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FURTHER IMPROVEMENTS OF HERMITE-HADAMARD
INTEGRAL INEQUALITY

SLAVKO SIMIĆ1

Abstract. We give here improvements of Hermite-Hadamard inequality by an
arbitrary mean value. In particular, improvements involving well known classes of
quasi-arithmetic, integral and Lagrange means are considered.

1. Introduction

A function f : I ⊂ R → R is said to be convex on an non-empty interval I if the
inequality
(1.1) f(px + qy) ≤ pf(x) + qf(y)
holds for all x, y ∈ I and all non-negative weights p, q; p + q = 1.

If the inequality (1.1) reverses, then f is said to be concave on I [1].
Let f : I ⊂ R → R be a convex function on an interval I and a, b ∈ I with a < b.

Then

(1.2) f

(
a + b

2

)
≤ 1

b− a

∫ b

a
f(t)dt ≤ f(a) + f(b)

2 .

This double inequality is well known in the literature as Hermite-Hadamard (HH)
integral inequality for convex functions. See, for example, [3] and references therein.

There is a number of refinements and possible generalizations of HH inequality.
Some recent trends can be found in [2] and [5].

If f is concave, both inequalities in (1.2) hold in the reversed direction.
Recall that M(a, b) is a mean on I if the inequality

min{a, b} ≤M(a, b) ≤ max{a, b},
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holds for each a, b ∈ I.
Most known ordered family of means on I = R+ is the following family ∆0 of

elementary means,
∆0 : H ≤ G ≤ L ≤ I ≤ A ≤ S,

where

H =H(a, b) =: 2(1/a + 1/b)−1, G = G(a, b) =:
√

ab, L = L(a, b) =: b− a

log b− log a
,

I =I(a, b) =: (bb/aa)1/(b−a)

e
, A = A(a, b) =: a + b

2 , S = S(a, b) =: a
a

a+b b
b

a+b ,

are the harmonic, geometric, logarithmic, identric, arithmetic and Gini mean, respec-
tively.

Most known families of functional means are: quasi-arithmetic mean Af =
Af(a, b) =: f−1

(
f(a)+f(b)

2

)
, integral mean If = If(a, b) =: f−1

(
1

b−a

∫ b
a f(t)dt

)
, and

Lagrange mean Lf = Lf(a, b) =: (f ′)−1
(

f(b)−f(a)
b−a

)
, where it is supposed that the

function f is invertible on I.
Our goal in this paper is to improve the inequality (1.2) by an arbitrary mean

M(a, b) defined on I.

2. Results and Proofs

We shall give improvements of this kind for both sides of Hermite-Hadamard in-
equality. The result for right-hand side follows.

Theorem 2.1. Let f : I ⊂ R → R be a convex function on an interval I and
M = M(a, b) be a mean on I. Then

(2.1) 1
b− a

∫ b

a
f(t)dt ≤ 1

2f(M) + 1
2(b− a) [(M − a)f(a) + (b−M)f(b)].

Proof. We shall derive the proof by Hermite-Hadamard inequality itself. Indeed,
applying twice the right part of this inequality, we get

1
M − a

∫ M

a
f(t)dt ≤ 1

2(f(a) + f(M))

and
1

b−M

∫ b

M
f(t)dt ≤ 1

2(f(M) + f(b)).

Utilizing mean property a ≤M(a, b) ≤ b, we obtain
1

b− a

∫ b

a
f(t)dt = 1

b− a

∫ M

a
f(t)dt + 1

b− a

∫ b

M
f(t)dt

≤ 1
2(b− a) [(M − a)(f(M) + f(a)) + (b−M)(f(M) + f(b))]

=1
2f(M) + 1

2(b− a) [(M − a)f(a) + (b−M)f(b)]. �
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The next assertion gives a meaning to the whole paper.

Theorem 2.2. For any mean M the approximation (2.1) is better than original one.

Proof. We need the following well known assertion.

