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ON THE ZEROS OF POLYNOMIALS WITH REAL COEFFICIENTS

MOHAMMAD IBRAHIM MIR1, JAMINA BANOO1, SHAIKH SARFARAJ2,
AND JAVID GANI DAR3

Abstract. The Eneström-Kakeya theorem provides essential bounds on the loca-
tion of the zeros of a polynomial with positive coefficients. Lot of research work
has been done regarding the classical theorem known as Eneström-Kakeya theorem
concerning the regions containing zeros of a polynomial. This theorem states that
if F (z) =

∑n
λ=0 fλzλ is a polynomial with degree n with real coefficients satisfying

0 ≤ f0 ≤ f1 ≤ f2 ≤ · · · ≤ fn, then all the zeros of F (z) lie in |z| ≤ 1. In this article,
we prove several extensions of this theorem which impose restrictions only on the
coefficients f0, f1, . . . , fn−1 and leaves the coefficient fn to vary freely over the whole
complex plane.

1. Introduction

The classical Eneström-Kakeya Theorem gives us information about the position of
the zeros of a polynomial whose coefficients are nonnegative and satisfy a monotonicity
condition. It was independently proved by G. Eneström in 1893 [6] and Kakeya in
1912 [12].

Theorem 1.1 (Eneström-Kakeya Theorem). If F (z) = ∑n
λ=0 fλzλ is a polynomial of

degree n with real coefficients satisfying 0 ≤ f0 ≤ f1 ≤ · · · ≤ fn, then F (z) has all its
zeros in the region |z| ≤ 1.

In literature, there exist several extentions and generalizations of Theorem 1.1 (see
[1, 2], [5]-[10], [13]). Joyal, Labelle, and Rahman [11] extended Theorem 1.1 to the
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polynomials whose coefficients satisfy a monotonicity condition but need not be non
negative. In fact, they proved the following result.

Theorem 1.2. Let F (z) = ∑n
λ=0 fλzλ be a polynomial with degree n with real coeffi-

cients satisfying the condition f0 ≤ f1 ≤ · · · ≤ fn. Then, F (z) has all its zeros lying
in the region

|z| ≤ 1
|fn|

(fn − f0 + |f0|).

In 1996, Aziz and Zargar [3] proved the following generalisation of Theorem 1.1.

Theorem 1.3. Let F (z) = ∑n
ν=0 fνzν be a polynomial of degree n. If for some positive

number k with k ≥ 1, 0 ≤ f0 ≤ f1 ≤ · · · ≤ fn−1 ≤ kfn. Then, all the zeros of F (z) lie
in the disc

|z + k − 1| ≤ k.

In 2012, Aziz and Zargar [4] also proved the following generalization of Theorem
1.1.

Theorem 1.4. Let F (z) = ∑n
λ=0 fλzλ be a polynomial with degree n. If for some

positive numbers k and s with k ≥ 1, 0 < s ≤ 1, 0 ≤ sf0 ≤ f1 ≤ · · · ≤ fn−1 ≤ kfn,
then all the zeros of F (z) lie in the closed disc

|z + k − 1| ≤ k + 2f0

fn

(1 − s).

In 2015, E. R. Nwaeze [?] proved the following result concerning the zeros of
polynomials, which is a generalization of Theorem 1.3.

Theorem 1.5. Let F (z) = ∑n
λ=0 fλzλ be a polynomial with degree n. If for some real

numbers γ and δ, f0 − δ ≤ f1 ≤ · · · ≤ fn−1 ≤ fn + γ, then all the zeros of F (z) lie in
the disc ∣∣∣∣∣z + γ

fn

∣∣∣∣∣ ≤ 1
|fn|

(fn + γ − f0 + δ + |δ| + |f0|) .

Aziz and Zargar [3] also relaxed the hypothesis of Theorem 1.2 in several ways and
among other things they proved the following result.

Theorem 1.6. Let F (z) = ∑n
λ=0 fλzλ be a polynomial of degree n with real coefficients

such that for some k with k ≥ 1, kfn ≥ fn−1 ≥ · · · ≥ f1 ≥ f0. Then, all the zeros of
F (z) lie in the disc

|z + k − 1| ≤ kfn − f0 + |f0|
|fn|

.

