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ON STATISTICAL SUMMABILITY IN NEUTROSOPHIC SOFT
NORMED LINEAR SPACES

INAYAT RASOOL GANAIE!, VIJAY KUMAR?, AND ARCHANA SHARMA?

ABSTRACT. In the present paper, we define the notions of statistical convergence
and statistical Cauchy sequence in neutrosophic soft normed linear spaces and study
some of their properties. We provide examples of a statistical Cauchy sequence
that is not statistically convergent and give a useful characterisation of statistical
convergence in these spaces.

1. INTRODUCTION

The concept of the statistical convergence was explored by Fast [9] and linked with
summability theory by Schoenberg [11].
For any set K C N, the natural density of K is defined by

1
IK) = ligng\{/-ﬁ: <n:ke XK}

provided the limit exists. Further, a number sequence u = (u,) is said to be statistical
convergent to ug if for each & > 0

1
lign;|{/<o <n:ju,—u| > 8} =0,

ie, 0(Kg) = 0, where Kg = {x < n : |Ju, —ug| > 8} We write, in this case
S — lilgnu,{ = up. Subsequently, the idea is developed by several authors including

Maddox [10], Fridy [12], Conner [13], Salat [32] and many others.
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Many problems arising in the areas of science and engineering cannot fit into the
framework of classical sets due to complications of uncertainty. As a result, to address
these problems, we primarily rely on three approaches: use of probability, interval-
based theory, and fuzzy set theory. Among these, fuzzy sets emerge as the most
suitable mathematical tool for handling such problems.

The notion of a fuzzy set was initially defined by Zadeh [16] as a generalization of
a crisp set with the help of a membership function to deal with those problems that
cannot be modeled in the framework of crisp sets. But there are situations which can
not be covered by fuzzy sets and therefore we need to extend the idea of fuzzy set.
Actually, one drawback of fuzzy sets is the selection of membership function as more
than one membership function can be defined using various operations on fuzzy sets.
Atanassov [15] observed that fuzzy sets require more alteration to handle issues in
a time domain, and therefore, he introduced the concept of intuitionistic fuzzy sets.
After the introduction of intuitionistic fuzzy sets, a progressive development is made
in this field. For instance, intuitionistic fuzzy metric spaces were introduced by Park
[14], intuitionistic fuzzy topological spaces and intuitionistic fuzzy normed spaces by
Saadati and Park [24], etc.

The neutrosophic sets were initially introduced by Smarandache [8] as a generaliza-
tion of fuzzy sets and intuitionistic fuzzy sets with the help of a membership function,
a non-membership function and an indeterminacy function to avoid the complexity
arising from uncertainty in settling many practical challenges in real-world activities.
For a progressive development on neutrosophic sets, we refer to the reader [7,25] and
[26]. Neutrosophic sets are also used to define a new kind of norm naturally. The
credit goes to Kirigci and Simgek [19] who defined neutrosophic normed space and
extended summability theory in these spaces. They defined statistical convergence,
statistical Cauchy and established some of their properties in neutrosophic normed
space. Some more interesting works on summability in neutrosophic normed spaces
can be found in [2-4] and [33].

Many approaches discussed above to minimize the uncertainty have their own
drawbacks. The main reason behind this is due to inadequacy of the parametrization.
To overcome on these difficulty, Molodtsov [6] introduced the idea of soft sets. These
sets find valuable applications in numerous fields, including decision-making ([1,21,23]),
medical diagnosis ([30,34]), data analysis approaches under incomplete information
[35], algorithms for COVID-19 outbreak [20], assessment processes [17], etc. Soft sets
are further used to define soft norm by Das et al. [29] where they developed soft
normed linear spaces from functional point of view.

In 2013, Maji [22] united the concepts of soft sets and neutrosophic sets, which
he called neutrosophic soft sets. Quite recently, Bera and Mahapatra [31] used soft
sets to define neutrosophic soft normed linear space and introduced the convergence
structure in these spaces. In present study, we will continue in this direction and
define statistical convergence, statistical Cauchy sequence in neutrosophic soft normed
linear space and demonstrate some of their properties.
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2. PRELIMINARIES

This section starts with a brief information on soft sets, soft vector spaces and
neutrosophic soft normed linear spaces. We begin with the following notations and
definitions.