Lemma 2.1. [4] If f is convex on I and s, t ∈ I, then the ratio
f(s)− f(t)

s− t

is monotone increasing in both variables.

Now, denote

Ff (M) = Ff (a, b; M) =: 1
2f(M) + 1

2(b− a) [(M − a)f(a) + (b−M)f(b)].

It could be easily checked that Ff (M) can be written in the form

Ff (M) = f(a) + f(b)
2 − M − a

2

[
f(b)− f(a)

b− a
− f(M)− f(a)

M − a

]
.

Since a ≤M ≤ b, by Lemma 2.1 we get
f(b)− f(a)

b− a
≥ f(M)− f(a)

M − a
.

Hence,
1

b− a

∫ b

a
f(t)dt ≤ Ff (M) ≤ f(a) + f(b)

2 . �

A possible application involving functional means defined above, yields the next
improvements of HH inequality.

Theorem 2.3. Let f be convex and invertible on I. Then for any a, b ∈ I we have

(2.2) 1
b− a

∫ b

a
f(t)dt ≤ f(a) + f(b)

2 − 1
2(Af (a, b)− A(a, b))f(b)− f(a)

b− a

and

(2.3) 1
b− a

∫ b

a
f(t)dt ≤ f(a) + f(b)

2 − (If (a, b)− A(a, b))f(b)− f(a)
b− a

,

where A, I and A denotes quasi-arithmetic, integral and arithmetic means, respectively.

Proof. Note that for M = Af we have f(M) = f(a)+f(b)
2 and, analogously, for M =

If , f(M) = 1
b−a

∫ b
a f(t)dt. Putting this in (2.1), after some calculation, the result

appears. �

Remark 2.1. There is a natural question which of those two approximations is better.
Evidently, the answer depends on the inequality

(2.4) If ≷
A + Af

2 .



262 S. SIMIĆ

An interesting fact is that its counterpart, the inequality
1

b− a

∫ b

a
f(t)dt ≤ 1

2

[
f

(
a + b

2

)
+ f(a) + f(b)

2

]
is valid for any convex f and represents an improvement of Hermite-Hadamard in-
equality [4].

Nevertheless, closer examination shows that (2.4) is not true in general. For example,
f(x) = 1/x gives

(2.5) L(a, b) ≷ A(a, b) + H(a, b)
2 ,

and neither of these inequalities is valid for all a, b ∈ R+. Therefore, estimations (2.2)
and (2.3) are not comparable.

Anyway, the question which mean M gives best possible approximation of the form
(2.1) is answered in the following

Theorem 2.4. The best possible approximation (2.1) is reached by Lagrange mean
Lf .

Proof. Let M(a, b) = c, where c ∈ (a, b) is arbitrary. Then

Ff (M) = Ff (c) = 1
2f(c) + 1

2(b− a) [(c− a)f(a) + (b− c)f(b)].

Since f(c) is a convex function in c, the same holds for Ff(c). Therefore, there
exists an unique minimum which is given by the equation F ′f (c) = 0, i.e.,

f ′(c) = f(b)− f(a)
b− a

, c = (f ′)−1
(

f(b)− f(a)
b− a

)
= Lf (a, b). �

Remark 2.2. A number of interesting inequalities with means can be obtained from
the above assertions. For example, f(x) = − log x, x ∈ R+, gives A = G, I = I,
L = L. This is left to the readers.

Note that the inequality (2.2) can be generalized by the mean
A

p,q
f (a, b) = f−1(pf(a) + qf(b)),

where p and q are arbitrary weights.

Theorem 2.5. Let f be convex and invertible on I. Then for any a, b ∈ I we have

(2.6) 1
b− a

∫ b

a
f(t)dt ≤ f(a) + f(b)

2 − 1
2(Ap,q

f (a, b)− Ap,q(a, b))f(b)− f(a)
b− a

,

where Ap,q(a, b) = pa + qb is the weighted arithmetic mean.

As an illustration we give a new inequality between the difference and the ratio of
weighted arithmetic and geometric means.