Shah and Liman [19] extended Theorem 1.6 to the polynomials with complex
coefficients by proving the following result.
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Theorem 1.7. Let F (z) = ∑n
λ=0 fλzλ be a polynomial of degree n with complex

coefficients such that for some real β, |argfj − β| ≤ α ≤ π
2 , j = 0, 1, 2, . . . , n, and

k ≥ 1
k|fn| ≥ |fn−1| ≥ · · · ≥ |f1| ≥ |f0|.

Then, all the zeros of F (z) lie in

|z + k − 1| ≤ 1
|fn|

{
(k|fn| − |f0)(cos α + sin α) + |f0| + 2 sin α

n−1∑
j=0

|fj|
}

.

Rather et al. [15] relaxed the hypothesis of Theorem 1.4 and they proved the
following result.

Theorem 1.8. Let F (z) = ∑n
λ=0 fλzλ be a polynomial of degree n with real coefficients

such that for some kj ≥ 1, fn−j+1 > 0, j = 1, 2, . . . , r where 1 ≤ r ≤ n

k1fn ≥ k2fn−1 ≥ k3fn−2 ≥ · · · ≥ krfn−r+1 ≥ fn−r ≥ f1 ≥ f0.

Then, all the zeros of F (z) lie in∣∣∣∣∣z + k1 − 1 − (k2 − 1)fn−1

fn

∣∣∣∣∣
≤ 1

|fn|

{
k1fn − (k2 − 1)|fn−1| + 2

r∑
j=2

(kj − 1)|fn−j+1| − f0 + |f0|
}

.

Rather et al. [17, 18], extended Theorem 1.7 to the polynomials with complex
coefficients and proved following two results.

Theorem 1.9. Let F (z) = ∑n
λ=0 fλzλ be a polynomial of degree n with complex

coefficients such that for some real β, |argfj − β| ≤ α ≤ π
2 , j = 0, 1, 2, . . . n, and

kj ≥ 1, fn−j ̸= 0, j = 0, 1, . . . , r, where 1 ≤ r ≤ n − 1
k0|fn| ≥ k1|fn−1| ≥ k2|fn−2| ≥ · · · ≥ kr|fn−r| ≥ |fn−r−1| ≥ · · · ≥ |f1| ≥ |f0|.

Then, all the zeros of F (z) lie in∣∣∣∣∣z + k0 − 1 − (k1 − 1)fn−1

fn

∣∣∣∣∣
≤ 1

|fn|

{
(k0|fn| − |f0|)(cos α + sin α) + 2 sin α

( r∑
j=1

kj|fn−j| +
n∑

j=r+1
|fn−j|

)

− (k1 − 1)|fn−1| + 2
r∑

j=1
(kj − 1)|fn−j| + |f0|

}
.

Theorem 1.10. Let F (z) = ∑n
λ=0 fλzλ, fj = αj + iγj be a polynomial of degree n

with complex coefficients such that for some kj ≥ 1, αn−j+1 > 0, j = 1, 2, . . . , r, where
1 ≤ r ≤ n

k1αn ≥ k2αn−1 ≥ k3αn−2 ≥ · · · ≥ krαn−r+1 ≥ αn−r ≥ · · · ≥ α1 ≥ α0.
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Then, all the zeros of F (z) lie in∣∣∣∣∣z + (k1 − 1)αn

fn

− (k2 − 1)αn−1

fn

∣∣∣∣∣
≤ 1

|fn|

[
|k1αn−(k2 − 1)|αn − 1| + 2

(
r∑

j=2
(kj − 1)|αn−j+1|+

n−1∑
j=0

|γj|
)

−α0 + |α0| + |γn|
]
.

Recently, Rather et al. [16], proved the following results.

