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ON STATISTICAL SUMMABILITY IN NEUTROSOPHIC SOFT
NORMED LINEAR SPACES

INAYAT RASOOL GANAIE1, VIJAY KUMAR2, AND ARCHANA SHARMA3

Abstract. In the present paper, we define the notions of statistical convergence
and statistical Cauchy sequence in neutrosophic soft normed linear spaces and study
some of their properties. We provide examples of a statistical Cauchy sequence
that is not statistically convergent and give a useful characterisation of statistical
convergence in these spaces.

1. Introduction

The concept of the statistical convergence was explored by Fast [9] and linked with
summability theory by Schoenberg [11].

For any set K ⊆ N, the natural density of K is defined by

δ(K) = lim
n

1
n

|{κ ≤ n : κ ∈ K}|

provided the limit exists. Further, a number sequence u = (uκ) is said to be statistical
convergent to u0 if for each E > 0

lim
n

1
n

|{κ ≤ n : |uκ − u0| ≥ E}| = 0,

i.e., δ(KE) = 0, where KE = {κ ≤ n : |uκ − u0| ≥ E}. We write, in this case
S − lim

κ
uκ = u0. Subsequently, the idea is developed by several authors including

Maddox [10], Fridy [12], Conner [13], Šalát [32] and many others.
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Many problems arising in the areas of science and engineering cannot fit into the
framework of classical sets due to complications of uncertainty. As a result, to address
these problems, we primarily rely on three approaches: use of probability, interval-
based theory, and fuzzy set theory. Among these, fuzzy sets emerge as the most
suitable mathematical tool for handling such problems.

The notion of a fuzzy set was initially defined by Zadeh [16] as a generalization of
a crisp set with the help of a membership function to deal with those problems that
cannot be modeled in the framework of crisp sets. But there are situations which can
not be covered by fuzzy sets and therefore we need to extend the idea of fuzzy set.
Actually, one drawback of fuzzy sets is the selection of membership function as more
than one membership function can be defined using various operations on fuzzy sets.
Atanassov [15] observed that fuzzy sets require more alteration to handle issues in
a time domain, and therefore, he introduced the concept of intuitionistic fuzzy sets.
After the introduction of intuitionistic fuzzy sets, a progressive development is made
in this field. For instance, intuitionistic fuzzy metric spaces were introduced by Park
[14], intuitionistic fuzzy topological spaces and intuitionistic fuzzy normed spaces by
Saadati and Park [24], etc.

The neutrosophic sets were initially introduced by Smarandache [8] as a generaliza-
tion of fuzzy sets and intuitionistic fuzzy sets with the help of a membership function,
a non-membership function and an indeterminacy function to avoid the complexity
arising from uncertainty in settling many practical challenges in real-world activities.
For a progressive development on neutrosophic sets, we refer to the reader [7, 25] and
[26]. Neutrosophic sets are also used to define a new kind of norm naturally. The
credit goes to Kirişci and Şimşek [19] who defined neutrosophic normed space and
extended summability theory in these spaces. They defined statistical convergence,
statistical Cauchy and established some of their properties in neutrosophic normed
space. Some more interesting works on summability in neutrosophic normed spaces
can be found in [2–4] and [33].

Many approaches discussed above to minimize the uncertainty have their own
drawbacks. The main reason behind this is due to inadequacy of the parametrization.
To overcome on these difficulty, Molodtsov [6] introduced the idea of soft sets. These
sets find valuable applications in numerous fields, including decision-making ([1,21,23]),
medical diagnosis ([30, 34]), data analysis approaches under incomplete information
[35], algorithms for COVID-19 outbreak [20], assessment processes [17], etc. Soft sets
are further used to define soft norm by Das et al. [29] where they developed soft
normed linear spaces from functional point of view.

In 2013, Maji [22] united the concepts of soft sets and neutrosophic sets, which
he called neutrosophic soft sets. Quite recently, Bera and Mahapatra [31] used soft
sets to define neutrosophic soft normed linear space and introduced the convergence
structure in these spaces. In present study, we will continue in this direction and
define statistical convergence, statistical Cauchy sequence in neutrosophic soft normed
linear space and demonstrate some of their properties.
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2. Preliminaries

This section starts with a brief information on soft sets, soft vector spaces and
neutrosophic soft normed linear spaces. We begin with the following notations and
definitions.

Throughout this work, N, R and R+ will denote the sets of natural, real and positive
real numbers, respectively.

Definition 2.1 ([5]). Let T = [0, 1]. A binary operation ⊛ : T × T → T is t-norm if
for all c, e, g, h ∈ T we have

1) ⊛ is continuous, commutative and associative;
2) e = e⊛ 1;
3) c⊛ e ≤ g⊛ h whenever c ≤ g and e ≤ h.
Some examples of t-norm are e⊛g = eg, e⊛g = min{e, g}, e⊛g = max{e+g−1, 0}.

Definition 2.2 ([5]). Let T = [0, 1]. A binary operation ⊚ : T × T → T is t-conorm
if for all c, e, g, h ∈ T we have

1) ⊚ is continuous, commutative and associative;
2) e = e⊚ 0;
3) c⊚ e ≤ g⊚ h whenever c ≤ g and e ≤ h.
Some examples of t-conorm are e ⊚ g = e + g − eg, e ⊚ g = max{e, g}, e ⊚ g =

min{e + g, 1}.

For any universe set U and parameter set E, the soft set is defined as follows.

Definition 2.3 ([6]). A pair (H,E) is called a soft set over U if and only if H : E →
P(U), where P(U) is the set of all subsets of U. i.e., the soft set is a parametrized
family of subsets of the set U. Moreover, every set H(E),E ∈ E, from this family
may be considered as the set of E-elements of the soft set (H,E), or as the set of
E-approximate elements of the set.

