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S SPECTRAL THEORY OF MULTIVALUED LINEAR OPERATOR
IN BANACH SPACES

AYMEN AMMAR1, AREF JERIBI1, AND BILEL SAADAOUI2

Abstract. In this paper, we begin with the definition of the S-resolvent set of a
linear relation. Throughout this paper, X will denote a normed linear space over
the complex field C. Operator S plays the role of a transition multivalued linear
operator from X. It is the main goal of the present note to study the basic spectral
properties of T linked to the transition multivalued linear operator S.

1. Introduction

Let T, S : X → Y. For all λ ∈ C, the map P (λ) := T +λS is called a linear bundle. It
is know that many problems of mathematical physics (for example, quantum theory...)
are reduced to some study of certain reversibility conditions of operators P (λ). In
light of this, this paper shares the same concern of these studies. In fact, it highlights
some recent mathematical developments, including the spectral theory of multivalued
linear operator bundle. The study of the spectral theory of linear operators, including
the study of S-essential spectrum, has recently been the core subject of several works.

Most importantly, A. Jeribi [13] has treated the notion of S-essential spectra in
a comprehensive account of the known definitions of essential spectra (see Chapter
9). In [2] T. Alvarez, A. Ammar and A. Jeribi have characterized some S-essential
spectra of a closed linear relation in terms of certain linear relations of semi-Fredholm
type. In [3], they studied the decomposition of Frobenius-Schur in order to determine
the essential spectrum of a matrix multivalued linear operator.

Most importantly in [4] A. Ammar, A. Jeribi and B. Saadaoui considered a 2 × 2
block multivalued linear operator matrices and described its essential pseudospectrum.
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Among the most important works on the spectral theory of block linear relation matrix,
we mention [5,6] where the authors proposed the development of the essential spectra
of a 2×2 block linear relation matrix. Recently, B. Saadaoui [15] continued this study
to investigate the (P,Q)-Outer Generalized inverses and their stability of pseudo
spectrum. In [7, 16] B. Saadaoui generalized some known results in the condition
S-spectrum of a compact operator in a right quaternionic Hilbert space. Several
problems can be described by systems of mixed order linear differential equations
in mathematical physics. The localization of the essential spectra gave substantial
physical information. The findings acquired in this memorandum provides through
the conformable ones in [8], and they are robustly affined to notions from different
spectral problems in applied sciences (for concerning works see, for sample, [11,12,17]).
In specific, the research of different sort of degenerate equations on Banach spaces
could be done using the connotations and outcomes gained in the current note, cf. [11].
Paradigms to uncover the applicability of our theoretical processing will be extended
in [5]. More punctually, the main outcomes of this matter will be exercised to research
different perturbations of multivalued linear operator in Banach spaces in the spirit
of the results obtained in [9, 14].

The purpose of this paper is to extend the results of [10] to the case of multivalued
linear operators. It consists of three sections. In Section 2, we present some basic
notations and results connected to the main body of the work. In Section 3 we give a
characterization of the S-resolvent set of a closed multivalued linear operator T .

2. Preliminary Results

This section contains some definitions and auxiliary results which will be needed
in the rest of this paper. We adhere with the notation and the terminology of the
book [10]. Let X, Y and Z be infinite dimensional vector spaces over K = R or C.
T multivalued linear operator or simply a linear relation T : X → Y is a mapping
from a subspace D(T ) of X, called the domain of T , into P (Y )\{∅} (the collection of
non-empty subsets of Y ) such that T (αx1 + βx2) = αT (x1) + βT (x2) for all non-zero
scalars α, β ∈ K and x1, x2 ∈ D(T ). If T maps the points of its domain to singletons,
then T is said to be a single valued linear operator or simply an operator, which
is equivalent to T (0) = {0}. We denote by LR(X, Y ) the class of linear relations
everywhere defined and we write LR(X) := LR(X, X). T ∈ LR(X, Y ) is uniquely
determined by its graph G(T ), which is defined by:

G(T ) :=
{
(x, y) ∈ X × Y : x ∈ D(T ), y ∈ Tx

}
,

so that we can identify T with G(T ). The closure of T , denoted by T , is the linear
relation defined by

G(T ) := G(T ).
We denote by CR(X, Y ) the class of all closed linear relations from X to Y . If X = Y ,
we take CR(X, X) := CR(X).
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The inverse of T is a linear relation T −1 given by:

G(T −1) :=
{
(y, x) ∈ X × Y : (x, y) ∈ G(T )

}
.

If G(T ) is closed, then T is said to be closed. We design by R(T ) = T (D(T )) the
range of T . T is called surjective if R(T ) = Y . The subspace N(T ) := T −1(0) is
called the null space of T . T is called injective if N(T ) = {0}, that is, if T −1 is a
single valued linear operator.

Notice that when x ∈ D(T ), y ∈ Tx if and only if Tx = y + T (0).
For T, S ∈ LR(X, Y ), the notation T ⊂ S means that G(T ) ⊂ G(S). The linear

relation T + S is defined by:

G(T + S) :=
{
(x, y) ∈ X × Y : y = u + v with (x, u) ∈ G(T ), (x, v) ∈ G(S)

}
.

