
Kragujevac Journal of Mathematics
Volume 43(3) (2019), Pages 465–469.

WEAKLY TRIPOTENT RINGS

PETER V. DANCHEV1

Abstract. We completely characterize those rings R, calling them weakly tripotent,
whose elements satisfy the equations x3 = x or x3 = −x. This enlarges a result due
to Hirano-Tominaga in Bull. Austral. Math. Soc. (1988) concerning tripotent rings.

1. Introduction and Background

Everywhere in the text of the present paper, all our rings R are assumed to be
associative, containing the identity element 1 which differs from the zero element 0.
Our terminology and notations are mainly in agreement with [6], and the specific ones
will be listed explicitly in the sequel. For instance, U(R) denotes the unit group of such
a ring R, Inv(R) is its subset consisting of all involutions (i.e., torsion units of order
not exceeding 2) which is actually a subgroup when the former ring is commutative,
Id(R) stands for the set of all idempotents in R, and J(R) designates the Jacobson
radical of R. Recall that a ring R is semiprimitive (or, in other terms, Jacobson
semi-simple), provided J(R) = {0}.

Imitating [2], we shall say that a ring is invo-clean if each its element is the sum
of an involution and an idempotent, and mimicking [3] a ring is weakly invo-clean if
each its element is the sum or the difference of an involution and an idempotent.

It is well known that a ring is said to be tripotent if any its element satisfies the
equation x3 = x. Such an element x is also called tripotent.

This motivates us to state the next more general concept.

Definition 1.1. A ring is called weakly tripotent if any its element satisfies the
equations x3 = x or x3 = −x.
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Obvious examples of weakly tripotent rings are Z2, Z3 and Z5, whereas Z4 and
Z5 × Z5 need not be so.

The brief historical retrospection of the development of this and some other similar
notions is as follows: A classical type of rings is the class of boolean rings that are
rings whose elements are idempotents, i.e., having all elements satisfying the equation
x2 = x. Equivalently, any boolean ring is a subdirect product of isomorphic copies
of the field Z2. Furthermore, rings with elements satisfying the equations x2 = x or
x2 = −x, called there weakly nil-clean, were explored in [4] proving that they are
isomorphic to either a boolean ring, or to Z3, or to a direct product of two such rings.

On the other hand, concerning cubic equations, in [5] were studied those rings whose
elements are solutions of the equation x3 = x. It was shown there that these rings
are necessarily commutative being a subdirect product of family of copies of the fields
Z2 and Z3. Even something more, each their element is a sum of two (commuting)
idempotents.

However, for the cubic equation x3 = x, which is implied by both the equations
x2 = x and x2 = −x considered above, can be made the following reduction: x3 = x
is equivalent to x2 = vx, where v = x2 + x− 1 is an involution, that is, v2 = 1 (see,
e.g., [1]).

Returning to our weakly tripotent rings, the equations x3 = x and x3 = −x can be
written in a more general form as x3 = wx for some involution w with w2 = 1 which
certainly amounts to the equation x5 = x. Etc., this could be successfully adapted
for any natural number n-compare with the discussion at the end of the paper.

Our objective here is to extend significantly the aforementioned articles [5] and [4],
by classifying up to an isomorphism weakly tripotent rings in a different aspect, doing
that in Theorem 2.1 quoted below.

2. Main Results

We begin with the following very simple but useful technicality.

Lemma 2.1. In a weakly tripotent ring R the equalities 6 = 0 or 10 = 0 are fulfilled,
and hence R ∼= R2 ×R3 or R ∼= R2 ×R5, where R2 = {0} or R2 is a weakly tripotent
ring of characteristic 2, R3 = {0} or R3 is a weakly tripotent ring of characteristic 3
and R5 = {0} or R5 is a weakly tripotent ring of characteristic 5.

Proof. Write 23 = 2 or 23 = −2, so that 6 = 0 or 10 = 0 are valid. Since (2, 3) = 1
and (2, 5) = 1, the second part-half is now an immediate consequence of the Chinese
Remainder Theorem. �

We will be now focussed on weakly tripotent rings of characteristics 2, 3 and 5,
respectively.

Proposition 2.1. Let R be a weakly tripotent ring.
(i) If 2 = 0, then R is boolean and so it is a subdirect product of ∏

λ Z2, where λ
is an ordinal.
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(ii) If 3 = 0, then R is tripotent and thus it is a subdirect product of ∏
µ Z3, where

µ is an ordinal.
(iii) If 5 = 0, then R is isomorphic to Z5, that is, R ∼= Z5.

Proof. (i) Each of the equations x3 = x and x3 = −x implies that x5 = x and
thus, as it is well-known, R must be a subdirect product of isomorphic copies
of the fields Z2, Z3 and/or Z5. But 2 = 0 yields that the only members of this
subdirect product are these isomorphic to Z2, as expected.

(ii) Each of the equations x3 = x and x3 = −x implies that x5 = x and so, as it is
well-known, R has to be a subdirect product of isomorphic copies of the fields
Z2, Z3 and/or Z5. But 3 = 0 yields that the only members of this subdirect
product are isomorphic to Z3, as expected.

(iii) As in the preceding two points, R is a subdirect product of ∏
ν Z5 for some

ordinal ν (see, e.g., [6]). We claim that ν = 1, that is, R is embedded in
Z5 which forces their isomorphism, as promised. In order to show that, we
consider all elements of the kind (a, b), where a, b belong to the set {0, 1, 2, 3, 4}.
However, all elements in R are 0 = (0, 0), 1 = (1, 1), 2 = (2, 2), 3 = (3, 3),
4 = (4, 4), which are exactly these a = (a, a) for b = a. Indeed, to verify this,
one must to see that the elements 0, 1, 4 are solutions of the equation x3 = x
while the elements 2, 3 are solutions of the equation x3 = −x. Therefore, if
some (a, b) lies in R for a 6= b, then 2(a, b) = (2a, 2b) or (a, b)+(a, a) = (2a, a+b)
have again to lie in R whence by a direct check, which we leave to the reader,
we will obtain that 2a, 2b and/or a+ b are solutions of either of the different
equations x3 = x or x3 = −x, which is a contradiction. That is why, R cannot
be properly embedded in Z5 × Z5, and so the claim is sustained after all.