Definition 2.4 ([6]). A soft set (H,E) over U is said to be absolute soft set if for
every E ∈ E, H(E) = U. We will denote it by Ũ.

Definition 2.5 ([27]). Let R be the set of real numbers, B(R) be the collection of
all non-empty bounded subsets of R and E taken as a set of parameters. Then a
mapping F : E → B(R) is called a soft real set. If a soft real set is a singleton soft
set, then it is called a soft real number and denoted by r̃, s̃, t̃, etc. 0̃, 1̃ are the soft
real numbers where 0̃(e) = 0, 1̃(e) = 1 for all e ∈ E, respectively.

Let R(E) and R+(E), respectively, denote the sets of all soft real numbers and all
positive soft real numbers.

Definition 2.6 ([28]). Let (H,E) be a soft set over U. The set (H,E) is said to be a
soft point, denoted by Hu

e if there is exactly one e ∈ E s.t H(e) = {u} for some u ∈ U
and H(e′) = ϕ for all e′ ∈ E − {e}.
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Two soft points Hu
e ,Hw

e′ are said to be equal if e = e
′ and u = w. Let ∆

Ũ
denotes

the set of all soft points on Ũ.
In case U is a vector space over R and the parameter set E = R, the soft point is

called a soft vector. Soft vector spaces are used to define soft norm as follows.
Definition 2.7 ([18]). Let Ũ be a absolute soft vector space. Then a mapping
∥ · ∥ : Ũ → R+(E) is said to be a soft norm on Ũ, if ∥ · ∥ satisfies the following
conditions:

(i) ∥ue∥ ≥ 0̃ for all ue ∈ Ũ and
∥ue∥ = 0̃ ⇔ ue = θ̃0,

where θ̃0 denotes the zero element of Ũ;
(ii) ∥α̃ue∥ = |α̃| · ∥ue∥ for all ue ∈ Ũ and for every soft scalarα̃;
(iii) ∥ue + ue′ ∥ ≤ ∥ue∥ + ∥ue′∥ for all ue, ue′ ∈ Ũ;
(iv) ∥ue · ue′ ∥ = ∥ue∥ · ∥ue′∥ for all ue, ue′ ∈ Ũ.
The soft vector space Ũ with a soft norm ∥ · ∥ on Ũ is said to be a soft normed

linear space and is denoted by (Ũ, ∥ · ∥).
We now recall the definition of neutrosophic soft normed linear spaces and the

convergence structure in these spaces.
Definition 2.8 ([31]). Let Ũ be a soft linear space over the field F and R(E), ∆

Ũ

denote respectively, the set of all soft real numbers and the set of all soft points on Ũ.
Then a neutrosophic subset N over ∆

Ũ
× R(E) is called a neutrosophic soft norm on

Ũ if for ue, ue′ ∈ Ũ and α̃ ∈ F (α̃ being soft scalar), the following conditions hold:
(i) 0 ≤ GN(ue, ỹ1), BN(ue, ỹ1), YN(ue, ỹ1) ≤ 1 for all ỹ1 ∈ R(E);
(ii) 0 ≤ GN(ue, ỹ1) + BN(ue, ỹ1) + YN(ue, ỹ1) ≤ 3 for all ỹ1 ∈ R(E);
(iii) GN(ue, ỹ1) = 0, with ỹ1 ≤ 0̃;
(iv) GN(ue, ỹ1) = 1, with ỹ1 > 0̃ if and only if ue = θ̃0, the null soft vector;
(v) GN(α̃ue, ỹ1) = GN

(
ue,

ỹ1
|α̃|

)
for all α̃( ̸= 0̃), ỹ1 > 0̃;

(vi) GN(ue, ỹ1) ⊛ GN(ue′ , ỹ2) ≤ GN(ue ⊕ ue′ , ỹ1 ⊕ ỹ2) for all ỹ1, ỹ2 ∈ R(E);
(vii) GN(ue, ·) is continuous non-decreasing function for ỹ1 > 0̃ and

lim
ỹ1→+∞

GN(ue, ỹ1) = 1;

(viii) BN(ue, ỹ1) = 1, with ỹ1 ≤ 0̃;
(ix) BN(ue, ỹ1) = 0, with ỹ1 > 0̃ if and only if ue = θ̃0, the null soft vector;
(x) BN(α̃ue, ỹ1) = BN

(
ue,

ỹ1
|α̃|

)
for all α̃(̸= 0̃), ỹ1 > 0̃;

(xi) BN(ue, ỹ1) ⊚ BN(ue′ , ỹ2) ≥ BN(ue ⊕ ue′ , ỹ1 ⊕ ỹ2) for all ỹ1, ỹ2 ∈ R(E);
(xii) BN(ue, ·) is continuous non-increasing function for ỹ1 > 0̃ and

lim
ỹ1→+∞

BN(ue, ỹ1) = 0;

(xiii) YN(ue, ỹ1) = 0, with ỹ1 ≤ 0̃;
(xiv)YN(ue, ỹ1) = 0, with ỹ1 > 0̃ if and only if ue = θ̃0, the null soft vector;
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(xv) YN(α̃ue, ỹ1) = YN

(
ue,

ỹ1
|α̃|

)
for all α̃(̸= 0̃), ỹ1 > 0̃;

(xvi) YN(ue, ỹ1) ⊚ YN(ue′ , ỹ2) ≥ YN(ue ⊕ ue′ , ỹ1 ⊕ ỹ2) for all ỹ1, ỹ2 ∈ R(E);
(xvii) YN(ue, ·) is continuous non-increasing function for ỹ1 > 0̃ and

lim
ỹ1→+∞

BN(ue, ỹ1) = 0.