Let T ∈ LR(X, Y ) and S ∈ LR(Y, Z) where R(T ) ∩D(S) ̸= ∅. The product of ST is
defined by:

G(ST ) :=
{
(x, z) ∈ X × Z : (x, u) ∈ G(T ) and (u, z) ∈ G(S) for some u ∈ Y

}
.

Let QT denote the quotient map from X onto X/T (0). We shall denote QT (0) by
QT . Clearly, QT T is a single valued operator and the norm of T is defined by ∥T∥ :=
∥QT T∥. We say that T is continuous if for each neighborhood V in R(T ), T −1(V )
is a neighborhood in D(T ) (equivalently ∥T∥ < +∞); bounded if it is continuous
with D(T ) = X; open if T −1 is continuous equivalently γ(T ) > 0 where γ(T ) is the
minimum modulus of T defined by

γ(T ) := sup
{
λ ≥ 0 : λd(x, N(T )) ≤ ∥Tx∥ for x ∈ D(T )

}
,

where d(x, N(T )) is the distance between x and N(T ). Continuous linear relations
defined everywhere on X are referred to as bounded linear relations. The class of
such relations is denoted by BR(X, Y ). If X = Y , we take BR(X, X) := BR(X).

If M and N are subspaces of X and of the dual space X ′, respectively, then

M⊥ :=
{
x′ ∈ X ′ : x′(x) = 0 for all x ∈ M

}
and

N⊤ :=
{
x ∈ X : x′(x) = 0 for all x′ ∈ N

}
.

The conjugate of T ∈ LR(X, Y ) is the linear relation T
′ defined by

G(T ′) := G(−T −1)⊥ ⊂ Y
′ × X

′
,

so that (y′
, x

′) ∈ G(T ′) if and only if y
′(y) = x

′(x) for all (x, y) ∈ G(T ).

Lemma 2.1 ([10]). Let X and Y be two vector spaces and let T ∈ LR(X, Y ). Then,
(a) D(T −1) = R(T ); D(T ) = R(T −1);
(b) T is injective if and only if T −1T = ID(T );
(c) T is single valued if and only if T (0) = {0};
(d) TT −1y = y + T (0), y ∈ R(T ), and T −1Tx = x + T −1(0).
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Proposition 2.1 ([10]). Let R, S, T ∈ LR(X). Then,
(a) (R + S)T ⊂ RT + ST with equality if T is single valued;
(b) T (R + S) is an extension of TR + TS and TR + TS = T (R + S) if D(T ) is

the whole space.

Lemma 2.2. Let X and Y be two vector spaces. Let T, S ∈ LR(X, Y ).
(a) ([10, Exercise I.2.14 (b)]) If D(T ) = D(S) and T (0) = S(0), then T = S or

the graphs of T and S are incomparable.
(b) ([10, Definition II.5.1 (2) and, Proposition II.5.3]) T −1 is closed if, and only

if, T is closed if, and only if, QT T is closed single valued and T (0) is a closed
space.

(c) ([10, Definition II.5.1 (6)]) If T is continuous, D(T ) and T (0) are closed, then
T is closed.

Lemma 2.3. ([2, Lemma 2.2 (ii)] and [1, Lemma 3.1])
(a) Let S, T ∈ LR(X, Y ). If S(0) ⊂ T (0) and D(T ) ⊂ D(S), then QT +S =

QT and T − S + S = T.
(b) If T ∈ LR(X, Y ) and S ∈ LR(Y, Z) are closed with α(S) < +∞ and R(S)

closed, then ST ∈ CR(X, Z).
(c) If T (0) ⊂ N(S) or T (0) ⊂ N(R), then (R + S)T = RT + ST.

Lemma 2.4. ([10, Exercise II.5.18]) Let T ∈ BR(X, Y ) be single valued and S ∈
CR(Y, Z). Then, ST ∈ CR(X, Z).

Lemma 2.5. ([10, Theorem II.3.11 and Corollary III.7.7]) Let S, T ∈ LR(Y, Z).
(a) If N(S) ⊂ R(T ), then γ(ST ) ≥ γ(S)γ(T ).
(b) Let T be open and injective with dense range. Then, for any relation S such

that S(0) ⊂ T (0), D(S) ⊃ D(T ) and ∥S∥ < γ(T ), we have T + S is open and
injective with dense range.

Proposition 2.2. ([10, Proposition VI.5.2]) Let X be complete, and let S, T ∈ CR(X)
be bijective. Then, ST has the same properties.

Theorem 2.1. ([10, Theorem III.4.2]) Let T ∈ LR(X, Y ) be closed. Then,
(a) T is continuous if and only if D(T ) is closed;
(b) T is open if and only if R(T ) is closed.

3. S-spectral Theory of Multivalued Linear Operators in Banach
Spaces

Definition 3.1. Let S, T ∈ LR(X) with ∥S∥ ≠ 0. We define the S-resolvent set of T
by:

ρS(T ) :=
{
λ ∈ C : λS − T is injective, open with dense range

}
.