Throughout this work, N, R and R* will denote the sets of natural, real and positive
real numbers, respectively.

Definition 2.1 ([5]). Let T = [0, 1]. A binary operation ® : € x ¥ — ¥ is t-norm if
for all ¢,e, g,h € T we have

1) ® is continuous, commutative and associative;

2Q)e=e®1;

3) c®e < g®h whenever ¢ < gand e <h.

Some examples of t-norm are e®g = eg, e® g = min{e, g}, e®g = max{e+g—1,0}.

Definition 2.2 ([5]). Let ¥ = [0, 1]. A binary operation ® : € x ¥ — ¥ is t-conorm
if for all ¢, e, g, b € T we have

1) ® is continuous, commutative and associative;

2)e=¢00;

3) c@®e < g®h whenever ¢ < gande <Hh.

Some examples of t-conorm are e ©®@ g = ¢+ g —eg, ¢ © g = max{e,g}, e @ g =
min{e + g, 1}.

For any universe set 4l and parameter set &, the soft set is defined as follows.

Definition 2.3 ([6]). A pair (#, &) is called a soft set over il if and only if # : & —
P(Lh), where PB(L) is the set of all subsets of L. i.e., the soft set is a parametrized
family of subsets of the set . Moreover, every set #(&),8 € €, from this family
may be considered as the set of &-elements of the soft set (#, &), or as the set of
&-approximate elements of the set.

Definition 2.4 ([6]). A soft set (#, €) over 4l is said to be absolute soft set if for

every 8 € €, #(8) = Y. We will denote it by 4l

Definition 2.5 (][27]). Let R be the set of real numbers, B(R) be the collection of
all non-empty bounded subsets of R and € taken as a set of parameters. Then a
mapping § : € — B(R) is called a soft real set. If a soft real set is a singleton soft
set, then it is called a soft real number and denoted by t,5, t, etc. 0,1 are the soft
real numbers where 0(e) = 0, I(e) = 1 for all e € E, respectively.

Let R(€) and RT(€), respectively, denote the sets of all soft real numbers and all
positive soft real numbers.

Definition 2.6 (]28]). Let (#, €) be a soft set over . The set (#, €) is said to be a
soft point, denoted by #* if there is exactly one e € € s.t #(e) = {u} for some u €
and # (') = ¢ for all ¢/ € € — {e}.
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Two soft points 7, #; are said to be equal if e = ¢ and u = tv. Let Ay denotes
the set of all soft points on §I.

In case 4 is a vector space over R and the parameter set € = R, the soft point is
called a soft vector. Soft vector spaces are used to define soft norm as follows.

Definition 2.7 ([18]). Let i be a absolute soft vector space. Then a mapping
| -] : & — R*(€) is said to be a soft norm on &I, if || - || satisfies the following
conditions:

(i) [|uell > 0 for all u, € £ and

ue| =0 < u. = 6y,

where 6, denotes the zero element of &;

(ii) [|@ue|| = |@] - [|ue]| for all u, € & and for every soft scalard;

(i) JJue + e[| < [l + [Jue || for all u,u, € £L;

(iv) [fue - u |l = [luell - flue || for all ue, ue € £L. N

The soft vector space {4 with a soft norm || - || on # is said to be a soft normed
linear space and is denoted by (§L, || - ).

We now recall the definition of neutrosophic soft normed linear spaces and the
convergence structure in these spaces.