In this case N = (GN , BN , YN) is called the neutrosophic soft norm and
(Ũ(F ), GN , BN , YN ,⊛,⊚)

is an neutrosophic soft normed linear space (briefly NSNLS).
Let (Ũ, ∥ · ∥) be a soft normed space. Take the operations ⊛ and ⊚ as e ⊛ g =

eg and e⊚ g = e + g − eg. For ỹ > 0̃, define

GN(ue, ỹ) =


ỹ

ỹ+∥ue∥ , if ỹ > ∥ue∥,

0, otherwise,

BN(ue, ỹ) =


∥ue∥

ỹ+∥ue∥ , if ỹ > ∥ue∥,

1 otherwise,

YN(ue, ỹ) =


∥ue∥
ỹ

, if ỹ > ∥ue∥,

1, otherwise.

Then, (Ũ(F), GN , BN , YN ,⊛,⊚) is the NSNLS. From now onwards, unless otherwise
stated by Ṽ we shall denote the NSNLS (Ũ(F), GN , BN , YN ,⊛,⊚).

A sequence u = (uκ
eκ

) of soft points in Ṽ is said to be convergent to a soft point
ue ∈ Ṽ if for 0 < E < 1 and ỹ > 0̃ exists n0 ∈ N s.t GN(uκ

eκ
⊖ue, ỹ) > 1−E, BN(uκ

eκ
⊖ue,

ỹ) < E, YN(uκ
eκ

⊖ ue, ỹ) < E. In this case, we write lim
κ→+∞

uκ
eκ

= ue.
A sequence u = (uκ

eκ
) of soft points in Ṽ is said to be Cauchy sequence if for

0 < E < 1 and ỹ > 0̃ exists n0 ∈ N s.t for all κ, ρ ≥ n0, GN(uκ
eκ

⊖ uρ
eρ

, ỹ) > 1 − E,
BN(uκ

eκ
⊖ uρ

eρ
, ỹ) < E, YN(uκ

eκ
⊖ uρ

eρ
, ỹ) < E.

3. Statistical Convergence in NSNLS

In this section, we define statistical convergence in NSNLS and develop some of
its properties.
Definition 3.1. A sequence u = (uκ

eκ
) of soft points in Ṽ is said to be statistical

convergent to a soft point ue in Ṽ if for 0 < E < 1 and ỹ > 0̃, there exists n0 ∈ N s.t.

lim
n→+∞

1
n

∣∣∣∣∣
{

κ ≤ n : GN(uκ
eκ

⊖ ue, ỹ) ≤ 1 − E or

BN(uκ
eκ

⊖ ue, ỹ) ≥ E, YN(uκ
eκ

⊖ ue, ỹ) ≥ E

}∣∣∣∣∣ = 0

or equivalently
δ({κ ∈ N : GN(uκ

eκ
⊖ ue, ỹ) ≤ 1 − E or
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BN(uκ
eκ

⊖ ue, ỹ) ≥ E, YN(uκ
eκ

⊖ ue, ỹ) ≥ E}) = 0.

In present case, we denote S − lim
κ→+∞

uκ
eκ

= ue.

Remark 3.1. Since every finite set has density zero, every convergent sequence in
NSNLS Ṽ is statistically convergent but the converse may not be true as can be seen
from the following example.

Example 3.1. Let (R̃, ∥·∥) be a soft normed linear space. For e, g ∈ [0, 1], let e⊛g = eg

and e⊚ g = e + g − eg. Choose ue ∈ R̃ and ỹ > 0̃, we define

GN(ue, ỹ) = ỹ

ỹ ⊕ ∥ue∥
, BN(ue, ỹ) = ∥ue∥

ỹ ⊕ ∥ue∥
, YN(ue, ỹ) = ∥ue∥

ỹ
,

then it is easy to see that (R̃, GN , BN , YN ,⊛,⊚) is a NSNLS. Define a sequence
u = (uκ

eκ
) by

uκ
eκ

=

1̃, if κ is square,

0̃, otherwise.

Now, for E > 0 and ỹ > 0̃,
T = {κ ∈ N : GN(uκ

eκ
, ỹ) ≤ 1 − E or BN(uκ

eκ
, ỹ) ≥ E, YN(uκ

eκ
, ỹ) ≥ E}

=
{

κ ∈ N : ỹ

ỹ ⊕ ∥uκ
eκ

∥
≤ 1 − E or ∥uκ

eκ
∥

ỹ ⊕ ∥uκ
eκ

∥
≥ E,

∥uκ
eκ

∥
ỹ

≥ E

}

=
{

κ ∈ N : ∥uκ
eκ

∥ ≥ ỹE

1 − E
or ∥uκ

eκ
∥ ≥ ỹE

}
= {κ ∈ N : uκ

eκ
= 1̃}

= {κ ∈ N : κ is square}.

This implies that δ(T) = δ({κ ∈ N : κ is square}) = 0 and therefore u = (uκ
eκ

) is
statistical convergent to 0̃. Obviously, by the structure of the sequence, u = (uκ

eκ
) is

not ordinary convergent.

By Definition 3.1 together with the property of natural density, we have the following
lemma.

Lemma 3.1. For any sequence u = (uκ
eκ

) of soft points in Ṽ, the subsequent statements
are equivalent:

(i) S − lim
κ→+∞

uκ
eκ

= ue;
(ii) δ{κ ∈ N : GN(uκ

eκ
⊖ ue, ỹ) ≤ 1 − E} = δ{κ ∈ N : BN(uκ

eκ
⊖ ue, ỹ) ≥ E} = δ{κ ∈

N : YN(uκ
eκ

⊖ ue, ỹ) ≥ E} = 0;
(iii) δ{κ ∈ N : GN(uκ

eκ
⊖ ue, ỹ) > 1 − E and BN(uκ

eκ
⊖ ue, ỹ) < E, YN(uκ

eκ
⊖ ue, ỹ) <

E} = 1;
(iv) δ{κ ∈ N : GN(uκ

eκ
⊖ ue, ỹ) > 1 − E} = δ{κ ∈ N : BN(uκ

eκ
⊖ ue, ỹ) < E} = δ{κ ∈

N : YN(uκ
eκ

⊖ ue, ỹ) < E} = 1;
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(v) S− lim
κ→+∞

GN(uκ
eκ

⊖ue, ỹ) = 1 and S− lim
κ→+∞

BN(uκ
eκ

⊖ue, ỹ) = S− lim
κ→+∞

YN(uκ
eκ

⊖
ue, ỹ) = 0.