The spectra of T is the set σS(T ) := C\ρS(T ).
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Lemma 3.1. Let S ∈ LR(X) be continuous. For T ∈ CR(X) such that ∥S∥ ≠ 0,
S(0) ⊂ T (0) and D(T ) ⊂ D(S), we have that instead of we define the S-resolvent set
of T by:

ρS(T ) :=
{
λ ∈ C : (λS − T )−1 is single valued and everywhere defined

}
.

Proof. We remark that if X is Banach, then the Lemma 3.1 is true.
Indeed, let λ ∈ ρS(T ). Then, λS − T is closed. Indeed, λS − T is closed if, and

only if, QS−T (λS − T ) is closed and (λS − T )(0) is closed [2, Proposition II.5.3].
But, (λS − T )(0) = λS(0) − T (0) = T (0) closed (as S(0) ⊂ T (0) and T closed)
and QS−T (λS − T ) = λQT S − QT T = λQAQSS − QT T (where A := T (0)/S(0) by
virtue of [2, Lemma IV.5.2]) which is closed by [2, Exercise II.5.16]. Now, the result
follows immediately from Theorem 2.1 and Lemma 2.3. Let λ ∈ ρS(T ), then λS −
T is injective, open with dense range . Furthermore, N(λS − T ) = (λS − T )−1(0) =
{0}, then (λS − T )−1 is single valued.

On the other hand, λS −T is open, then applying Theorem 2.1 we obtain R(λS −T )
is closed. In short, R(λS − T ) = R(λS − T ) = X. □

Example 3.1. We see the following examples, where σS(T ) can be discrete or the whole
complex plane.

(a) Let T =
(

3 2
0 5

)
and T =

(
1 0
0 0

)
. Then, σS(T ) = {3}.

(b) Let T =
(

2 1
0 0

)
and T =

(
2 0
0 0

)
. Then, σS(T ) = C.

(c) Let T =
(

2 1
0 3

)
and T =

(
0 1
0 0

)
. Then, σS(T ) = ∅.

Remark 3.1. (a) It follows immediately from Definition 3.1 that, for S = I we have

ρI(T ) :=
{
λ ∈ C : λ − T is injective, open with dense range

}
.

(b) If X is a finite dimension space and S is an invertible operator such that
σ(S)\{1} is not empty, then σS(S) = {1}, which implies that σ(S) ̸= σS(S).

Theorem 3.1. Let T ∈ CR(X) and S ∈ LR(X) be continuous such that S(0) ⊂ T (0),
∥S∥ ≠ 0, S ̸= T and D(T ) ⊂ D(S). Let λ ∈ ρS(T ), and let µ ∈ C such that

|µ − λ| <
γ(λS − T )

∥S∥
.

Then, µ ∈ ρS(T ) and

∥(µS − T )−1∥ ≤ ∥(λS − T )−1∥
1 − |µ − λ| · ∥(λS − T )−1∥ · ∥S∥

.

In particular, ρS(T ) is open.
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Proof. Let λ ∈ ρS(T ), and let (x, y) ∈ G(T ). Since (λS − T )−1 is a bounded operator,
it follows from the identity (λS − T )−1(λS − T )x = x that

∥(λS − T )−1∥ · ∥(λS − T )x∥ ≥ ∥x∥.

For each µ ∈ C one has
∥(µS − T )x∥ =∥(λS − T )x − (µ − λ)Sx∥

≥∥(λS − T )x∥ − |µ − λ| · ∥Sx∥
≥∥(λS − T )x∥ − |µ − λ| · ∥S∥ · ∥x∥,

which leads to
∥(λS − T )−1∥ · ∥(µS − T )x∥ ≥∥(λS − T )−1∥ · ∥(λS − T )x∥

− |µ − λ| · ∥(λS − T )−1∥ · ∥S∥ · ∥x∥
≥∥x∥ − |µ − λ| · ∥(λS − T )−1∥ · ∥S∥ · ∥x∥
=(1 − |µ − λ| · ∥(λS − T )−1∥ · ∥S∥) · ∥x∥.

This inequality shows that (µS − T )−1 is a bounded operator. This leads to

∥(µS − T )−1∥ ≤ ∥(λS − T )−1∥
1 − |µ − λ| · ∥(λS − T )−1∥ · ∥S∥

.

□

Lemma 3.2. Let T ∈ CR(X) and S ∈ LR(X) be continuous such that S(0) ⊂ T (0),
∥S∥ ≠ 0, S ̸= T and D(T ) ⊂ D(S). If λ ∈ ρS(T ) and |µ − λ| < γ(λS−T )

∥S∥ , then ρS(T )
is an open set of C.

Proof. Since λ ∈ ρS(T ), one has µ ∈ ρS(T ) and R(λS − T ) = X, then γ(λS − T ) > 0.
Let |µ − λ| < γ(λS−T )

∥S∥ . Then by Lemma 2.3 1. and Lemma 2.5 2., we have µS − T =
(µ − λ)S + (λS − T ) is injective and open with dense range. Therefore, µ ∈ ρS(T ). In
particular, ρS(T ) is open. □

Theorem 3.2. Let X be a Banach space. Let T ∈ CR(X) and S ∈ BR(X) with
D(T ) = X such that S(0) ⊂ T (0) and dim S(0) < +∞. If 0 ∈ ρI(S), then

ρS(T ) = ρI(S−1T ) ∩ ρI(TS−1).