Theorem 1.11. Let F (z) = ∑n
λ=0 fλzλ be a polynomial of degree n with complex

coefficients such that for some real β, |arg(kj + an−j) − β| ≤ α ≤ π
2 , j = 0, 1, 2, . . . n,

and for some number kj, j = 0, 1, . . . , r, where 1 ≤ r ≤ n − 1

|k0 + fn| ≥ |k1 + fn−1| ≥ |k2 + fn−2| ≥· · ·≥ |kr + fn−r| ≥ |fn−r−1| ≥· · ·≥ |f1| ≥ |f0|.

Then, all the zeros of F (z) lie in∣∣∣∣∣z + k0 − k1

fn

∣∣∣∣∣
≤ 1

|fn|

[
(|k0 − fn| − |f0|)(cos α + sin α) + 2 sin α

{
r∑

j=1
(|kj + fn−j|) +

n∑
j=r+1

|fn−j|
}

+
r−1∑
j=1

|kj − kj+1| + |kr| + |f0|
]
.

Theorem 1.12. Let F (z) = ∑n
λ=0 fλzλ, where fj = αj + ιγj be a polynomial of

degree n with complex coefficients such that for some kj ≥ 0, j = 0, 1, 2, . . . r, where
1 ≤ r ≤ n − 1

k0 + αn ≥ k1 + αn−1 ≥ k2 + αn−2 ≥ · · · ≥ kr + αn−r ≥ αn−r−1 ≥ · · · ≥ α1 ≥ α0.

Then, all the zeros of F (z) lie in∣∣∣∣∣z + k0 − k1

fn

∣∣∣∣∣ ≤ 1
|fn|

{
αn + |α0| − α0 +

r−1∑
j=1

|kj − kj+1|
r−1∑
j=1

|γj+1 − γj| + |γ0| + kr + k0

}
.

2. Main Results and Proofs

In this article, we first give a result which is an extension of Theorem 1.1. In this
result, only the coefficients f0, f1, . . . , fn−1 satisfy a monotonicity condition, and the
coefficient fn moves freely in the complex plane. Our theorem provides a stronger
result than the classic Eneström-Kakeya theorem, which is applicable to a broader
class of polynomials. Infact, we first prove the following results.

Theorem 2.1. Let F (z) = ∑n
λ=0 fλzλ be a polynomial with degree n such that the

coefficients f0, f1, . . . , fn−1 are real and satisfying the monotonicity condition 0 ≤ f0 ≤
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f1 ≤ · · · ≤ fn−1. Then, all the zeros of F (z) lie in the union of the regions

{z ∈ C : |z| ≤ 1}
⋃ {

z ∈ C :
∣∣∣∣∣z −

(
1 − fn−1

fn

)∣∣∣∣∣ ≤ fn−1

|fn|

}
.

Proof. Consider the polynomial

Q(z) = (1 − z)F (z)
= −fnzn+1 + (fn − fn−1)zn + (fn−1 − fn−2)zn−1 + · · · + (f1 − f0)z + f0

= −fnzn+1 + (fn − fn−1)zn + ϕ(z),(2.1)

where ϕ(z) = (fn−1 − fn−2)zn−1 + · · · + (f1 − f0)z + f0. For |z| = 1, we have that

|ϕ(z)| ≤ |fn−1 − fn−2| + |fn−2 − fn−3| + · · · + |f1 − f0| + |f0| = fn−1

implies |znϕ(1/z)| ≤ fn−1 for |z| = 1. Hence, By Maximum Modulus Theorem

|znϕ(1/z)| ≤ fn−1, for |z| ≤ 1.

Replacing z by 1/z, we get

|ϕ(z)| ≤ fn−1|zn|, for |z| ≥ 1.

Therefore, for |z| ≥ 1, from equation (2.1), we obtain

|Q(z)| = | − fnzn+1 + (fn − fn−1)zn + ϕ(z)|
≥ |zn||fnz − (fn − fn−1)| − |ϕ(z)|
≥ |zn||fnz − (fn − fn−1)| − fn−1|zn|
= |zn| [|fnz − (fn + fn−1)| − fn−1]
> 0,

which is true if and only if |fnz − (fn + fn−1)| > fn−1, i.e.,∣∣∣∣∣z −
(

1 − fn−1

fn

)∣∣∣∣∣ >
fn−1

|fn|
.