Definition 2.8 ([31]). Let i be a soft linear space over the field § and R(&), Ay

denote respectively, the set of all soft real numbers and the set of all soft points on I8
Then a neutrosophic subset N over Ay x R(€) is called a neutrosophic soft norm on
$Lif for u,,uy € fland @ € § (@ being soft scalar), the following conditions hold:

(i) 0 < Gn(ue,91), By (ue,01), Ya(ue, 1) <1 for all n; € R(€);

(11> 0 < GN(ue7 61) + BN(uea ,U\Dj_ YN(uea 61) < 3 for all 61 S R<€)a

(iii) G (e, 91) = 0, with 9y < 0;

(iv) Gn(ue,v1) = 1, with ﬁ~> 0 if and only if u, = 5(;, the null soft vector;

(v) G (@, 51) = G (u,, ‘%') for all a(# 0), §; > 0;

(vi) G (ue, 1) ® G (ug,92) < Gn(ue @ uy, b1 @ 92) for all n1,9; € R(E);

(vii) Gpn(ue,-) is continuous non-decreasing function for ©v; > 0 and
lim Gy (ue, 1) = 1;

1 —>+00 _
(viii) By (ue,91) = 1, with n; <0; N
(ix) B (ue,h1) =0, with h; > 0 if and only if u, = 6y, the null soft vector;
(x) By(auc, 51) = By (u, ‘%') for all @(s£ 0), 91 > 0;
(xi) By (ue,91) © By(uy,92) = By (ue @ uy, 91 @ 2) for all 1,92 € R(€);
(xii) Bn(ue,-) is continuous non-increasing function for n; > 0 and
~lim BN(uea GI) = 0;

91 —+00 _
(xiil) Yn(ue,91) =0, with n; < 0; N
(xiv) Y (tte, 97) = 0, with §; > 0 if and only if u, = 6, the null soft vector;
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() Yov(@tie, 1) = Yiv (ue, 1) for all a(#0), 51 > 0;

(xvi) Yn(ue, 1) © Yn(uy,92) > Yv(ue G uy, b1 @ 02) for all 91,92 € R(€);

(xvii) Yn(u,+) is continuous non-increasing function for ©y; > 0 and
lim By(u,n7) =0.

y1—+00
In this case N = (G, By, Yu) is called the neutrosophic soft norm and

(Ll(F)a GNa BN7 YN7 ®, @>
is an neutrosophic soft normed linear space (briefly NSNLS).

Let (&4, - ||) be a soft normed space. Take the operations ® and © as e ® g =
eg and e©®@g=-¢+ g — eg. For § > 0, define

s i8> ull

G (e, ) = vFluell’ et
v (e, D) { 0, otherwise,
S, i > e

By (ug, §) = { vtluel’ et
w{ue,9) { 1 otherwise,

=~ H%Hv Iffj > Hu€H7
V(e §) = {1,‘j otherwise.
Then, (ﬂ(%), Gn,By,Yn,®,©) is the NSNLS. From now onwards, unless otherwise
stated by ¢ we shall denote the NSNLS (Q(S), Gy,Bn, YN, ®,).
A sequence u = (uf ) of soft points in ¥ is said to be convergent to a soft point
u, € Viffor0 < & < land > 0 exists ng € Ns.t Gy (uf Oue, ) > 1-8, By(uf Ou,,
p) <& Yy(ul ©u., p) <& In this case, we write lim uf = u..

K—>+00
A sequence u = (uf ) of soft points in ¥ is said to be Cauchy sequence if for

0< &< 1landp >0 exists ng € N st for all k,p > ng, Gy(uf ou .y >1-6,
By(ug, ©uf ) <&, Vn(ui Oul ) <6

3. STATISTICAL CONVERGENCE IN NSNLS

In this section, we define statistical convergence in NSNLS and develop some of
its properties.
Definition 3.1. A sequence u = (uf ) of soft points in U is said to be statistical

convergent to a soft point u, in ¥ if for 0 < § < 1 and § > 0, there exists ny € N s.t.

1
lim —
n—+oon

{HSU:GN(uSK@ue,ﬁ) <1-—§& or

Bulw ©14,5) 6, Vy(® ©u,.5) > a}\ 0

or equivalently

d({reN: Gy Sue,n) <1-8 or
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BN<u:,€ 6 u876) Z 8,YN<11:N 611676) Z 6}) = 0

In present case, we denote & — lim ul =u,.
K—+o0 ¢

Remark 3.1. Since every finite set has density zero, every convergent sequence in
NSNLS ¥ is statistically convergent but the converse may not be true as can be seen
from the following example.