Theorem 3.1. For any sequence u = (uκ
eκ

) in Ṽ, if S − lim
κ→+∞

uκ
eκ

exists, then it is
unique.

Proof. We shall prove the theorem by use of contradiction. Let S − lim
κ→+∞

uκ
eκ

= ue1

and S − lim
κ→+∞

uκ
eκ

= u
′
e2 , where ue1 ̸= u

′
e2 . For E > 0 and ỹ > 0̃, choose E1 > 0 s.t.

(1 − E1) ⊛ (1 − E1) > 1 − E and E1 ⊚ E1 < E. Define the following sets:

AGN ,1(E1, ỹ) =
{

κ ∈ N : GN

(
uκ

eκ
⊖ ue1 ,

ỹ

2

)
≤ 1 − E1

}
,

AGN ,2(E1, ỹ) =
{

κ ∈ N : GN

(
uκ

eκ
⊖ u

′

e2 ,
ỹ

2

)
≤ 1 − E1

}
,

ABN ,1(E1, ỹ) =
{

κ ∈ N : BN

(
uκ

eκ
⊖ ue1 ,

ỹ

2

)
≥ E1

}
,

ABN ,2(E1, ỹ) =
{

κ ∈ N : BN

(
uκ

eκ
⊖ u

′

e2 ,
ỹ

2

)
≥ E1

}
,

AYN ,1(E1, ỹ) =
{

κ ∈ N : YN

(
uκ

eκ
⊖ ue1 ,

ỹ

2

)
≥ E1

}
,

AYN ,2(E1, ỹ) =
{

κ ∈ N : YN

(
uκ

eκ
⊖ u

′

e2 ,
ỹ

2

)
≥ E1

}
.

Since S − lim
κ→+∞

uκ
eκ

= ue1 , by Lemma 3.1, δ{AGN ,1(E1, ỹ)} = δ{ABN ,1(E1, ỹ)} =
δ{AYN ,1(E1, ỹ)} = 0 and therefore

δ{A∁
GN ,1(E1, ỹ)} = δ{A∁

BN ,1(E1, ỹ)} = δ{A∁
YN ,1(E1, ỹ)} = 1.

Further, S − lim
k→+∞

uκ
eκ

= u
′
e2 , so δ{AGN ,2(E1, ỹ)} = δ{ABN ,2(E1, ỹ)} = δ{AYN ,2(E1, ỹ)}

= 0 and therefore δ{A∁
GN ,2(E1, ỹ)} = δ{A∁

BN ,2(E1, ỹ)} = δ{A∁
YN ,2(E1, ỹ)} = 1 for all

ỹ > 0̃. Define KGN ,BN ,YN
(E, ỹ) = {AGN ,1(E1, ỹ) ∪ AGN ,2(E1, ỹ)} ∩ {ABN ,1(E1, ỹ) ∪

ABN ,2(E1, ỹ)} ∩ {AYN ,1(E1, ỹ) ∪ AYN ,2(E1, ỹ)}, then δ{KGN ,BN ,YN
(E, ỹ)} = 0 and there-

fore, δ{K∁
GN ,BN ,YN

(E, ỹ)} = 1. Let m ∈ K∁
GN ,BN ,YN

(E, ỹ), then we have following
possibilities:

1. m ∈ {AGN ,1(E1, ỹ) ∪ AGN ,2(E1, ỹ)}∁;
2. m ∈ {ABN ,1(E1, ỹ) ∪ ABN ,2(E1, ỹ)}∁ ;
3. m ∈ {AYN ,1(E1, ỹ) ∪ AYN ,2(E1, ỹ)}∁.
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Case 1. Let m ∈ {AGN ,1(E1, ỹ) ∪ AGN ,2(E1, ỹ)}∁. Then, m ∈ A∁
GN ,1(E1, ỹ) and

m ∈ A∁
GN ,2(E1, ỹ) and therefore,

(3.1) GN

(
umem ⊖ ue1 ,

ỹ

2

)
> 1 − E1 and GN

(
umem ⊖ u

′

e2 ,
ỹ

2

)
> 1 − E1.

Now,

GN(ue1 ⊖ u
′

e2 , ỹ) = GN

(
umem ⊖ umem ⊕ ue1 ⊖ u

′

e2 ,
ỹ

2 ⊕ ỹ

2

)

≥ GN

(
umem ⊖ ue1 ,

ỹ

2

)
⊛ GN

(
umem ⊖ u

′

e2 ,
ỹ

2

)
> (1 − E1) ⊛ (1 − E1) by (3.1)
> 1 − E.

Given that E > 0 is arbitrary, we thus obtain GN(ue1 ⊖u
′
e2 , ỹ) = 1, for all ỹ > 0̃, which

gives ue1 ⊖ u
′
e2 = θ̃0, i.e., ue1 = u

′
e2 .

Case 2. Let m ∈ {ABN ,1(E1, ỹ) ∪ ABN ,2(E1, ỹ)}∁. Then, m ∈ A∁
BN ,1(E1, ỹ) and

m ∈ A∁
BN ,2(E1, ỹ) and therefore,

(3.2) BN

(
umem ⊖ ue1 ,

ỹ

2

)
< E1 and BN

(
umem ⊖ u

′

e2 ,
ỹ

2

)
< E1.