Thus, all the zeros of g(z) whose modulus is greater than or equal to one lie in∣∣∣∣∣z −
(

1 − fn−1

fn

)∣∣∣∣∣ ≤ fn−1

|fn|
.

Hence, all the zeros of F (z) lie in the union of disc

|z| ≤ 1
⋃ ∣∣∣∣∣z −

(
1 − fn−1

fn

)∣∣∣∣∣ ≤ fn−1

|fn|
.

□

Example 2.1. Consider the polynomial

F (z) = 3z4 + 5z3 + 2z2 + z + 1.
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Here, f0 = 1, f1 = 1, f2 = 2, f3 = 5, f4 = 3, which satisfy 0 ≤ 1 ≤ 1 ≤ 2 ≤ 5. We
cannot apply Eneström-Kakeya theorem, because 0 ≤ f0 ≤ f1 ≤ f2 ≤ f3 ≰ f 4. By
Theorem 2.1, the polynomial F (z) has all its zeros in the union of the regions

{z ∈ C : |z| ≤ 1} ∪
{

z ∈ C :
∣∣∣∣∣z −

(
1 − f2

f3

)∣∣∣∣∣ ≤ f2

|f3|

}
,

which is given by

{z ∈ C : |z| ≤ 1} ∪
{

z ∈ C :
∣∣∣∣∣z +

(
2
3

)∣∣∣∣∣ ≤ 5
3

}
.

This example illustrates the applications of Theorem 2.1 to a broader class of
polynomials as against to the Eneström-Kakeya theorem.

Remark 2.1. If the polynomial F (z) = ∑n
λ=0 fλzλ satisfies the conditions of Theorem

1.1, then the disc ∣∣∣∣∣z −
(

1 − fn−1

fn

)∣∣∣∣∣ ≤ fn−1

|fn|
is contained in the disc |z| ≤ 1. Hence, Theorem 2.1 reduces to Theorem 1.1.

Next, we prove the following result in which we impose the monotonicity condition
on the coefficients f0, f1, . . . , fn−1 and leave the coefficient fn to vary freely over the
whole complex plane and thus broaden the scope of Theorem 1.5.

Theorem 2.2. Let F (z) = ∑n
λ=0 fλzλ be a polynomial with degree n. If for some real

numbers γ and δ, f0 − δ ≤ f1 ≤ · · · ≤ fn−2 ≤ fn−1 + γ, then all the zeros of F (z) lie
in the union of regions

{z ∈ C : |z| ≤ 1}
⋃

{z ∈ C : |z − ζ||z − η| ≤ γ∗},

where ζ and η are the roots of the quadratic fnz2 + (fn − fn−1)z − γ and

γ∗ = fn−1 + γ + δ + |δ| + |f0| − f0

|fn|
.

Proof. Consider the polynomial
L(z) =(1 − z)F (z)

=fnzn+1 + (fn − fn−1) zn − γzn−1 + γzn−1 + (fn−1 − fn−2)zn−1

+ · · · + ((f1 − f0) + δ) z − δz + f0

=zn−1[fnz2 + ((fn − fn−1)z − γ)] + ϕ(z),(2.2)
where ϕ(z) = γzn−1 + (fn−1 − fn−2)zn−1 + · · · + (f1 − f0 + δ)z − δz + f0.

For |z| = 1, we have
|ϕ(z)| ≤ |γ + fn−1 − fn−2| + |fn−2 − fn−3| + · · · + |f1 − f0 + δ| + |δ| − |f0|

= γ + fn−1 + δ + |δ| + |f0| − f0.
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Hence, for |z| = 1, we have
|znϕ(1/z)| ≤ γ + fn−1 + |δ| + |δ| − |f0| − f0.

Therefore, by Maximum Modulus Theorem
|znϕ(1/z)| ≤ γ + fn−1 + δ + |δ| − |f0| − f0, for |z| ≤ 1.