Ezample 3.1. Let (R, ||-||) be a soft normed linear space. For ¢,g € [0,1], let e®g = eg
and e ® g = ¢+ g — eg. Choose u, € R and § > 0, we define

_ )] U U
Gl 5) Jue] Jue]

] _ ~
IR B ueJU TR Y umn = ~
T A Ty T MR

then it is easy to see that (R Gn,Bn,YN,®,©) is a NSNLS. Define a sequence
u = (ug,) by

o 1, if s is square,
0, otherwise.

Now, for & > 0 and § > 0,
T = {r € N: Gy, §) < 1-6 or By(w,,B) > & Yy, 5) > &)

:{mEN:Nljﬂgl—é - Hueﬂ'l > g | 25}
DD [lug | DD [lug | )

né
&

Z{HENW’J:NHZl_

or I | = 56
={keN:ul =1}
= {k € N: k is square}.

This implies that §(7) = 0({x € N : k is square}) = 0 and therefore u = (uf ) is

statistical convergent to 0. Obviously, by the structure of the sequence, u = (uf ) is
not ordinary convergent.

By Definition 3.1 together with the property of natural density, we have the following
lemma.

Lemma 3.1. For any sequence u = (uf ) of soft points in ’(7, the subsequent statements
are equivalent:

(i) § — E@ra ug = u;

(it) {r e N:Gy(uf Ou.,n) <1-6} =66{k € N: By(ul Ou.n) > &} =0{x €
N: YN(u'; @ueaﬁ) 2 8} = 07'

(ii1) 0{x € N: Gy(uf Su.,9) >1—-8& and By(ul Sue,n) <&, Yy(ul Su.,p) <
&} =1;

(iv) {r e N: Gn(ul Sue, ) >1 -8} =0{k € N: By(ul Su,1n) <&} =0{r €
N: Yy Oue,b) <&} =1;
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(v) § = lim Gn(uf Oue,p) =1andS— lim By(ul Su.,n) =8 — lim Yy(ul ©

K—r+00 K—r+00 K—r+00

u.,n) = 0.

Theorem 3.1. For any sequence u = (u ) in 0, if S — 1_131 uy  ewists, then it is

unique.
Proof. We shall prove the theorem by use of contradiction. Let & — ggl ul =g,
and & — lim uf = u6 , where u,, # ueg. For & > 0 and § > 0, choose & > 0 s.t.

K——+00

(1-8)®(1— 81) >1—¢& and & © & < &. Define the following sets:
Agyi(61,D) = {F& eN: GN(%Z O Uy, U) <1- 81},

{ (u @u62,3><1—51},
ABN,l(al,ﬁ):{neN: ( euel,;’)z 1},

{rems (e

{

N}

Agy 2(81,9) =

ABN,2((€176) =<{keN:B N

AYN)1(8176>: KGN N(ue’i@uel,o

AYN,Q(gl,ﬁ) = {K e N: YN (U.:}_C @u, U) > 81

Since & — lim uf = wu.,, by Lemma 3.1, 6{Ag,1(&,9)} = {Ap,1(E1,0)} =

K——+00

H{Ay, 1(&1,9)} = O and therefore

5{AE}N,1(8176>} = 5{ABN (81’ )} 6{AYN 1(8170)} =1

Further, & — lim uf =u,, so 0{Ag,2(&1,9)} = 0{Ap,2(81,0)} = 6{Ay, 2(&1,9)}

k—+o0

= 0 and therefore (5{AGN2(81 9)} = (5{ABN2(81, 9)} = 6{AYN2(61,6)} = 1 for all
U > O Define KGN,BN,YN(gan) = {AGN7 (81,0) U AGN’2<81, )} N {ABN,1(8176> U
ABN,2(81; 6)} N {AYN,l(glaﬁ) U AYN,2<(81; 6)}, then 6{KGN7BN,YN (8,6)} = (0 and there-
fore, (5{KE;N7BN7YN(8,6)} = 1. Let m € KgN7BN7YN(8’6)’ then we have following
possibilities:
1. me {AGN,1(€176> U AGN 2( )
2. m € {Apy1(61,9) U Ay, 2(51 9)
3. m € {Ayy1(81,5) U Ay, 2(81,5)1°.