Now,

BN(ue1 ⊖ u
′

e2 , ỹ) = BN

(
umem ⊖ umem ⊕ ue1 ⊖ u

′

e2 ,
ỹ

2 ⊕ ỹ

2

)

≤ BN

(
umem ⊖ ue1 ,

ỹ

2

)
⊚ BN

(
umem ⊖ u

′

e2 ,
ỹ

2

)
< E1 ⊚ E1 by (3.2)
< E.

Given that E > 0 is arbitrary, we thus obtain BN(ue1 ⊖u
′
e2 , ỹ) = 0, for all ỹ > 0̃, which

gives ue1 ⊖ u
′
e2 = θ̃0, i.e., ue1 = u

′
e2 .

Case 3. Let m ∈ {AYN ,1(E1, ỹ) ∪ AYN ,2(E1, ỹ)}∁. Then, m ∈ A∁
YN ,1(E1, ỹ) and m ∈

A∁
YN ,2(E1, ỹ) and therefore,

(3.3) YN

(
umem ⊖ ue1 ,

ỹ

2

)
< E1 and YN

(
umem ⊖ u

′

e2 ,
ỹ

2

)
< E1.

Now,

YN(ue1 ⊖ u
′

e2 , ỹ) = YN

(
umem ⊖ umem ⊕ ue1 ⊖ u

′

e2 ,
ỹ

2 ⊕ ỹ

2

)
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≤ YN

(
umem ⊖ ue1 ,

ỹ

2

)
⊚ YN

(
umem ⊖ u

′

e2 ,
ỹ

2

)
< E1 ⊚ E1 by (3.3)
< E.

Given that E > 0 is arbitrary, we thus obtain YN(ue1 ⊖u
′
e2 , ỹ) = 0 for all ỹ > 0̃ , which

gives ue1 ⊖ u
′
e2 = θ̃0, i.e., ue1 = u

′
e2 .

Hence, in all cases we have ue1 = u
′
e2 , i.e., the statistical limit of the sequence (uκ

eκ
)

is unique. □

Theorem 3.2. A sequence u = (uκ
eκ

) in Ṽ is statistically convergent if and only if
exists a set K = {κ1, κ2, κ3, . . . } s.t δ(K) = 1 and (GN , BN , YN) − lim

κ∈K
κ→+∞

uκ
eκ

= ue.

Proof. First suppose that S − lim
κ→+∞

uκ
eκ

= ue. For ỹ > 0̃ and p ∈ N, define the set

AGN ,BN ,YN
(p, ỹ) =

{
κ ∈ N : GN(uκ

eκ
⊖ ue, ỹ) > 1 − 1

p
and

BN(uκ
eκ

⊖ ue, ỹ) <
1
p

, YN(uκ
eκ

⊖ ue, ỹ) <
1
p

}
.

We first show that AGN ,BN ,YN
(p + 1, ỹ) ⊂ AGN ,BN ,YN

(p, ỹ).
Let m ∈ AGN ,BN ,YN

(p + 1, ỹ). Then, GN(uκ
eκ

⊖ ue, ỹ) > 1 − 1
p+1 > 1 − 1

p
and

BN(uκ
eκ

⊖ ue, ỹ) < 1
p+1 < 1

p
, YN(uκ

eκ
⊖ ue, λ̃) < 1

p+1 < 1
p
, this implies that m ∈

AGN ,BN ,YN
(p, ỹ) and therefore,

(3.4) AGN ,BN ,YN
(p + 1, ỹ) ⊂ AGN ,BN ,YN

(p, ỹ).

Since S − lim
κ→+∞

uκ
eκ

= ue, so for all p ∈ N and ỹ > 0̃, δ{AGN ,BN ,YN
(p, ỹ)} = 1 and

therefore is an infinite set. Let m1 ∈ AGN ,BN ,YN
(1, ỹ). Further, δ{AGN ,BN ,YN

(2, ỹ)} = 1,
so we can choose m2 in AGN ,BN ,YN

(2, ỹ), s.t m2 > m1 and

1
n

∣∣∣∣∣
{

κ ≤ n : GN(uκ
eκ

⊖ ue, ỹ) > 1 − 1
2 and

BN(uκ
eκ

⊖ ue, ỹ) <
1
2 , YN(uκ

eκ
⊖ ue, ỹ) <

1
2

}∣∣∣∣∣ >
1
2 .

Now, select m3 in AGN ,BN ,YN
(3, ỹ), s.t m3 > m2 and

1
n

∣∣∣∣∣
{

κ ≤ n : GN(uκ
eκ

⊖ ue, ỹ) > 1 − 1
3 and

BN(uκ
eκ

⊖ ue, ỹ) <
1
3 , YN(uκ

eκ
⊖ ue, ỹ) <

1
3

}∣∣∣∣∣ >
2
3 ,
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and so on. In this way we obtain a sequence (mp) in N with mp+1 > mp for all
p,mp ∈ AGN ,BN ,YN

(p, ỹ) and for all n ≥ mp, p ∈ N

1
n

∣∣∣∣∣
{

κ ≤ n : GN(uκ
eκ

⊖ ue, ỹ) > 1 − 1
p

and BN(uκ
eκ

⊖ ue, ỹ) <
1
p

,(3.5)

YN(uκ
eκ

⊖ ue, ỹ) <
1
p

}∣∣∣∣∣ >
p − 1
p

.