Proof. First of all, it should be mentioned that λI −S−1T is closed. In fact, D(S) = X
is closed, S(0) is closed (since dim S(0) < +∞) and S is continuous so that by Lemma
2.2 (c) S is closed. Then by Lemma 2.2 (b), S−1 is closed. Further R(S−1) = D(S) =
X, dim N(S−1) = dim S(0) < +∞ and T is closed and thus by Lemma 2.3 (b), S−1T
is closed. Now, applying Lemma 2.3, we get λI − S−1T is closed.

Moreover, λI − TS−1 is closed. Indeed, since 0 ∈ ρI(S), then S−1 is single valued
(since S is injective). We get S−1 is closed, yet D(S−1) = R(S) = X, then S−1 is a
bounded single valued. Thus, by Lemma 2.4, we have TS−1 is closed, which implies
by Lemma 2.3, that λI − TS−1 is closed.
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We can say that S(0) ⊂ ST −1(0) = (TS−1)−1(0) = N(TS−1). So, using Lemma
2.3, we infer that λS − T = (λI − TS−1)S. Let x ∈ D(S−1) = R(S) = X, then there
is a ∈ X such that (x, a) ∈ G(S−1). This is equivalent to (a, x) ∈ G(S). Therefore,
(x, x) ∈ G(SS−1). We have I ⊂ SS−1 and consequently λS − T ⊂ SS−1(λS − T ) =
S(λI − S−1T ). So, we get λS − T ⊂ S(λI − S−1T ). It is easy to notice that

S(λI − S−1T )(0) = S(λ(0) − S−1T (0)) = SS−1T (0).
By using Lemma 2.1 (d) we get SS−1T (0) = T (0) + S(0) = (λS − T )(0), additionally
D(λS − T ) = D(λS) ∩ D(T ) = D(T ) and

D(S(λI − S−1T )) :=
{

x ∈ D(λI − S−1T ) : (λI − S−1T )x ∩ D(S)
= (λI − S−1T )x ∩ X ̸= ∅

}
.

Equivalently,
D(λI − S−1T ) =D(λ) ∩ D(S−1T ) = D(S−1T )

=
{
x ∈ D(T ) : Tx ∩ D(S−1) = Tx ∩ R(S) ̸= ∅

}
=D(T ) = D(λS − T ).

Then, by Lemma 2.2 (a), we infer that λS − T = S(λI − S−1T ). Let λ ∈ ρS(T ) such
that λS −T is closed and bijective. First of all, it should be mentioned that λI −S−1T
is bijective. Indeed,

R(λI − S−1T ) = R(S−1(λS − T )) = R(S−1) = D(S) = X,

and let x ∈ N(λI − S−1T ) if and only if
x ∈ D(S−1T ) and (λI − S−1T )x = (λI − S−1T )(0)

if and only if S(λI −S−1T )x = S(λI −S−1T )(0) if and only if (λS−T )x = (λS−T )(0)
if and only if x = {0} (since λS − T is injective).

Then, λI − S−1T is bijective. In the same manner we can prove that λI − TS−1 is
bijective. Accordingly, λI − TS−1 and λI − S−1T are bijective and closed, then
(3.1) ρS(T ) ⊂ ρ(TS−1) ∩ ρ(S−1T ).

Conversely, let λ ∈ ρI(S−1T ) ∩ ρI(TS−1). Then, λI − S−1T and λI − TS−1 are
bijective. Hence, S is surjective, then R(λS − T ) = SR(λI − S−1T ) = R(S) = X and
N(λS − T ) ⊂ N(S−1(λS − T )) = N(λI − S−1T ) = {0}. Then,
(3.2) ρ(TS−1) ∩ ρ(S−1T ) ⊂ ρS(T ).
By (3.1) and (3.2) we conclude that ρ(TS−1) ∩ ρ(S−1T ) = ρS(T ). □

Remark 3.2. If T and S are single valued with S is invertible, then
ρS(T ) = ρ(TS−1) = ρ(S−1T ).

Proposition 3.1. Let X be a Banach space. Let T ∈ CR(X) and S ∈ BR(X) be
single valued with D(T ) = X. If 0 ∈ ρI(S), then

ρS(T )\{0} = ρI(S−1T )\{0} = ρI(TS−1)\{0}.
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Proof. Let 0 ∈ ρI(S−1), then N(S−1) = S(0) = {0} and R(S−1) = D(S) = X.
Consequently, S−1 is single valued, hence S−1(0) = N(S) = {0}. Since S−1 is closed
(since S is closed), D(S−1) = R(S) = X, and S−1 is single valued, then S−1 is
bounded.

Therefore, by Proposition 3.2 we get ρS(T )\{0} = ρI(S−1T )\{0} = ρI(TS−1)\{0}.
□

Definition 3.2. Let S, T ∈ LR(X) and λ ∈ C. We call the S-resolvent of T in λ the
operator defined by:

RS(λ, T ) := (λS − T )−1.