}C
e

’
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Case 1. Let m € {AGNJ(&,G)UAGN,Q(&,E)}C. Then, m € ACGNJ(&,ﬁ) and
me AEGNQ(&, y) and therefore,

(31) Gy (w;; S, g) >1-& and Gy (w;; s, g) >1- 6.

Now,

Gn(ue, Ou,,,0) =Gy (ugfn ou” du, Ou,,, 0 ® U)

2 2
m fj m ! 6
> Gn|ue, @uel,§ ® Gy uem@um,i
S(1-&)®(1—&) by (3.1)
>1-6.

Given that § > 0 is arbitrary, we thus obtain Gy (u., ©u,_,§) = 1, for all § > 0, which
gives U, O, = Op, ie., U =1,

Case 2. Let m € {Ap,1(&1,0) U Ap, 2(&1, 6)}E Then, m € A%Ng(gbﬁ) and
m e AEBN,g(&, y) and therefore,

(3.2) By <ugfn S, g) <& and By <ugfn o, g) <&,

Now,

Bx(u, &1, = By (a2 00t @, 04, J 0 )
m 6 m / 6
S BN uenz 6 uel7 5 @ BN uem 9 ue27 5
< é.

Given that & > 0 is arbitrary, we thus obtain By (i, @u/@, §) =0, for all § > 0, which
gives ., © u;2 = QNO, Le, Uy = u;2.

Case 3. Let m € {Ay,1(81,0) UAYN,Q(&,E)}B. Then, m € A%N’l(&,ﬁ) and m €
AQ/N,Q(&’ y) and therefore,

(3.3) Yy (u’éf" O Uy, g) <& and Yy (ugfn Su,,, g) < &.

Now,

Y (ue, © u'eQ, p) =Yy <ugfu ou; Due, © u’eQ, g ® g)
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< Vi (u’;f, &, ‘2’) ® Vi (uz; S, g)
<& ®8& by (3.3)
< 6.

Given that € > 0 is arbltrary, we thus obtain Yy (u,, @u@, §) =0 for all § > 0 , which
gives U, @u = 00, ie., u,, = ueQ.

Hence, in all cases we have u,, = u;z, i.e., the statistical limit of the sequence (uf )
is unique. O

K

Theorem 3.2. A sequence u = (uf ) in U is statistically convergent if and only if
exists a set K = {k1, ko,K3,...} st 6(K)=1 and (Gn,By,Yn) — lirgl{ ul = .
KE

K—+00

Proof. First suppose that & — lim uf =u.. For p > 0 and p € N, define the set

K—+00

3 ~ 1
AGNBNYN(”?U) = {/’i e N: GN(ugN @ue,t)) >1-— ; and

_ 1 . 1

BN(uZN @ue,t)) < *,Y}\[(U.Zl€ @ue,o) < }
P p

1

We first show that Ag, syyvy(p+1,0) C AGN By.yy (05 D).
Let m € AG’N,BN,YN (P +1 U) Then, GN( O U, U) 1— 1 >1- » and

>
By(uf S ue,p) < lerl p, Yy(ui © ue,)\) < pil < ;1), this implies that m €

Agy.By vy (P, ) and therefore,

1

(3'4) AGN,BN,YN (P +1, 6) - AGN,BMYN (P, 6)
Since & — lim uf = u,, so for all p € N and § > 0, 6{Ac,pyyy(0.D)} = 1 and

K——+400

therefore is an mﬁnlte set. Let my € Ay Byvy(1,0). Further, 5{Ac, Byvy(2,9)} =1,
so we can choose my in Agy By.vy(2,9), s.t mg > my and

1 ~ 1
. {/@Sn:GN(uZH@ue,U) > 1—5 and

- 1 _ 1 1
BN(ug @ueao) < 77YN(u: @uevt)) <3 > =
" 2 " 2 2
Now, select ms in Agy By vy (3,9), s.t m3 > my and
1 _ 1
—tE<n:Gyul ou,p) >1—- and
n " 3
. _ 1 . _ 1 2
BN(“@H @ueat)) < §>YN(ueK @uea‘)) < g > §7
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and so on. In this way we obtain a sequence (m,) in N with m,; > m, for all
p.my € Ay Byya(p,9) and for all n > m,, p € N