If we define a set

(3.6) K = {n ∈ N : 1 < n < m1} ∪
[

∪
p∈N

{n ∈ AGN ,BN ,YN
(p, ỹ)} : mp ≤ n < mp+1

]
,

then using (3.4), (3.5) and (3.6) we have for all n satisfying (mp ≤ n < mp+1),

1
n

|{κ ≤ n : κ ∈ K}| ≥ 1
n

∣∣∣∣∣
{

κ ≤ n : GN(uκ
eκ

⊖ ue, ỹ) > 1 − 1
p

and

BN(uκ
eκ

⊖ ue, ỹ) <
1
p

, YN(uκ
eκ

⊖ ue, ỹ) <
1
p

}∣∣∣∣∣ >
p − 1
p

,

and therefore, in the limiting case, we get δ(K) ≥ 1, i.e., δ(K) = 1 as δ(K) ≯ 1. Now
we will show that the subsequence (uκ

eκ
: κ ∈ K) is convergent to ue, i.e., (uκ

eκ
) → ue

over K.
Let E > 0 be given. Since 1

p
→ 0 as p → +∞, so we can choose p ∈ N, s.t 1

p
< E.

Let κ ∈ K be s.t κ ≥ tp for some fixed integer tp. Then by structure of K, exists a
number q ≥ p, s.t tq ≤ κ < tq+1 and κ ∈ AGN ,BN ,YN

(p, ỹ). Now for E > 0,

GN(uκ
eκ

⊖ ue, ỹ) > 1 − 1
p

> 1 − E and

BN(uκ
eκ

⊖ ue, ỹ) <
1
p

< E, YN(uκ
eκ

⊖ ue, ỹ) <
1
p

< E,

for all κ ≥ tp and κ ∈ K. This implies that (GN , BN , YN) − lim
κ→+∞

(uκ
eκ

) = ue.
Conversely, suppose there exists a set K = {κ1, κ2, . . . , κj, . . . }, with δ(K) = 1 and

(GN , BN , YN) − lim
κ→+∞

uκ
eκ

= ue over K, i.e., (GN , BN , YN) − lim
κ∈K

κ→+∞

uκ
eκ

= ue. Let E > 0

and ỹ > 0̃. Since (GN , BN , YN) − lim
κ∈K

κ→+∞

uκ
eκ

= ue, so there exists κj ∈ N s.t for all

κ ≥ κj and κ ∈ K, GN(uκ
eκ

⊖ ue, ỹ) > 1 − E and BN(uκ
eκ

⊖ ue, ỹ) < E, YN(uκ
eκ

⊖ ue,
ỹ) < E. So, if we consider the set

TGN ,BN ,YN
(E, ỹ) =

{
κ ∈ N : GN(uκ

eκ
⊖ ue, ỹ) ≤ 1 − E or

BN(uκ
eκ

⊖ ue, ỹ) ≥ E, YN(uκ
eκ

⊖ ue, ỹ) ≥ E

}
,
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then TGN ,BN ,YN
(E, ỹ) ⊂ N − {κj, κj+1, κj+2, . . . }. This immediately implies that

δ (TGN ,BN ,YN
(E, ỹ)) ≤ δ(N) − δ{κj, κ

j+1, κj+2, . . . } = 1 − 1 = 0,

and therefore δ (TGN ,BN ,YN
(E, ỹ)) = 0 as δ (TGN ,BN ,YN

(E, ỹ)) ≮ 0. This shows that
u = (uκ

eκ
) is statistical convergent to ue, i.e., S − lim

κ→+∞
uκ

eκ
= ue. □

Theorem 3.3. Let u = (uκ
eκ

) and w = (wκ
eκ

) be any two sequences in Ṽ s.t S −
lim

κ→+∞
(uκ

eκ
) = ue1 and S − lim

κ→+∞
(wκ

eκ
) = we2. Then,

(i) S − lim
κ→+∞

(uκ
eκ

⊕ wκ
eκ

) = ue1 ⊕ we2;
(ii) S − lim

κ→+∞
(α̃uκ

eκ
) = α̃ue1, where 0̃ ̸= α̃ ∈ F.

Proof. The proof of the theorem can be obtained as the proof of Theorem 3.1, so
omitted. □

4. Statistical Completeness in NSNLS

Definition 4.1. A sequence u = (uκ
eκ

) of soft points in Ṽ is said to be statistically
Cauchy sequence if for 0 < E < 1 and ỹ > 0̃, exists ρ ∈ N s.t

lim
n→+∞

1
n

∣∣∣∣∣
{

κ ≤ n : GN(uκ
eκ

⊖ uρ
eρ

, ỹ) ≤ 1 − E or

BN(uκ
eκ

⊖ uρ
eρ

, ỹ) ≥ E, YN(uκ
eκ

⊖ uρ
eρ

, ỹ) ≥ E

}∣∣∣∣∣ = 0

or equivalently

δ{κ ∈ N : GN(uκ
eκ

⊖ uρ
eρ

, ỹ) ≤ 1 − E or
BN(uκ

eκ
⊖ uρ

eρ
, ỹ) ≥ E, YN(uκ

eκ
⊖ uρ

eρ
, ỹ) ≥ E} = 0.

Theorem 4.1. Every statistical convergent sequence in Ṽ is statistical Cauchy.

Proof. Let u = (uκ
eκ

) be any statistical convergent sequence in Ṽ with S− lim
κ→+∞

uκ
eκ

= ue.
For E > 0 and ỹ > 0̃. Choose E1 > 0 s.t

(4.1) (1 − E1) ⊛ (1 − E1) > 1 − E and E1 ⊚ E1 < E.