Replacing z by 1/z, we get for |z| ≥ 1
|ϕ(z)| ≤ (γ + fn−1 + |δ| + |δ| − |f0| − f0) |zn−1|, for |z| ≥ 1.(2.3)

Therefore, for |z| ≥ 1, from equation (2.2), we obtain

|L(z)| ≥ |zn−1|
[
|fnz2 + (fn − fn−1)z − γ|

]
− |ϕ(z)|

≥ |zn−1|
[
|fnz2 + (fn − fn−1)z − γ|

]
−
[
(γ + fn−1 + δ + |δ| − |f0| − f0)

]
|zn−1|

= |zn−1|
[
|fnz2 + (fn − fn−1)z − γ| − (γ + fn−1 + δ + |δ| − |f0| − f0)

]
> 0,

which is true if and only if
|fnz2 + (fn − fn−1)z − γ| > γ + fn−1 + δ + |δ| + |f0| − f0,

i.e.,

|(z − η)(z − ζ)| >
γ + fn−1 + δ + |δ| + |f0| − f0

|fn|
or

|(z − η)(z − ζ)| > γ∗.

Hence, all the zeros of F (z) lie in the union of disc
|z| ≤ 1

⋃
{z ∈ C : |z − ζ| · |z − η| ≤ γ∗},

where ζ and η are the roots of the quadratic fnz2 + (fn − fn−1)z − γ and

γ∗ = fn−1 + γ + δ + |δ| + |f0| − f0

|fn|
.

□

Example 2.2. Consider the polynomial
F (z) = z4 + 5z3 + 7z2 + 6z + 10.

Here, we can’t apply Theorem 1.5 because f2 ≰ f3. Now if we choose δ = 5, γ = 2.
Then, f2 = 7 ≤ f3 + γ.

Therefore, by Theorem 2.2, all the zeros of F (z) lie in the union of the regions
|z| ≤ 1

⋃
{z ∈ C : |z − ζ||z − η| ≤ γ∗},

where ζ and η are roots of the quadratic equation
f4z

2 + (f4 − f3)z − γ = 0.
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That is z2 − 4z − 2 = 0. This gives ζ = 8 +
√

6, η = 8 −
√

6. Also,

γ∗ = f2 + γ + δ + |δ| + |f0| − f0

|f3|
implies

γ∗ = 19
5 = 3.8.

Therefore, all the zeros of F (z) lie in the union of the regions

{z ∈ C : |z| ≤ 1}
⋃

{z ∈ C : |z − (8 +
√

6)| · |z − (8 −
√

6)| ≤ 3.8}.

This specific example demonstrates the application of Theorem 2.2 to a broader
class of polynomials as against Theorem 1.5.

We now prove a result which is a generalization of Theorem 1.3. In this result,
the bond of the disc containing all the zeros of a polynomial under certain restricted
conditions on the coefficients, involves also the coefficients of the polynomial. In fact,
we prove the following result.

Theorem 2.3. Let F (z) = ∑n
ν=0 fνzν be a polynomial of degree n with real coefficients

such that for some real numbers k and λ

kfn ≥ fn−1 and λfj ≥ fj−1, for j = 0, 1, . . . , n − 1, f−1 = 0.

Then, all the zeros of f(z) lie in the union of the discs

{z ∈ C / |z| ≤ 1}
⋃ {

z ∈ C / |z − λ + k| ≤ 1
|fn|

(
kfn + (λ − 1)

n−1∑
i=0

fi

)}
.

Proof. Consider the polynomial

G(z) =(λ − z)F (z)
= − fnzn+1 + (λfn − fn−1)zn + (λfn−1 − fn−2)zn−1 + · · · + (λf1 − f0)z + λf0

= − fnzn+1 + λfnzn − kfnzn + (kfn − fn−1)zn + (λfn−1 − fn−2)zn−1

+ · · · + (λf1 − f0)z + λf0.

Thus, we can write

G(z) = −zn [fnz − λfn + kfn] + ϕ(z),(2.4)

where ϕ(z) = (kfn − fn−1)zn + (λfn−1 − fn−2)zn−1 + · · · + (λf1 − f0)z + λf0.
For |z| = 1, we have

|ϕ(z)| ≤ |kfn − fn−1| + |λfn−1 − fn−2| + · · · + |λf1 − f0| + |λf0|
= (kfn − fn−1) + (λfn−1 − fn−2 + λfn−2 − fn−3 + · · · + λf1 − f0 + λf0)

= kfn + (λ − 1)
n−1∑
i=0

fi,
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If |z| = 1, then |1
z
| = 1. Therefore, we can write

|znϕ(1/z)| ≤ kfn + (λ − 1)
n−1∑
i=0

fi.