(3.5) i

- 1 ~ 1
{m <n:Gn(ul Oue,n) >1—— and By(u; Sue, ) < —,
p p

-1
>E—

N 1
Vil O 1,5) < }
p p

If we define a set

)

(36) HK={neN:l<n<m}U LLEJN{n € Acyyyy (P, 0)} im, <n<mpg

then using (3.4), (3.5) and (3.6) we have for all n satisfying (m, < n < m,4),

1 1
- <n:keKY>-
Siw<nin ey > L

- 1
{/fgn:GN(u:K@ue,t)) >1—— and
p

B (s, © ) < VG, D) < 1 > P
p p p

and therefore, in the limiting case, we get §(K) > 1, 1i.e., §(K) =1 as 6(K) # 1. Now
we will show that the subsequence (uf : x € K) is convergent to ue, i.e., (uf ) — u.
over K.

Let & > 0 be given. Since % — 0 as p = 400, so we can choose p € N, s.t % < é&.
Let K € K be s.t k > t, for some fixed integer t,. Then by structure of K, exists a
number g > p, s.t t;, <k <t and kK € Ag, By vy (P, 9). Now for & > 0,

- 1
Gy(u; Oue,h)>1—-—>1-§8 and
fel

- 1 ~ 1
By(ul Su.,p) < —<§E, Yyul ou,h) < —<E§,
p p

(uf ) = u,.

for all K > t, and x € K. This implies that (Gn, By, Yn) — 1_131 .
Conversely, suppose there exists a set K = {k1, k2, ..., Kj,... }, with §(K) =1 and
(Gn,Bn,YN) — 1_131 uf =u, over K, ie., (Gn, By, Yn) — lirg{ uf =u.. Let & >0
K e’} KE
K—+4o0

and § > 0. Since (Gy, By, Yn) — h%l{ uf = u,, so there exists x; € N s.t for all

KE e

K—+o0
k>rjand kK € K, Gy(u Oue,n) >1—& and By(ul Su, n) <&, Yyul ou,
y) < &. So, if we consider the set

TG’N,BN,YN(gaﬁ) = {/ﬁ e N: GN(USN S ue>t)) <1l- & or

Ba(u. S 1 B) > & Yy(uf. Su,,§) > 8}
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then Ty By.yy (€,9) C N —{kj, Kj1, Kjto, ... }. This immediately implies that
0 (Tay,Byyn(€,0)) < O(N) = 0{Kj, K1, Rjra, o } = 1= 1=0,

and therefore 0 (T By vy (6,9)) = 0 as 6 (Tay By.vy(8,9)) £ 0. This shows that
u = (uy ) is statistical convergent to u., i.e., & — EIJP ul = . U

Theorem 3.3. Let u = (uf ) and w = (w; ) be any two sequences in U st S —

nggloo(ugn) =Uu., and § — ﬁli)gloo(w:“) = We,. Then,

(i) § = lm (U, & W) =te, & we,;

(i1) & — Er+n (Guf ) = au,,, where 0 #a € §.
Proof. The proof of the theorem can be obtained as the proof of Theorem 3.1, so
omitted. 0

4. STATISTICAL COMPLETENESS IN NSNLS

K
€

Definition 4.1. A sequence u = (uf ) of soft points in ¢ is said to be statistically
Cauchy sequence if for 0 < & < 1 and § > 0, exists p € N s.t

1
lim —
n—+oon

{mgn:GN(uZK@uZP,ﬁ) <1—-¢& or

€x

B (ug, @u@p,iﬁ) > 8, Yn(ul @u@p,iﬁ) > SH =0

or equivalently
{r € N: Gy(ug ©ul ,9) <1—-6& or
Bn(ug, ©uZ,,9) = & Yn(ug, ouf ,p) = 8} = 0.

Theorem 4.1. Fvery statistical convergent sequence in U is statistical Cauchy.

Proof. Let u = (u? ) be any statistical convergent sequence in 0 with §— lim ul = U,

K—r+00
For & > 0 and § > 0. Choose & > 0 s.t
(4.1) 1-&)®(1—-&)>1—-& and & & <é&.