Theorem 3.3. Let T ∈ CR(X) and let S ∈ LR(X) be continuous such that S(0) ⊂
T (0), ∥S∥ ≠ 0, S ̸= T and D(T ) ⊂ D(S) . Let λ, µ ∈ ρS(T ). Then, the following
hold.

(a) RS(µ, T ) − RS(λ, T ) = (λ − µ)RS(µ, T )SRS(λ, T ).
(b) If µ ∈ ρS(T ) and |λ − µ| · ∥S∥ ≤ γ(µS − T ), then

RS(λ, T ) =
+∞∑
i=0

(λ − µ)iRS(µ, T )(SRS(µ, T ))i.

Proof. (a) Let (x, y) ∈ G(RS(µ, T ) − RS(λ, T )), so that (x, y1) ∈ G(RS(µ, T )) and
(x, y2) ∈ G(RS(λ, T )) with y = y1 + y2. One has (y1, x) ∈ G(µS − T ) and (y2, x) ∈
G(λS − T ) = G(µS − T + (λ − µ)S). Then, x ∈ (µS − T + (λ − µ)S)y2 = (µS −
T )y2 + (λ − µ)Sy2. By Lemma 2.3 we get x − (λ − µ)Sy2 ∈ (µS − T )y2. Hence,
(y2, x − (λ − µ)Sy2) ∈ G(µS − T ), so that

(y, (λ − µ)Sy2) = (y1, x) − (y2, x − (λ − µ)Sy2) ∈ G(λS − T ).
Implies that ((λ−µ)Sy2, y) ∈ G(RS(λ, T )). By Lemma 2.3 which shows that (y2, y) ∈
(λ − µ)RS(λ, T )S. Then,

(x, y) ∈ G((λ − µ)RS(λ, T )SRS(µ, T )),
which leads to RS(µ, T ) − RS(λ, T ) ⊆ (λ − µ)RS(µ, T )SRS(λ, T ).

Conversely, let (x, y) ∈ G((λ − µ)RS(µ, T )SRS(λ, T )). Then, (x, z) ∈ G(RS(λ, T )),
(z, w) ∈ G((λ − µ)S) and (w, y) ∈ G(RS(µ, T )) for some y, z ∈ X. It follows from
(x, z) ∈ G(RS(λ, T )) that (z, x) ∈ G(λS − T ). So that,

x ∈ (λS − T )z = (µS − T )z + (λ − µ)Sz.

By using Lemma 2.3 we get x + (µ − λ)Sz ∈ (µS − T )z. Hence,
(z, x + (µ − λ)Sz) ∈ G(µS − T ).

Since w ∈ (µ−λ)Sz, then (z, x−w) ∈ (z, x+(µ−λ)Sz) ∈ G(µS −T ). Consequently,
(x, z + y) = (x − w, z) + (w, y) ∈ G(RS(µ, T )).

Finally,
(x, y) = (x, z + y) − (x, z) ∈ G(RS(µ, T )) − G(RS(λ, T )) ⊂ G(RS(µ, T ) − RS(λ, T )).
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We deduce that,

(λ − µ)RS(µ, T )SRS(λ, T ) ⊆ RS(µ, T ) − RS(λ, T ).

So, (λ − µ)RS(µ, T )SRS(λ, T ) = RS(µ, T ) − RS(λ, T ).
(b) Since (λ − µ)RS(µ, T )SRS(λ, T ) = RS(µ, T ) − RS(λ, T ), then

RS(λ, T ) =
n∑

i=0
(λ − µ)iRS(µ, T )(SRS(µ))i + (λ − µ)n+1RS(λ, T )(SRS(µ, T ))n+1.

From the estimation

∥(λ − µ)n+1RS(λ, T )(SRS(µ, T ))n+1∥ ≤ ∥RS(λ, T )∥(|λ − µ| · ∥RS(µ, T )∥ · ∥S∥)n+1,

and the inequality |λ − µ| · ∥RS(µ, T )∥ · ∥S∥ < 1, it follows that the rest term

(λ − µ)n+1RS(λ, T )(SRS(µ, T ))n+1

tends to 0 as n → +∞. This completes the proof. □

Theorem 3.4. Let T ∈ CR(X) and S ∈ LR(X), which is continuous, satisfy S(0) ⊂
T (0), ∥S∥ ̸= 0, S ̸= T and D(T ) ⊂ D(S). For all λ ∈ ρS(T ), we have RS(λ, T )
commutes with S. Then,

lim
µ→λ

(µ − λ)−1(RS(µ, T ) − RS(λ, T )) = −RS(λ, T )SRS(λ, T ).

Proof. Let λ ∈ ρS(T ). We have from Theorem 3.3 that

(µ − λ)−1(RS(µ, T ) − RS(λ, T )) + RS(λ, T )SRS(λ, T )
= − RS(µ, T )SRS(λ, T ) + RS(λ, T )SRS(λ, T )
=(RS(λ, T )S − RS(µ, T )S)RS(λ, T ).

Hence, we can write

∥(µ − λ)−1(RS(µ, T ) − RS(λ, T ) + RS(λ, T )SRS(λ, T )∥
≤∥RS(λ, T ) − RS(µ, T )∥ · ∥S∥ · ∥RS(λ, T )∥.

