighted integral inequalities for twice differentiable convex functions, Krag. J. Math. 40(1) (2016), 15–33.

¹MATHEMATICAL INSTITUTE SANU, KNEZA MIHAILA 36, 11000 BELGRADE, SERBIA *Email address*: ssimic@turing.mi.sanu.ac.rs