Define a set, K(&1,9) = {x € N : Gn(uf, @ue,g) <1-—& or By(uf, @ue,g) >
&, Yn(u' S u, ) > &} Then, K8&,5) = {x € N : Gy(u® Su,l) > 1—
&, and By(uf © ue,g) < &1, Yn(ui © ue,g) < & }. Since & — nl_i)rlloou'gﬂ = U, SO
5(K(&,9)) = 0 and 6(KC(&,9)) = 1. Let p € K°(&,,§). Then,

(42) GN<u’e’p@ue,g> > 1—51 and BN<u§p@ue,g> < 81,YN (u@p@ue,g> < 81.
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Now, let T'(6,9) = {x € N: Gy(u; ouf ,9) <1-6 or By(ug oul ,9) > &, Y (uf ©
u? ,9) > &}. Then, we show that T(&,1) C K(&1,9). Let m € T(&,9). Then,

(4.3) Gn(ug, oul,h) <1-6E or By(u ou?,9) =8 Yy(uj oul,p) > 6.

Case 1. If Gy(ug ©ul ,p) < 1—§, then Gy (u’e’fn SRTI g) < 1 — &; and therefore
m € K(&1,1). As otherwise, i.e., if Gy (ugf o U, g) > 1— &, then by (4.1), (4.2) and
(4.3) we get

€m

1-&2>Gn(u, ©oul . 9)

=Gy (uﬁfﬂ Su. du.oug, g @ g)
> Gy <ug’ o U, U) ® Gy (uﬁ O U, U)
n 7O PN
>(1-68)®(1—-§&)
>1-—6,
which is not possible. Thus, T'(8,19) C K(&;,1).
Case 2. If By(u © u@p,ﬁ) > &, then By (u’gfn O U, g) > &, and therefore m €

K(&1,19). As otherwise, i.e., if By <ugZ O U, g) < &1, then by (4.1), (4.2) and (4.3)
we get

& < By & ,5)

= BN<u’e’f" Su.d u.oul, 5 @ g)

m ,fj fj
< BN (uem O U, 2) © BN <u£p O Ue, 2)
< (gl © 61
< 6,

which is not possible. Also, if Yy (u? © u y) > &, then Yy (u’e’fn O U,, g) > &, and
therefore m € K(&;,1). As otherwise, i.e., if Yy (ugf” @ue,g) < &, then by (4.1),
(4.2) and (4.3) we get

& < Yn(ug, ©ug ,9)

= YN(”Z; Sudu.ouy, g ® g)

S YN (u’e]:n 6 ue7 g) @ YN (ugp e ue7 g)

<81@81<€,
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which is not possible. Thus, T'(8,19) C K(&;,1).
Hence, in all cases, T'(8,9) C K(&;,9). Since (K (81,9)) = 0, so 6(T(&,9)) = 0,
and therefore u = (uf ) is statistical Cauchy. O

€r

Ezample 4.1. Let Ry = {{:neN}and || || = || ie., the usual norm on Ry, then

(Ry,|-|) is a soft normed linear space. For § > 0, if we define Gy (u.,H) = m,

By(ue,b) = %, Yn(ue,9) = ”“EH ;e®g=rcg and ¢e©@g = ¢+ g— eg, then it is easy

to see that (R1(R), Gn, By, Y, @, ®©) isa NSNLS. If we define a sequence of soft
points u = (uf ) by u¥ =1 then it is easy to see by definition of Gy, By and Yy,
the density of the set A ={rx € N: Gy(ui cul ,h) <1—& or By(u;, ©ul ,9) >

& Yy(ui © ug’ ,9) > &} is zero, i.e., §(A) = 0, Therefore, (u? ) is statistical Cauchy.

en

Since uy = - —> 0 as k — +oo and usual convergence implies statistical convergence
with the same limit, so & — 11111 ul = 0 but 0 is not a member of the space.
K—r+00

Remark 4.1. If a sequence is Cauchy in ), then it is statistically Cauchy.