Now we take |µ − λ| · ∥S∥ < ∥RS(λ, T )∥−1. Then,∑
n≥0

|µ − λ|n · ∥S∥n · ∥RS(λ, T )∥n < +∞,

with (I − (λ − µ)SRS(λ, T ))−1 = ∑
n≥0(µ − λ)nSnRS(λ, T )n. Since RS(λ, T ) and S

commute, then for x ∈ D(T ) we have

(λ − µ)RS(λ, T )−1SRS(λ, T )x = (λ − µ)RS(λ, T )−1RS(λ, T )Sx.

By Lemme 2.1 4., we get

(λ − µ)RS(λ, T )−1SRS(λ, T )x =(λ − µ)Sx + T (0)
=RS(λ, T )−1x − RS(µ, T )−1.
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From the above we find

RS(λ, T )−1(I − (λ − µ)SRS(λ, T ))x
=RS(λ, T )−1x + (µ − λ)RS(λ, T )−1SRS(λ, T ))x
=RS(λ, T )−1x − RS(λ, T )−1x + RS(µ, T )−1x

=RS(λ, T )−1(0) + RS(µ, T )−1x.

Since RS(λ, T )−1(0) = (λS − T )(0) = T (0) and RS(µ, T )−1x = (λS − T )x, then

RS(λ, T )−1(I − (λ − µ)SRS(λ, T ))x = RS(µ, T )−1x.

This implies that RS(µ, T ) = (I − (λ − µ)SRS(λ, T ))−1RS(λ, T ). So, in the first place,
we have

RS(µ, T ) =
∑
n≥0

(λ − µ)nSnRS(λ, T )n+1.

In the second place, we have

RS(µ, T ) − RS(λ, T ) =
∑
n≥0

(λ − µ)nSnRS(λ, T )n+1 − RS(λ, T )

=RS(λ, T )
∑
n≥1

(λ − µ)nSnRS(λ, T )n,

and we conclude

∥RS(µ, T ) − RS(λ, T )∥ ≤ ∥RS(λ, T )∥
∑
n≥1

|(λ − µ)|n · ∥S∥n · ∥RS(λ, T )∥n.

Arguing as above we conclude that

lim
µ→λ

(µ − λ)−1(RS(µ, T ) − RS(λ, T )) = −RS(λ, T )SRS(λ, T ).

□

Corollary 3.1. Let T ∈ CR(X) and S ∈ LR(X), which is continuous, satisfy S(0) ⊂
T (0), ∥S∥ ̸= 0, S ̸= T and D(T ) ⊂ D(S). For all λ ∈ ρS(T ), we have RS(λ, T )
commutes with S.

The function φ : λ → RS(λ, T ) is holomorphic for all λ ∈ ρS(T ).

Proof. If λ and µ ∈ ρS(T ), then

lim
µ→λ

φ(µ) − φ(λ)
µ − λ

= −RS(λ, T )SRS(λ, T ).

□

Proposition 3.2. Let T be open and injective with dense range. Then, for any
relation ∥S∥ ≠ 0 such that S(0) ⊂ T (0) and D(S) ⊃ D(T ) we have

σS(T ) ⊂
{

λ ∈ C : |λ| <
γ(T )
∥S∥

}
.
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Proof. Choose λ such that 0 < |λ| < γ(T )
∥S∥ . Then, by Lemma 2.5 2., we have λS − T

is open, injective and has dense range. Thus, λ ∈ ρS(T ). □

Proposition 3.3. Let T ∈ CR(X) and S ∈ LR(X), which is continuous, satisfy
S(0) ⊂ T (0), ∥S∥ ≠ 0, S ̸= T and D(T ) ⊂ D(S). For all λ ∈ ρS(T ), we have
RS(λ, T ) commutes with S, and ρS(T ) is nonempty and unbounded. Then,

lim
|λ|→+∞

∥RS(λ, T )∥ = 0, for all λ ∈ ρS(T ).

Proof. Let λ, µ ∈ ρS(T ) and µ be fixed,
(RS(λ, T ) − RS(µ, T ))(µS − T ) = (µ − λ)RS(λ, T )SRS(µ, T )(µS − T ).

This is equivalent to RS(λ, T )(µS − T ) − ID(T ) = (µ − λ)RS(λ, T )S. It follows that,
|µ − λ| · ∥RS(λ, T )∥ · ∥S∥ ≤ 1 + ∥µS − T∥ · ∥RS(λ, T )∥. Thus, since ∥µS − T∥ < +∞,(

|µ − λ| · ∥S∥ − ∥µS − T∥
)
∥RS(λ, T )∥ < 1.

Then, ∥RS(λ, T )∥ < 1
|µ−λ|·∥S∥−∥µS−T ∥ . Consequently, lim|λ|→+∞ ∥RS(λ, T )∥ = 0. □

Theorem 3.5. Let T ∈ CR(X) and S ∈ LR(X), which is continuous, satisfy S(0) ⊂
T (0), ∥S∥ ̸= 0, S ̸= T and D(T ) ⊂ D(S). For all λ ∈ ρS(T ), we have RS(λ, T )
commutes with S, and ρS(T ) is non-empty and unbounded. Then, the S-spectrum of
T is non-empty.
Proof. Suppose that ρS(T ) = C. We have for x ∈ X and x

′ ∈ X
′ ,

lim
µ→λ

x′RS(λ, T )x − x′RS(µ, T )x
λ − µ

= x′RS(λ, T )SRS(λ, T )x.