Hence, by Maximum Modulus theorem for |z| ≤ 1, we observe the following

|znϕ(1/z)| ≤ kfn + (λ − 1)
n−1∑
i=0

fi.

Replacing z by 1/z, we obtain for |z| ≥ 1

|ϕ(z)| ≤
(

kfn + (λ − 1)
n−1∑
i=0

fi

)
|z|n.

Therefore, for |z| ≥ 1, from (2.3), we have
|G(z)| ≥ |z|n|fnz − λfn + kfn)| − |ϕ(z)|

≥ |zn|
{

|fnz − λfn + kfn| −
(

kfn + (λ − 1)
n−1∑
i=0

fi

)}
> 0

if and only if

|z − λ + k| >
1

|fn|

(
kfn + (λ − 1)

n−1∑
i=0

fi

)
.

Thus, all the zeros of G(z) whose modulus is greater than or equal to one lie in the
disc

|z − λ + k| ≤ 1
|fn|

(
kfn + (λ − 1)

n−1∑
i=0

fi

)
.

Therefore, all the zeros of F (z) lie in the union of the discs

{z ∈ C : |z| ≤ 1}
⋃ {

z ∈ C : |z − λ + k| ≤ 1
|fn|

(
kfn + (λ − 1)

n−1∑
i=0

fi

)}
.

This completes the proof. □

For λ = 1, we obtain the following generalization of Theorem 1.3, which is true for
any real number k.

Corollary 2.1. Let F (z) = ∑n
ν=0 fνzν be a polynomial of degree n with real coefficients

such that for some real number k,

0 ≤ f0 ≤ f1 · · · ≤ fn−1 ≤ kfn.

Then all the zeros of F (z) lie in the union of the discs

{z ∈ C : |z| ≤ 1}
⋃ {

z ∈ C : |z − 1 + k| ≤ kfn

|fn|

}
.
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Finally, we prove the following result which is an extention of both Theorem 1.2
and Theorem 1.4. In this result, the bond of the disc containing all the zeros of a
polynomial under certain restricted conditions on the coefficients, involves also the
coefficients of the polynomial. In fact, we prove the following result.
Theorem 2.4. Let F (z) = ∑n

ν=0 fνzν be a polynomial of degree n with real coefficients
such that for some real numbers k, λ and 0 ≤ ρ ≤ 1

kfn ≥ fn−1, λfj ≥ fj−1, for j = 2, 3, . . . , , n − 1 and λf1 ≥ ρf0.

Then all the zeros of F (z) lie in the union of the discs

{z ∈ C : |z| ≤ 1}
⋃ {

z ∈ C : |z − λ + k| ≤ 1
|fn|

(
kfn + (λ − 1)

n−1∑
i=0

fi + (1 − 2ρ)f0 + |λf0|

)}
.

Proof. Consider the polynomial
H(z) =(λ − z)F (z)

= − fnzn+1 + (λfn − fn−1)zn + (λfn−1 − fn−2)zn−1 + · · · + (λf1 − f0)z + λf0

= − fnzn+1 + λfnzn − kfnzn + (kfn − fn−1)zn + (λfn−1 − fn−2)zn−1

+ · · · + (λf2 − f1)z2

+ (λf1 − ρf0)z − (1 − ρ)f0z + λf0.