Theorem 4.2. For any sequence u = (uf ) in U, the subsequent conditions are
equivalent:
(1) w= (uf ) is statistically Cauchy w.r.t. neutrosophic soft norm (Gn,Bn,Yn);
(i1) there exists a subset K = {K1,Ka,...,Kj, ...} of N, with 6(K) = 1 and the
subsequence (vfﬁj)jeN is Cauchy sequence over K.

Proof. The proof of the theorem can be obtained analogously as the proof of Theo-
rem 3.2. [

Definition 4.2. A NSNLS ¢ is said to be statistically complete if every statistically
Cauchy sequence in Aj is statistically convergent in Ag.

Theorem 4.3. If every statistical Cauchy sequence in V' has a statistical convergent
subsequence, then V is statistically complete.

Proof. Let u = (uf ) be any statistically Cauchy sequence of soft points in ¥ which

has a statistical convergent subsequence (u (3) ) , S = hIJEl url ) = u, for some u,
Jj—4oo r
in V. Since u = (uf ) is statistically Cauchy, so for & > 0 and 1 > O7 d(A) = 0, where

Ql:{ﬁeN:GN<uZK9u§p,g) <1-—8; or

By (uzﬂ SR g) > &1, YN (uiﬁ ou;, g) > 51}-

Again since & — lim u*0) =1, we have §(®) = 0, where
j—+o0 €r(5)

@:{ (7)) e N: Gn (e()@ue,g>§1—61 or
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5(3) H w(5) ]
BN( €x(5) S U, 2) 2 é';laY]\f <ueﬁ(j> @uE) 2) Z 81}
Now define

R={keN:Gyu Ou.,n) <1-8 or By(u; Sun) > &,
}/N(u:N @umﬁ) Z g}

Now we claim that At N DC C RE. Let m € AL N DC. Then, m € A* and m € DL, If
me Q(E, then

(4.4) Gy (ugfn@ugp,;)) > 1-& and By (ugfn@ugp,;)) < &, Yy (ugfn@ugp,;)) < 8.
and if m € ©F, then m = k(jy) for j, € N and
(4.5)
Gu[w@ cu,2) > 1-6 and By[w® cu, 2| < &, va[uw® ou,?) <&
N €r(io) 672 1 N e() 672 1, IN 6() 672 1
Now,
Gn(ul Oue, ) =Gy(ul O urlo) g yrto) oy ﬁ@ﬁ
em ©’ entio)  enio) 979
m o slio) D (o) H
Z GN(Ll @ue wio)’ 2) ®GN<ue'i?O) O U, 2)
>(1—=&)®(1—&) for p=r(jo)
>1-6
and
B (um ou U) BN(UHZ @u( jo) Du k(jo) ou 6@6>
€m € €m €k(j 0) K(] ) € 2 2
oy ygiio) D (o) n
SB (uem@ue( )’ 2>@B ( e(o)eue72>
<86 0& for p=r(j)
< &,
Yv(ug, ©ue, ) =Yy (u o) g yrto) @ue,n@o>
x (o) k(i) 9% 9
m o ygmlio) 9 (o) ]
SY(’J S e()2>@YN< )@uev2>

<8 @& for p=k(jo)
< &, by (4.4) and (4.5),
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which implies that m € RE, so AL N D C RKC or |} C AUD. Therefore, I(R) <
J(RAUD) = 0. This shows that u = (uf ) is statistically convergent and therefore

€k

statistically complete. 0

5. CONCLUSION

The neutrosophic soft norm is a very powerful tool due to its parameterized nature to
analyze many problems arising in different areas such as decision-making, pattern
recognition, medical diagnosis, data mining, and deriving insights from
data, particularly when there is inherent uncertainty in the data. In this paper,
we introduce the ideas of statistical convergence, statistical Cauchy sequences, and
statistical completeness in a more general setting, i.e., in neutrosophic soft normed
linear spaces. The results presented in this paper will be helpful in analyzing many
problems where the fuzzy norm is not sufficient to work, and we look forward to a
generalized norm like the neutrosophic soft norm.

Acknowledgements. The authors express their deep gratitude to the reviewers for
their invaluable comments and suggestions, which improved the presentation of the
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