FURTHER IMPROVEMENTS OF HERMITE-HADAMARD INTEGRAL INEQUALITY 263

Theorem 2.6. For any a, b ∈ R+ and arbitrary weights p and q, we have

0 ≤ pa + qb− apbq ≤ 2(A(a, b)− L(a, b))

and
1 ≤ pa + qb

apbq
≤
(

I(a, b)
G(a, b)

)2
.

As a consequence we get the inequality

I ≥
√

HS.

Proof. Let f(x) = − log x. Then A
p,q
f (a, b) = Gp,q(a, b) = apbq and (2.6) gives

− log I(a, b) ≤ − log G(a, b) + 1
2L(a, b)(Gp,q(a, b)− Ap,q(a, b)).

Now, the identity
A

L
− log I

G
= 1,

yields the result. The left-hand side of this inequality is obvious.
For the second inequality, let f(x) = ex. Then A

p,q
f (a, b) = log(pea + qeb) and the

relation (2.6) gives

eb − ea

b− a
≤ ea + eb

2 − 1
2(log(pea + qeb)− (pa + qb))eb − ea

b− a
.

Now, by changing variables a→ log a, b→ log b, we get

L(a, b) ≤ A(a, b)− 1
2(log Ap,q(a, b)− log Gp,q(a, b))L(a, b),

that is,

log Ap,q(a, b)
Gp,q(a, b) ≤ 2

(
A(a, b)
L(a, b) − 1

)
= 2 log I(a, b)

G(a, b) ,

and the proof is done.
Finally, putting

p = b

a + b
, q = a

a + b
,

we obtain
pa + qb = 2ab

a + b
= H(a, b),

and

apbq = a
b

a+b b
a

a+b = G2(a, b)
S(a, b) .

Therefore, applying the last inequality, we get H(a, b)S(a, b) ≤ I2(a, b). �

In an analogous way, we obtain improvement of the left-hand side of HH inequality.
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Theorem 2.7. Let f be a convex function on an interval I and N = N(a, b) be a
mean on I. Then

(2.7) 1
b− a

∫ b

a
f(t)dt ≥ 1

b− a

[
(N − a)f

(
a + N

2

)
+ (b−N)f

(
N + b

2

)]
.

Proof. Applying the left part of Hermite-Hadamard inequality, we get
1

N − a

∫ N

a
f(t)dt ≥ f

(
a + N

2

)
,

and
1

b−N

∫ b

N
f(t)dt ≥ f

(
N + b

2

)
.

Hence,
1

b− a

∫ b

a
f(t)dt = 1

b− a

∫ N

a
f(t)dt + 1

b− a

∫ b

N
f(t)dt

≥ 1
b− a

[
(N − a)f

(
a + N

2

)
+ (b−N)f

(
N + b

2

)]
. �

Theorem 2.8. For any mean N the approximation (2.7) is better than the original
one.

Proof. Denote

Gf (N) = Gf (a, b; N) =: 1
b− a

[
(N − a)f

(
a + N

2

)
+ (b−N)f

(
N + b

2

)]
.

Since f is a convex function, applying its definition (1.1) with

p = N − a

b− a
, q = b−N

b− a
, x = a + N

2 , y = N + b

2 ,

we get

Gf (N) = 1
b− a

[
(N − a)f

(
a + N

2

)
+ (b−N)f

(
N + b

2

)]

≥f

(
N − a

b− a

a + N

2 + b−N

b− a

N + b

2

)
= f

(
a + b

2

)
.

Hence,
1

b− a

∫ b

a
f(t)dt ≥ Gf (N) ≥ f

(
a + b

2

)
. �

Problem of best possible approximation of the form (2.7) is somewhat ambiguous.
For example, for the function f(x) = 1/x best possible choice is given by N = G and
this yields the inequality

L(a, b) ≤
(√

a +
√

b

2

)2

= A1/2(a, b).
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In general case we propose the following.
Open question. Determine the mean N∗ = N∗f (a, b) which gives best possible ap-
proximation of the form (2.7).
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