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WEAKLY TRIPOTENT RINGS
PETER V. DANCHEV!

ABSTRACT. We completely characterize those rings R, calling them weakly tripotent,

whose elements satisfy the equations 22 = x or 23 = —x. This enlarges a result due

to Hirano-Tominaga in Bull. Austral. Math. Soc. (1988) concerning tripotent rings.

1. INTRODUCTION AND BACKGROUND

Everywhere in the text of the present paper, all our rings R are assumed to be
associative, containing the identity element 1 which differs from the zero element 0.
Our terminology and notations are mainly in agreement with [6], and the specific ones
will be listed explicitly in the sequel. For instance, U(R) denotes the unit group of such
a ring R, Inv(R) is its subset consisting of all involutions (i.e., torsion units of order
not exceeding 2) which is actually a subgroup when the former ring is commutative,
Id(R) stands for the set of all idempotents in R, and J(R) designates the Jacobson
radical of R. Recall that a ring R is semiprimitive (or, in other terms, Jacobson
semi-simple), provided J(R) = {0}.

Imitating [2], we shall say that a ring is invo-clean if each its element is the sum
of an involution and an idempotent, and mimicking [3] a ring is weakly invo-clean if
each its element is the sum or the difference of an involution and an idempotent.

It is well known that a ring is said to be tripotent if any its element satisfies the
equation 23 = z. Such an element z is also called tripotent.

This motivates us to state the next more general concept.

Definition 1.1. A ring is called weakly tripotent if any its element satisfies the

equations 2% = z or 2% = —=z.
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Obvious examples of weakly tripotent rings are Zs, Z3 and Zs, whereas Z, and
Zs x Zs need not be so.

The brief historical retrospection of the development of this and some other similar
notions is as follows: A classical type of rings is the class of boolean rings that are
rings whose elements are idempotents, i.e., having all elements satisfying the equation
22 = z. Equivalently, any boolean ring is a subdirect product of isomorphic copies
of the field Z,. Furthermore, rings with elements satisfying the equations 2% = z or
1? = —uz, called there weakly nil-clean, were explored in [4] proving that they are
isomorphic to either a boolean ring, or to Zs, or to a direct product of two such rings.

On the other hand, concerning cubic equations, in [5] were studied those rings whose
elements are solutions of the equation 2® = z. It was shown there that these rings
are necessarily commutative being a subdirect product of family of copies of the fields
Zs and Zj. Even something more, each their element is a sum of two (commuting)
idempotents.

However, for the cubic equation z3

= x, which is implied by both the equations

2? = x and 22 = — considered above, can be made the following reduction: 2% = x
is equivalent to z? = vz, where v = 2% + x — 1 is an involution, that is, v> =1 (see,
e.g., [1]).

Returning to our weakly tripotent rings, the equations 2° = x and 2® = —x can be

written in a more general form as z® = wx for some involution w with w? = 1 which
certainly amounts to the equation z° = x. Etc., this could be successfully adapted
for any natural number n-compare with the discussion at the end of the paper.

Our objective here is to extend significantly the aforementioned articles [5] and [4],
by classifying up to an isomorphism weakly tripotent rings in a different aspect, doing
that in Theorem 2.1 quoted below.

2. MAIN RESULTS
We begin with the following very simple but useful technicality.

Lemma 2.1. In a weakly tripotent ring R the equalities 6 = 0 or 10 = 0 are fulfilled,
and hence R = Ry X R3 or R = Ry X Ry, where Ry = {0} or Ry is a weakly tripotent
ring of characteristic 2, Ry = {0} or Rs is a weakly tripotent ring of characteristic 3
and Rs = {0} or Rs is a weakly tripotent ring of characteristic 5.

Proof. Write 23 = 2 or 2% = —2, so that 6 = 0 or 10 = 0 are valid. Since (2,3) =1
and (2,5) = 1, the second part-half is now an immediate consequence of the Chinese
Remainder Theorem. 0

We will be now focussed on weakly tripotent rings of characteristics 2, 3 and 5,
respectively.

Proposition 2.1. Let R be a weakly tripotent ring.

(i) If2 =0, then R is boolean and so it is a subdirect product of [y Z2, where A
s an ordinal.
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(ii) If 3 =0, then R is tripotent and thus it is a subdirect product of I],, Zs, where
i 1s an ordinal.
(iii) If 5 =0, then R is isomorphic to Zs, that is, R = Zs.

Proof. (i) Each of the equations z* = z and z*® = —z implies that 2° = z and
thus, as it is well-known, R must be a subdirect product of isomorphic copies
of the fields Z,, Z3 and/or Zs. But 2 = 0 yields that the only members of this
subdirect product are these isomorphic to Z,, as expected.

(ii) Each of the equations z* = x and z* = —z implies that 2° = z and so, as it is
well-known, R has to be a subdirect product of isomorphic copies of the fields
Zs, 73 and/or Zs. But 3 = 0 yields that the only members of this subdirect
product are isomorphic to Zs, as expected.

(iii) As in the preceding two points, R is a subdirect product of [, Zs for some
ordinal v (see, e.g., [6]). We claim that v = 1, that is, R is embedded in
Zs which forces their isomorphism, as promised. In order to show that, we
consider all elements of the kind (a,b), where a, b belong to the set {0, 1,2,3,4}.
However, all elements in R are 0 = (0,0), T = (1,1), 2 = (2,2), 3 = (3,3),
4 = (4,4), which are exactly these @ = (a,a) for b = a. Indeed, to verify this,
one must to see that the elements 0, 1,4 are solutions of the equation 2® = x
while the elements 2,3 are solutions of the equation #® = —x. Therefore, if
some (a, b) lies in R for a # b, then 2(a, b) = (2a,2b) or (a,b)+(a,a) = (2a, a+b)
have again to lie in R whence by a direct check, which we leave to the reader,
we will obtain that 2a, 2b and/or a + b are solutions of either of the different
equations #® = x or 3 = —x, which is a contradiction. That is why, R cannot
be properly embedded in Z5 X Zs, and so the claim is sustained after all.