Thus, we can write
H(z) = −zn [fnz − λfn + kfn] + ϕ(z),(2.5)

where ϕ(z) = (kfn −fn−1)zn +(λfn−1 −fn−2)zn−1 + · · ·+(λf2 −f1)z2 +(λf1 −ρf0)z −
(1 − ρ)f0z + λf0. For |z| = 1, we have

|ϕ(z)| ≤|kfn − fn−1| + |λfn−1 − fn−2| + · · · + |λf2 − f1| + |λf1 − ρf0|
+ (1 − ρ)|f0| + |λf0|

=(kfn − fn−1) + (λfn−1 − fn−2) + · · · + (λf2 − f1) + (λf1 − ρf0)
+ (1 − ρ)|f0| + |λf0|

=kfn + (λ − 1) (fn−1 + fn−2 + fn−3 + · · · + f1) − ρf0 + (1 − ρ)|f0| + |λf0|

=kfn + (λ − 1)
n−1∑
i=1

ai − ρf0 + (1 − ρ)|f0| + |λf0|.

If |z| = 1, then |1
z
| = 1. Therefore, we can write

|znϕ(1/z)| ≤ kfn + (λ − 1)
n−1∑
i=1

fi − ρf0 + (1 − ρ)|f0| + |λf0|

Hence, by Maximum Modulus theorem for |z| ≤ 1, we observe the following

|znϕ(1/z)| ≤ kfn + (λ − 1)
n−1∑
i=1

fi − ρf0 + (1 − ρ)|f0| + |λf0|.(2.6)
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Replacing z by 1/z, we obtain for |z| ≥ 1

|ϕ(z)| ≤
(

kfn + (λ − 1)
n−1∑
i=1

fi − ρf0 + (1 − ρ)|f0| + |λf0|
)

|z|n.

Therefore, for |z| ≥ 1, from equation (2.6), we get

|H(z)| ≥ |z|n|fnz − λfn + kfn)| − |ϕ(z)|

≥ |zn|
{

|fnz−λfn + kfn|−
(

kfn + (λ − 1)
n−1∑
i=1

fi − ρf0 + (1 − ρ)|f0| + |λf0|
)}

> 0,

if and only if

|z − λ + k| >
1

|fn|

(
kfn + (λ − 1)

n−1∑
i=1

fi − ρf0 + (1 − ρ)|f0| + |λf0|
)

.

Thus, all the zeros of H(z) whose modulus is greater than or equal to one lie in the
disc

|z − λ + k| ≤ 1
|fn|

(
kfn + (λ − 1)

n−1∑
i=1

fi − ρf0 + (1 − ρ)|f0| + |λf0|
)

.

Therefore, all the zeros of F (z) lie in the union of discs

{z ∈ C : |z| ≤ 1}
⋃ {

z ∈ C : |z − λ + k| ≤ 1
|fn|

(
kfn + (λ − 1)

n−1∑
i=1

fi − ρf0 + (1 − ρ)|f0| + |λf0|

)}
.

□

For λ = 1, we obtain the following generalization of Theorem 1.4, which is true for
any positive real number k.

Corollary 2.2. Let F (z) = ∑n
ν=0 fνzν is a polynomial of degree n. If for some positive

numbers k and ρ such that ρ ≤ 1, 0 ≤ ρf0 ≤ f1 ≤ · · · ≤ fn−1 ≤ kfn, then all the zeros
of F (z) lie in the union of the discs

{z ∈ C : |z| ≤ 1}
⋃ {

z ∈ C : |z + k − 1| ≤
(

k + (1 − ρ)2f0

fn

)}
.

For λ = 1 and ρ = 1, we obtain the following generalization of Theorem 1.2.

Corollary 2.3. Let F (z) = ∑n
ν=0 fνzν is a polynomial of degree n such that for some

real number k, f0 ≤ f1 ≤ · · · ≤ fn−1 ≤ kfn. Then all the zeros of F (z) lie in the union
of the discs

{z ∈ C / |z| ≤ 1}
⋃ {

z ∈ C : |z| ≤ 1
|fn|

(kfn − f0 + |f0|)
}

.
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3. Conclusion

In this paper, we have presented a significant generalization of the classical Eneström-
Kakeya theorem, broadening its scope and applicability to a wider class of polynomials.
By relaxing the traditional conditions on polynomial coefficients, we have established
new results that constrain the zeros of these generalized polynomials within specific
geometric regions in the complex plane.