We also have the following parallel confirmation of the validity of point (iii)
like this: Let P be the subring of R generated by 1, and thus note that P ∼= Z5.
We claim that P = R, so we assume in a way of contradiction that there exists
b ∈ R \ P . With no loss of generality, we shall also assume that b3 = b since
b3 = −b obviously implies that (2b)3 = 2b as 5 = 0 and b 6∈ P ⇐⇒ 2b 6∈ P .

Let us now (1+b)3 = −(1+b). Hence b = b3 along with 5 = 0 enable us that
b2 = 1. This allows us to conclude that (1 + 2b)3 6= ±(1 + 2b), however. In fact,
if (1 + 2b)3 = 1 + 2b, then one deduces that 2b = 3 and, by multiplying with
3, that b = −1 ∈ P which is manifestly untrue. If now (1 + 2b)3 = −1 − 2b,
then one infers that 2b = 2 ∈ P which is false. That is why, (1 + b)3 = 1 + b.
This, in turn, guarantees that b2 = −b. Moreover, b3 = b is equivalent to
(−b)3 = −b as well as b3 = −b to (−b)3 = −(−b) and thus, by what we have
proved so far applied to −b 6∈ P , it follows that −b = b2 = (−b)2 = −(−b) = b.
Consequently, 2b = 0 = 6b = b ∈ P because 5 = 0, which is the wanted
contradiction. We thus conclude that P = R, as expected. �

We may discuss the last statement in the following way.
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Remark 2.1. Actually, x3 = x for all x with 2 = 0 ensures that x2 = x, while x3 = x
or x3 = −x for all x with 3 = 0 assures that x3 = x.

We now come to our chief tool here, which is the following one.

Theorem 2.1. Suppose R is a ring. Then the following five items are tantamount:

(0) R is weakly tripotent;
(1) all elements of R satisfy the equations x3 = x or x3 = −x;
(2) R is commutative such that every element is a sum of two idempotents with

6 = 0, or R is commutative such that every element is a sum or a difference
of an involution and an idempotent with 10 = 0;

(3) R is a subdirect product of isomorphic copies of Z2 and/or Z3, or of Z2 and/or
a single isomorphic copy of Z5;

(4) R is commutative semiprimitive weakly invo-clean with 6 = 0 or 10 = 0.

Proof. First of all, notice that the equivalence (0)⇔(1) is just Definition 1.1 alluded
to above.

(1)⇔(3) If (1) is valid, then we can combine Lemma 2.1 together with Proposi-
tion 2.1.

Conversely, if (3) holds, then all elements of R are solutions of the equations x3 = x
or x3 = −x, because the elements from Z2 and Z3 satisfy x3 = x, whereas the elements
of Z2 satisfy x2 = x = −x and hence x3 = −x as well as the elements of Z5 satisfy
the same equation x3 = −x along with the equation x3 = x, as needed.

(3)⇒(2) If R is in the first subdirect product, as noted before, it follows from
[5] that any its element is the sum of two idempotents, so we may assume that R
is embedded in the second subdirect product. Knowing that each element c of the
subdirect product of copies of Z2 is an idempotent e and that each element d of Z5
is a sum or a difference of an involution and an idempotent, say v + f or v − f , we
detect that (e, v+ f) = (1, v) + (1− e, f) which is again the sum of an involution and
an idempotent as 2 = 0 in Z2 and that (e, v− f) = (1, v)− (1− e, f) which is also the
difference of an involution and an idempotent. With this at hand, point (2) is true.

(2)⇒(4) If 6 = 0, what suffices to prove is that the sum e+ f for some e, f ∈ Id(R)
is a sum or a difference of an involution and an idempotent. In fact, when 2 = 0, e+f
must be an idempotent, say h, and hence h = 1 − (1 − h) satisfies our requirement.
If now 3 = 0, then e + f = (1 + e) − (1 − f) where (1 + e)2 = 1 + 3e = 1 and
(1− f)2 = 1− f , as required. Since with the aid of the Chinese Remainder Theorem
R can be decomposed as the direct product of two such rings having characteristics 2
and 3, respectively, we are set.

Likewise, one observes that the sum e+f satisfies (e+f)3 = e+f which is definitely
right because (e+ f)3 = e+ 6ef + f = e+ f taking into account that 6 = 0.

(3)⇔(4) This equivalence follows by an application of [3] (cf. [2] too). �
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Consulting with the proof of this theorem, one deduces that Z2 × Z5 is weakly
tripotent, but Z3 × Z5 is not so. We close the work with the following challenging
question.

Problem 2.1. What is the isomorphic structure of the so-called weakly n-potent rings,
where n ∈ N, i.e., rings whose elements satisfy the equations xn = x or xn = −x?

What can be currently said is that xn = vx, for v2 = 1, is amounting to x2n−1 = x,
where v = x2n−2 + xn−1 − 1, x2n−2 is an idempotent and xn−1 is a tripotent.

In particular, for n = 3, one may check that the equation x3 = vx, that is, x = vx3

is equivalent to x5 = x, where v = x4 + x2 − 1 is an involution, i.e., v2 = 1. Certainly,
weakly n-potent rings must be commutative reduced and, therefore, they have to be
a subdirect product of domains, each of which satisfies these two conditions.
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