Define a set, K(E1, ỹ) = {κ ∈ N : GN(uκ
eκ

⊖ ue,
ỹ
2) ≤ 1 − E1 or BN(uκ

eκ
⊖ ue,

ỹ
2) ≥

E1, YN(uκ
eκ

⊖ ue,
ỹ
2) ≥ E1}. Then, K∁(E1, ỹ) = {κ ∈ N : GN(uκ

eκ
⊖ ue,

ỹ
2) > 1 −

E1 and BN(uκ
eκ

⊖ ue,
ỹ
2) < E1, YN(uκ

eκ
⊖ ue,

ỹ
2) < E1}. Since S − lim

n→+∞
uκ

eκ
= ue, so

δ(K(E1, ỹ)) = 0 and δ(K∁(E1, ỹ)) = 1. Let ρ ∈ K∁(E1, ỹ). Then,

(4.2) GN

(
uρ

eρ
⊖ue,

ỹ

2

)
> 1−E1 and BN

(
uρ

eρ
⊖ue,

ỹ

2

)
< E1, YN

(
uρ

eρ
⊖ue,

ỹ

2

)
< E1.
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Now, let T (E, ỹ) = {κ ∈ N : GN(uκ
eκ

⊖uρ
eρ

, ỹ) ≤ 1−E or BN(uκ
eκ

⊖uρ
eρ

, ỹ) ≥ E, YN(uκ
eκ

⊖
uρ

eρ
, ỹ) ≥ E}. Then, we show that T (E, ỹ) ⊆ K(E1, ỹ). Let m ∈ T (E, ỹ). Then,

(4.3) GN(umem ⊖ uρ
eρ

, ỹ) ≤ 1 − E or BN(umem ⊖ uρ
eρ

, ỹ) ≥ E, YN(umem ⊖ uρ
eρ

, ỹ) ≥ E.

Case 1. If GN(umem ⊖ uρ
eρ

, ỹ) ≤ 1 − E, then GN

(
umem ⊖ ue,

ỹ
2

)
≤ 1 − E1 and therefore

m ∈ K(E1, ỹ). As otherwise, i.e., if GN

(
umem ⊖ ue,

ỹ
2

)
> 1 −E1, then by (4.1), (4.2) and

(4.3) we get
1 − E ≥ GN(umem ⊖ uρ

eρ
, ỹ)

= GN

(
umem ⊖ ue ⊕ ue ⊖ uρ

eρ
,
ỹ

2 ⊕ ỹ

2

)

≥ GN

(
umem ⊖ ue,

ỹ

2

)
⊛ GN

(
uρ

eρ
⊖ ue,

ỹ

2

)
> (1 − E1) ⊛ (1 − E1)
> 1 − E,

which is not possible. Thus, T (E, ỹ) ⊆ K(E1, ỹ).
Case 2. If BN(umem ⊖ uρ

eρ
, ỹ) ≥ E, then BN

(
umem ⊖ ue,

ỹ
2

)
≥ E1 and therefore m ∈

K(E1, ỹ). As otherwise, i.e., if BN

(
umem ⊖ ue,

ỹ
2

)
< E1, then by (4.1), (4.2) and (4.3)

we get
E ≤ BN(umem ⊖ uρ

eρ
, ỹ)

= BN

(
umem ⊖ ue ⊕ ue ⊖ uρ

eρ
,
ỹ

2 ⊕ ỹ

2

)

≤ BN

(
umem ⊖ ue,

ỹ

2

)
⊚ BN

(
uρ

eρ
⊖ ue,

ỹ

2

)
< E1 ⊚ E1

< E,

which is not possible. Also, if YN(umem ⊖ uρ
eρ

, ỹ) ≥ E, then YN

(
umem ⊖ ue,

ỹ
2

)
≥ E1 and

therefore m ∈ K(E1, ỹ). As otherwise, i.e., if YN

(
umem ⊖ ue,

ỹ
2

)
< E1, then by (4.1),

(4.2) and (4.3) we get
E ≤ YN(umem ⊖ uρ

eρ
, ỹ)

= YN

(
umem ⊖ ue ⊕ ue ⊖ uρ

eρ
,
ỹ

2 ⊕ ỹ

2

)

≤ YN

(
umem ⊖ ue,

ỹ

2

)
⊚ YN

(
uρ

eρ
⊖ ue,

ỹ

2

)
< E1 ⊚ E1 < E,
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which is not possible. Thus, T (E, ỹ) ⊆ K(E1, ỹ).
Hence, in all cases, T (E, ỹ) ⊆ K(E1, ỹ). Since δ(K(E1, ỹ)) = 0, so δ(T (E, ỹ)) = 0,

and therefore u = (uκ
eκ

) is statistical Cauchy. □

Example 4.1. Let R̃1 = {1
n

: n ∈ N} and ∥ · ∥ = |·|, i.e., the usual norm on R̃1, then
(R̃1, |·|) is a soft normed linear space. For ỹ > 0̃, if we define GN(ue, ỹ) = ỹ

ỹ⊕∥ue∥ ,
BN(ue, ỹ) = ∥ue∥

ỹ⊕∥ue∥ , YN(ue, ỹ) = ∥ue∥
ỹ

; e⊛ g = eg and e⊚ g = e+ g− eg, then it is easy
to see that (R̃1(R), GN , BN , YN ,⊛,⊚) is a NSNLS. If we define a sequence of soft
points u = (uκ

eκ
) by uκ

eκ
= 1̃

κ
, then it is easy to see by definition of GN , BN and YN ,

the density of the set A = {κ ∈ N : GN(uκ
eκ

⊖ uρ
eρ

, ỹ) ≤ 1 − E or BN(uκ
eκ

⊖ uρ
eρ

, ỹ) ≥
E, YN(uκ

eκ
⊖ uρ

eρ
, ỹ) ≥ E} is zero, i.e., δ(A) = 0, Therefore, (uκ

eκ
) is statistical Cauchy.

Since uκ
eκ

= 1̃
κ

→ 0̃ as κ → +∞ and usual convergence implies statistical convergence
with the same limit, so S − lim

κ→+∞
uκ

eκ
= 0̃ but 0̃ is not a member of the space.

Remark 4.1. If a sequence is Cauchy in Ṽ, then it is statistically Cauchy.