Our work began with a review of the original Eneström-Kakeya theorem, high-
lighting its historical importance and the foundational role it plays in understanding
polynomial zero distributions. Building upon this foundation, we introduced our
generalized conditions and provided rigorous proofs to demonstrate the validity of our
results. Through illustrative examples, we showcased the practical implications and
advantages of our generalization.

The significance of our generalization lies not only in its theoretical contributions
but also in its potential applications across various mathematical and engineering
disciplines. By extending the Eneström-Kakeya theorem, we open new avenues for
research in multivariate polynomials, numerical methods, and real-world problem-
solving in fields such as control theory and signal processing.

Looking forward, we have identified several promising directions for future research.
These include further relaxation of coefficient conditions, exploration of multivariate
polynomials, and development of computational tools to apply our results to large-
scale problems. Additionally, investigating the connections between our generalization
and other polynomial theorems could yield deeper insights and more comprehensive
understandings of polynomial behavior.

In conclusion, our generalization of the Eneström-Kakeya theorem represents a
meaningful advancement in the study of polynomial zeros. By expanding the bound-
aries of this classical result, we contribute to a richer understanding of polynomial
properties and lay the groundwork for future discoveries in both theoretical and
applied mathematics.

4. Future Research Work

The generalization of the Eneström-Kakeya theorem presented in this paper opens
several promising avenues for future research. As we extend the classical results
to encompass broader classes of polynomials and other related functions, numerous
questions and potential research directions emerge. Here, we outline some key areas
that warrant further exploration:

1. Extensions to Multivariate Polynomials. While our generalization primar-
ily addresses univariate polynomials, a natural progression is to investigate analogous
results for multivariate polynomials. This would involve understanding the conditions
under which the zeros of multivariate polynomials with specific coefficient constraints
lie within certain geometric regions in higher-dimensional spaces.
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2. Relaxation of Coefficient Conditions. Our current generalization re-
laxes the monotonicity conditions on polynomial coefficients. Further research could
explore other types of conditions, such as boundedness, periodicity, or other func-
tional forms. This would help to identify new classes of polynomials for which similar
zero-constraining properties hold.

3. Connection with Other Polynomial Inequalities. Exploring the relation-
ships between our generalized theorem and other known polynomial inequalities, such
as the Gauss-Lucas theorem or the Laguerre-Pólya class, could yield deeper insights.
Understanding these connections might lead to new results or more comprehensive
theorems encompassing multiple aspects of polynomial zero behavior.

4. Applications in Control Theory and Signal Processing. The zeros of
polynomials play a crucial role in control theory and signal processing. Investigating
how our generalized results can be applied to the stability analysis of control systems
or the design of filters in signal processing could have practical implications. This
would involve translating theoretical findings into practical algorithms and techniques.

5. Numerical Methods and Algorithm Development. Developing efficient
numerical methods and algorithms to test the conditions of our generalized theorem on
large-scale polynomial datasets would be valuable. These computational tools could
facilitate the application of our theoretical results to real-world problems, especially
in fields that require handling polynomials with high degrees or complex coefficient
structures.

6. Exploration of Polynomials with Random Coefficients. An interesting
direction is to study polynomials with coefficients that are random variables following
specific distributions. Analyzing the expected distribution of zeros for such random
polynomials under the framework of our generalized theorem could provide insights
into probabilistic aspects of polynomial zero distributions.

7. Generalization to Entire Functions. Since entire functions can be
viewed as infinite-degree polynomials, extending the Eneström-Kakeya-type results
to entire functions represents a challenging yet potentially rewarding endeavor. This
would involve establishing conditions on the growth rates or other properties of the
coefficients of entire functions to determine the regions where their zeros lie.

8. Impact on Polynomial Root-Finding Algorithms. Investigating how
our generalization influences existing polynomial root-finding algorithms or inspires
the development of new algorithms could have significant computational benefits.
This line of research would aim to improve the efficiency and accuracy of locating
polynomial zeros based on our theoretical findings.

By pursuing these research directions, we aim to deepen the understanding of
polynomial zero behavior under more general conditions and to bridge the gap between
theoretical advances and practical applications. The exploration of these avenues will
not only enhance the theoretical landscape of polynomial analysis but also contribute
to various applied fields that rely on polynomial properties.
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