We also have the following parallel confirmation of the validity of point (iii)
like this: Let P be the subring of R generated by 1, and thus note that P = Zs.
We claim that P = R, so we assume in a way of contradiction that there exists
b€ R\ P. With no loss of generality, we shall also assume that b* = b since
b® = —b obviously implies that (2b)> =2bas5=0and b¢g P < 2b¢ P.

Let us now (1+b)3 = —(1+45). Hence b = b* along with 5 = 0 enable us that
b*> = 1. This allows us to conclude that (1+ 2b)® # +(1+ 2b), however. In fact,
if (1+ 2b)® =1+ 2b, then one deduces that 2b = 3 and, by multiplying with
3, that b = —1 € P which is manifestly untrue. If now (1 + 2b)* = —1 — 2b,
then one infers that 20 = 2 € P which is false. That is why, (1 +0)3 =1 +b.
This, in turn, guarantees that b> = —b. Moreover, b> = b is equivalent to
(=b)? = —b as well as b> = —b to (—b)> = —(—b) and thus, by what we have
proved so far applied to —b & P, it follows that —b = b? = (=b)? = —(—b) = b.
Consequently, 20 = 0 = 6b = b € P because 5 = 0, which is the wanted
contradiction. We thus conclude that P = R, as expected. 0

We may discuss the last statement in the following way.
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Remark 2.1. Actually, 23 = « for all x with 2 = 0 ensures that 2% = z, while 2% =z

or 23 = —z for all x with 3 = 0 assures that z° = z.

We now come to our chief tool here, which is the following one.

Theorem 2.1. Suppose R is a ring. Then the following five items are tantamount:

(0) R is weakly tripotent;

(1) all elements of R satisfy the equations x3 = x or 2° = —x;

(2) R is commutative such that every element is a sum of two idempotents with
6 = 0, or R is commutative such that every element is a sum or a difference
of an involution and an idempotent with 10 = 0;

(3) R is a subdirect product of isomorphic copies of Zy and/or Zs, or of Zs and/or
a single isomorphic copy of Zs;

(4) R is commutative semiprimitive weakly invo-clean with 6 =0 or 10 = 0.

Proof. First of all, notice that the equivalence (0)<>(1) is just Definition 1.1 alluded
to above.

(1)<(3) If (1) is valid, then we can combine Lemma 2.1 together with Proposi-
tion 2.1.

Conversely, if (3) holds, then all elements of R are solutions of the equations z° = z

or 3 = —x, because the elements from Z, and Zs satisfy 2® = x, whereas the elements
of Zy satisfy 2 = 2 = —x and hence 2° = —x as well as the elements of Z; satisfy
the same equation 22 = —x along with the equation 2® = z, as needed.

(3)=(2) If R is in the first subdirect product, as noted before, it follows from
[5] that any its element is the sum of two idempotents, so we may assume that R
is embedded in the second subdirect product. Knowing that each element ¢ of the
subdirect product of copies of Zs is an idempotent e and that each element d of Zs
is a sum or a difference of an involution and an idempotent, say v + f or v — f, we
detect that (e,v+ f) = (1,v) 4+ (1 — e, f) which is again the sum of an involution and
an idempotent as 2 = 0 in Z, and that (e,v — f) = (1,v) — (1 — e, f) which is also the
difference of an involution and an idempotent. With this at hand, point (2) is true.

(2)=-(4) If 6 = 0, what suffices to prove is that the sum e + f for some e, f € Id(R)
is a sum or a difference of an involution and an idempotent. In fact, when 2 =0, e+ f
must be an idempotent, say h, and hence h = 1 — (1 — h) satisfies our requirement.
If now 3 =0, then e+ f = (1+e)— (1 — f) where (1+¢€)> =1+ 3e =1 and
(1— f)>=1— f, as required. Since with the aid of the Chinese Remainder Theorem
R can be decomposed as the direct product of two such rings having characteristics 2
and 3, respectively, we are set.

Likewise, one observes that the sum e+ f satisfies (e+ f)® = e+ f which is definitely
right because (e + f)? = e+ 6ef + f = e + f taking into account that 6 = 0.

(3)<(4) This equivalence follows by an application of [3] (cf. [2] too). O
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Consulting with the proof of this theorem, one deduces that Zs x Zs is weakly
tripotent, but Zs x Zs is not so. We close the work with the following challenging
question.

Problem 2.1. What is the isomorphic structure of the so-called weakly n-potent rings,
where n € N i.e., rings whose elements satisfy the equations 2" =z or 2" = —x7

What can be currently said is that #” = vz, for v? = 1, is amounting to z>"~! = x,

where v = 22"2 + "1 — 1, 2?2 is an idempotent and 2"~! is a tripotent.

In particular, for n = 3, one may check that the equation 2® = vz, that is, * = vz
is equivalent to 2° = x, where v = 2* + 22 — 1 is an involution, i.e., v?> = 1. Certainly,
weakly n-potent rings must be commutative reduced and, therefore, they have to be
a subdirect product of domains, each of which satisfies these two conditions.
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