Thus, the (single valued) function f(λ) = x
′
RS(λ, T )SRS(λ, T )x is an entire analytic

function.
Moreover, f(λ) ≤ ∥x′∥ · ∥RS(λ, T )∥ · ∥S∥ · ∥RS(λ, T )∥ · ∥x∥. By Proposition 3.3,

it is clear that lim|λ|→∞ ∥RS(λ, T )∥ = 0, then we have f(λ) = 0 for all λ. Since
x′ is arbitrary, we have RS(λ, T )x = 0 for all x ∈ X. Thus, X = N(RS(λ, T )) =
(λS − T )(0) = T (0), and hence,

0 = RS(λ, T )(λS − T )(0) = RS(λ, T )(λS − T )x = x, for all x ∈ X

(since RS(λ, T ) is injective), which contradicts with our assumption that X is non-
trivial. □

Definition 3.3. The augmented S-spectrum of T is the set

σS(T ) =

σS(T ) ∪ {+∞}, if 0 ∈ σS(T −1),
σS(T ), otherwise.

The augmented S-spectrum is non-empty (if X ̸= {0}) since if {∞} ⊈ σS(T ) then
σS(T ) = σS(T ) is non-empty by Theorem 3.5.

The Möbius transformation η(λ) = (µ − λ)−1, where µ is a fixed point of C, and a
topological homeomorphism from C∞ onto itself.
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Theorem 3.6. Let S ∈ LR(X, Y ) be continuous and T ∈ CR(X, Y ) such that S(0) ⊂
T (0) and {0} ≠ D(T ) ⊃ D(S) with µ ∈ ρS(T ). Then,

η(σS(T )) = σ(SRS(µ, T )).

Proof. Without loss of generality, we assume that X is complete, T is closed and S is
continuous. Let λ ∈ C, λ ̸= µ, and let A := (µ − λ)((µ − λ)−1 − SRS(µ, T )). Then,

λS − T =(µS − T ) − (µ − λ)S (since S(0) ⊂ T (0))
=(I − (µ − λ)SRS(λ, T ))(µS − T )
=A(µS − T ).

We shall verify that A is injective. Suppose that λ ∈ ρS(T ). For x ∈ X we have
A(x) = A(0) = S(0), then (µ − λ)((µ − λ)−1 − SRS(µ, T ))x = S(0) ⊂ (λS − T )(0),
which give RS(λ, T )(µ − λ)((µ − λ)−1 − SRS(µ, T ))x ⊂ RS(λ, T )(λS − T )(0) = 0.
This implies that (RS(λ, T )−RS(λ, T )+RS(µ, T ))x = 0, equivalent to RS(µ, T )x = 0.
Therefore, (µS − T )RS(µ, T )x = (µS − T )(0) = T (0). By using Lemma 2.1 (d) we get
x + (µS − T )(0) = x + T (0) = T (0), so we conclude that x = 0. Then, A is injective.
Next we have X = R(λS − T ) = R(A(µS − T )) ⊂ R(A). Hence, S is surjective. As
required, since S is both bijective and open, it follows that (µ−λ)−1 ∈ ρI(SRS(λ, T )).

Conversely, let (µ − λ)−1 ∈ ρI(SRS(λ, T )). For x ∈ D(T ), we have

∥(λS − T )x∥ = ∥A(µS − T )x∥ ≥ γ(A(µS − T ))d(x, RS(λ, T )A−1(0)).

Since S is injective, then RS(λ, T )A−1(0) = RS(λ, T )(0) = 0. Therefore,

∥(λS − T )x∥ ≥ γ(A(µS − T ))∥x∥.

By Theorem 2.5 (a) as S is injective we have γ(A(µS − T )) ≥ γ(A)γ(µS − T ). Hence,
γ(A) > 0 from the hypothesis, and γ(µS − T ) > 0 since µ ∈ ρS(T ). Hence, it is easy
to verify that λS − T is injective and open, and we have λS − T is surjective. We
deduce that λ ∈ ρS(T ). □

Proposition 3.4. Let the relations S and T commute such that D(T ) ⊂ D(S). Then,
(λS − T ) and (µS − T ) have the same properties.

Proof. It is clear that the domains of (µS − T )(λS − T ) and (λS − T )(µS − T ) are
each equal to D(T 2). We have for x ∈ D(T 2)

(λS − T )(µS − T )x =(λS − T )(µSx − Tx)
=(λS − T ){µy1 − y2 : y1 ∈ Sx and y2 ∈ Tx, y1, y2 ∈ D(T )}
={λµSy1 − λSy2 − µTy1 + Ty2 : y1 ∈ Sx and y2 ∈ Tx,

y1, y2 ∈ D(T )}
=λµS2x − λSTx − µTSx + T 2x.
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Since T and S commute, then
(λS − T )(µS − T )x =λµS2x − λTSx − µSTx + T 2x

=(µS − T )(λS − T )x.