Theorem 4.2. For any sequence u = (uκ
eκ

) in Ṽ, the subsequent conditions are
equivalent:

(i) u = (uκ
eκ

) is statistically Cauchy w.r.t. neutrosophic soft norm (GN , BN , YN);
(ii) there exists a subset K = {κ1, κ2, . . . , κj, . . . } of N, with δ(K) = 1 and the

subsequence (vkj
ekj

)j∈N is Cauchy sequence over K.

Proof. The proof of the theorem can be obtained analogously as the proof of Theo-
rem 3.2. □

Definition 4.2. A NSNLS Ṽ is said to be statistically complete if every statistically
Cauchy sequence in △

Ṽ
is statistically convergent in △

Ṽ
.

Theorem 4.3. If every statistical Cauchy sequence in Ṽ has a statistical convergent
subsequence, then Ṽ is statistically complete.

Proof. Let u = (uκ
eκ

) be any statistically Cauchy sequence of soft points in Ṽ which
has a statistical convergent subsequence (uκ(j)

eκ(j)
), i.e., S − lim

j→+∞
uκ(j)

eκ(j)
= ue for some ue

in Ṽ. Since u = (uκ
eκ

) is statistically Cauchy, so for E > 0 and ỹ > 0̃, δ(A) = 0, where

A =
{

κ ∈ N : GN

(
uκ

eκ
⊖ uρ

eρ
,
ỹ

2

)
≤ 1 − E1 or

BN

(
uκ

eκ
⊖ uρ

eρ
,
ỹ

2

)
≥ E1, YN

(
uκ

eκ
⊖ uρ

eρ
,
ỹ

2

)
≥ E1

}
.

Again since S − lim
j→+∞

uκ(j)
eκ(j)

= ue, we have δ(D) = 0, where

D =
{

κ(j) ∈ N : GN

(
uκ(j)

eκ(j)
⊖ ue,

ỹ

2

)
≤ 1 − E1 or
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BN

(
uκ(j)

eκ(j)
⊖ ue,

ỹ

2

)
≥ E1, YN

(
uκ(j)

eκ(j)
⊖ ue,

ỹ

2

)
≥ E1

}
.

Now define

R = {κ ∈ N : GN(uκ
eκ

⊖ ue, ỹ) ≤ 1 − E or BN(uκ
eκ

⊖ ue, ỹ) ≥ E,

YN(uκ
eκ

⊖ ue, ỹ) ≥ E}.

Now we claim that A∁ ∩ D∁ ⊆ R∁. Let m ∈ A∁ ∩ D∁. Then, m ∈ A∁ and m ∈ D∁. If
m ∈ A∁, then

(4.4) GN

(
umem ⊖uρ

eρ
,
ỹ

2

)
> 1−E1 and BN

(
umem ⊖uρ

eρ
,
ỹ

2

)
< E1, YN

(
umem ⊖uρ

eρ
,
ỹ

2

)
< E1,

and if m ∈ D∁, then m = κ(j0) for j0 ∈ N and
(4.5)

GN

(
uκ(j0)

eκ(j0)
⊖ue,

ỹ

2

)
> 1 −E1 and BN

(
uκ(j0)

eκ(j0)
⊖ue,

ỹ

2

)
< E1, YN

(
uκ(j0)

eκ(j0)
⊖ue,

ỹ

2

)
< E1.

Now,

GN(umem ⊖ ue, ỹ) = GN

(
umem ⊖ uκ(j0)

eκ(j0)
⊕ uκ(j0)

eκ(j0)
⊖ ue,

ỹ

2 ⊕ ỹ

2

)

≥ GN

(
umem ⊖ uκ(j0)

eκ(j0)
,
ỹ

2

)
⊛ GN

(
uκ(j0)

eκ(j0)
⊖ ue,

ỹ

2

)
> (1 − E1) ⊛ (1 − E1) for ρ = κ(j0)
> 1 − E

and

BN(umem ⊖ ue, ỹ) = BN

(
umem ⊖ uκ(j0)

eκ(j0)
⊕ uκ(j0)

eκ(j0)
⊖ ue,

ỹ

2 ⊕ ỹ

2

)

≤ BN

(
umem ⊖ uκ(j0)

eκ(j0)
,
ỹ

2

)
⊚ BN

(
uκ(j0)

eκ(j0)
⊖ ue,

ỹ

2

)
< E1 ⊚ E1 for ρ = κ(j0)
< E,

YN(umem ⊖ ue, ỹ) = YN

(
umem ⊖ uκ(j0)

eκ(j0)
⊕ uκ(j0)

eκ(j0)
⊖ ue,

ỹ

2 ⊕ ỹ

2

)

≤ YN

(
umem ⊖ uκ(j0)

eκ(j0)
,
ỹ

2

)
⊚ YN

(
uκ(j0)

eκ(j0)
⊖ ue,

ỹ

2

)
< E1 ⊚ E1 for ρ = κ(j0)
< E, by (4.4) and (4.5),
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which implies that m ∈ R∁, so A∁ ∩ D∁ ⊆ R∁ or R ⊆ A ∪ D. Therefore, δ(R) ≤
δ(A ∪ D) = 0. This shows that u = (uκ

eκ
) is statistically convergent and therefore

statistically complete. □

5. Conclusion

The neutrosophic soft norm is a very powerful tool due to its parameterized nature to
analyze many problems arising in different areas such as decision-making, pattern
recognition, medical diagnosis, data mining, and deriving insights from
data, particularly when there is inherent uncertainty in the data. In this paper,
we introduce the ideas of statistical convergence, statistical Cauchy sequences, and
statistical completeness in a more general setting, i.e., in neutrosophic soft normed
linear spaces. The results presented in this paper will be helpful in analyzing many
problems where the fuzzy norm is not sufficient to work, and we look forward to a
generalized norm like the neutrosophic soft norm.

Acknowledgements. The authors express their deep gratitude to the reviewers for
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paper.
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