□

Proposition 3.5. Let µ ∈ ρS(T ) such that T ∈ CR(X) and S ∈ LR(X) be continuous
with S(0) ⊂ T (0), D(T ) ⊂ D(S) and let λ ̸= µ. Then,

N(λS − T ) = N((µ − λ)−1 − (µS − T )−1S).

Proof. Let µ ∈ ρS(T ) and λ ∈ C such that µ ̸= λ.
(a) T (0) + (µ − λ)Sx = (µS − T )x. Indeed, let (x, y) ∈ G(T − T + (µ − λ)S), then

x ∈ D(T ) and y ∈ (T − T + (µ − λ)S)x, so that, y ∈ T (0) + (µ − λ)Sx.
From another angle, T (0) = S(0) + T (0) ⊂ (λS − T )x, we obtain that

y ∈ T (0) + (µ − λ)Sx ⊂(λS − T )x + (µ − λ)Sx

=(µS − T )x (by Lemma 2.3 1.).
We infer that G(T −T +(µ−λ)S) ⊂ G(µS−T ). Furthermore, (T −T +(µ−λ)S)(0) =
T (0) = (µS − T )(0) and clearly D(T − T + (µ − λ)S) = D(T ) ∩ D(S) = D(T ) =
D(µS − T ). So, by Lemma 2.2 (a) and Lemma 2.3 (a), we have

T (0) + (µ − λ)Sx = (λS − T )x + (µ − λ)Sx = (µS − T )x.

(b) N(λS − T ) = N((µ − λ)−1 − (µS − T )−1S). Indeed, we first note that x ∈
N((µ − λ)−1 − (µS − T )−1S) if, and only if, x = (µ − λ)(µS − T )−1Sx, because

(I − (µ − λ)(µS − T )−1S)(0) =(µ − λ)(µS − T )−1(µS − T )(0)
=(µS − T )−1(0) = 0.

The latter implies that x ∈ R((µS − T )−1) = D(µS − T ) and, hence, it suffices to
consider the case x ∈ D(T ), x ̸= 0: x ∈ N(λS − T ) if and only if

x ∈ D(λS − T ) = D(T ) and (λS − T )x = (λS − T )(0) = T (0)
if and only if

(µS − T )x = (λS − T )x + (µ − λ)Sx = T (0) − λSx + µSx (by(a))
if and only if

(µS − T )−1(µS − T )x = (µS − T )−1((µ − λ)Sx + T (0))
if and only if

x + (µS − T )−1(0) = (µ − λ)(µS − T )−1Sx + (µS − T )−1(µS − T )(0)
if and only if

0 = (I − (µ − λ)(µS − T )−1S)x.

Then, N(λS − T ) = N((µ − λ)−1 − (µS − T )−1S). □
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Theorem 3.7. Let T ∈ CR(X) and let S ∈ BR(X) be single valued such that S and
T commute, with D(T ) = X and 0 ∈ ρ(S). Then, for any complex polynomial P , we
have

σ(P (S−1T )) ∪ σ(P (TS−1)) = P (σS(T )).

Proof. Let λ ∈ C, and let

µI − P (λ) := c
n∏

j=1
S(αj − λ).

Then,

µI − P (S−1T ) := c
n∏

j=1
S(αjI − S−1T )

and
µI − P (TS−1) := c

n∏
j=1

S(αjI − TS−1).

Without loss of generality, we assume that X is complete with S−1T and TS−1 closed.
Let µ ∈ σ(P (S−1T )) ∪ σ(P (TS−1)). If αj ∈ ρS(T ) = ρ(TS−1) ∩ ρ(TS−1) for all

1 ≤ j ≤ n, then (αjI − TS−1) and (αjI − S−1T ) would be bijective for all 1 ≤ j ≤ n.
Since 0 ∈ ρ(S), then S is bijective. Hence, by Proposition 2.2, µI − P (S−1T ) and
µI − P (TS−1) are bijective. Contradicting the assumption that µ ∈ σ(P (S−1T )) ∪
σ(P (TS−1)). Thus exists j, 1 ≤ j ≤ n such that αj ∈ σS(T ). Since P (αj) = µ, it
follows that µ ∈ P (σS(T )).

Conversely, suppose that µ ∈ P (σS(T )). Then, µ = P (λ) for some λ ∈ σS(T ).
Thus, λS = αjS since S is single valued, then λ = λSS−1 = αjSS−1 = αj for some j
such that 1 ≤ j ≤ n. Since the factors commute (see Proposition 2.2), we may assume
that j = 1. We notice the existence of two cases.

1st case. Suppose that α1S − T is injective. Then it cannot be surjective (α1 = λ ∈
σS(T )). Consequently, µI − P (S−1T ) or µI − P (TS−1) cannot be surjective. Thus,
µ ∈ σ(P (S−1T )).

2nd case. αjS − T is surjective for every j, 1 ≤ j ≤ n. Since α1 ∈ σS(T ), α1S − T
cannot be injective. Thus, µI − P (S−1T ) or µI − P (TS−1) is not injective. It follows
that µ ∈ σ(P (S−1T )) ∪ σ(P (TS−1)). □
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