KRAGUJEVAC JOURNAL OF MATHEMATICS VOLUME 43(3) (2019), PAGES 465–469.

WEAKLY TRIPOTENT RINGS

PETER V. DANCHEV¹

ABSTRACT. We completely characterize those rings R, calling them *weakly tripotent*, whose elements satisfy the equations $x^3 = x$ or $x^3 = -x$. This enlarges a result due to Hirano-Tominaga in Bull. Austral. Math. Soc. (1988) concerning tripotent rings.

1. INTRODUCTION AND BACKGROUND

Everywhere in the text of the present paper, all our rings R are assumed to be associative, containing the identity element 1 which differs from the zero element 0. Our terminology and notations are mainly in agreement with [6], and the specific ones will be listed explicitly in the sequel. For instance, U(R) denotes the unit group of such a ring R, Inv(R) is its subset consisting of all involutions (i.e., torsion units of order not exceeding 2) which is actually a subgroup when the former ring is commutative, Id(R) stands for the set of all idempotents in R, and J(R) designates the Jacobson radical of R. Recall that a ring R is *semiprimitive* (or, in other terms, Jacobson semi-simple), provided $J(R) = \{0\}$.

Imitating [2], we shall say that a ring is *invo-clean* if each its element is the sum of an involution and an idempotent, and mimicking [3] a ring is *weakly invo-clean* if each its element is the sum or the difference of an involution and an idempotent.

It is well known that a ring is said to be *tripotent* if any its element satisfies the equation $x^3 = x$. Such an element x is also called *tripotent*.

This motivates us to state the next more general concept.

Definition 1.1. A ring is called *weakly tripotent* if any its element satisfies the equations $x^3 = x$ or $x^3 = -x$.

Key words and phrases. Tripotent rings, weakly tripotent rings, equations.

²⁰¹⁰ Mathematics Subject Classification. Primary: 16D60. Secondary: 16S34, 16U60.

Received: December 05, 2017.

Accepted: January 21, 2018.

P. V. DANCHEV

Obvious examples of weakly tripotent rings are \mathbb{Z}_2 , \mathbb{Z}_3 and \mathbb{Z}_5 , whereas \mathbb{Z}_4 and $\mathbb{Z}_5 \times \mathbb{Z}_5$ need *not* be so.

The brief historical retrospection of the development of this and some other similar notions is as follows: A classical type of rings is the class of *boolean* rings that are rings whose elements are idempotents, i.e., having all elements satisfying the equation $x^2 = x$. Equivalently, any boolean ring is a subdirect product of isomorphic copies of the field \mathbb{Z}_2 . Furthermore, rings with elements satisfying the equations $x^2 = x$ or $x^2 = -x$, called there *weakly nil-clean*, were explored in [4] proving that they are isomorphic to either a boolean ring, or to \mathbb{Z}_3 , or to a direct product of two such rings.

On the other hand, concerning cubic equations, in [5] were studied those rings whose elements are solutions of the equation $x^3 = x$. It was shown there that these rings are necessarily commutative being a subdirect product of family of copies of the fields \mathbb{Z}_2 and \mathbb{Z}_3 . Even something more, each their element is a sum of two (commuting) idempotents.

However, for the cubic equation $x^3 = x$, which is implied by both the equations $x^2 = x$ and $x^2 = -x$ considered above, can be made the following reduction: $x^3 = x$ is equivalent to $x^2 = vx$, where $v = x^2 + x - 1$ is an involution, that is, $v^2 = 1$ (see, e.g., [1]).

Returning to our weakly tripotent rings, the equations $x^3 = x$ and $x^3 = -x$ can be written in a more general form as $x^3 = wx$ for some involution w with $w^2 = 1$ which certainly amounts to the equation $x^5 = x$. Etc., this could be successfully adapted for any natural number *n*-compare with the discussion at the end of the paper.

Our objective here is to extend significantly the aforementioned articles [5] and [4], by classifying up to an isomorphism weakly tripotent rings in a different aspect, doing that in Theorem 2.1 quoted below.

2. Main Results

We begin with the following very simple but useful technicality.

Lemma 2.1. In a weakly tripotent ring R the equalities 6 = 0 or 10 = 0 are fulfilled, and hence $R \cong R_2 \times R_3$ or $R \cong R_2 \times R_5$, where $R_2 = \{0\}$ or R_2 is a weakly tripotent ring of characteristic 2, $R_3 = \{0\}$ or R_3 is a weakly tripotent ring of characteristic 3 and $R_5 = \{0\}$ or R_5 is a weakly tripotent ring of characteristic 5.

Proof. Write $2^3 = 2$ or $2^3 = -2$, so that 6 = 0 or 10 = 0 are valid. Since (2,3) = 1 and (2,5) = 1, the second part-half is now an immediate consequence of the Chinese Remainder Theorem.

We will be now focussed on weakly tripotent rings of characteristics 2, 3 and 5, respectively.

Proposition 2.1. Let R be a weakly tripotent ring.

(i) If 2 = 0, then R is boolean and so it is a subdirect product of $\prod_{\lambda} \mathbb{Z}_2$, where λ is an ordinal.

WT RINGS

- (ii) If 3 = 0, then R is tripotent and thus it is a subdirect product of $\prod_{\mu} \mathbb{Z}_3$, where μ is an ordinal.
- (iii) If 5 = 0, then R is isomorphic to \mathbb{Z}_5 , that is, $R \cong \mathbb{Z}_5$.
- *Proof.* (i) Each of the equations $x^3 = x$ and $x^3 = -x$ implies that $x^5 = x$ and thus, as it is well-known, R must be a subdirect product of isomorphic copies of the fields \mathbb{Z}_2 , \mathbb{Z}_3 and/or \mathbb{Z}_5 . But 2 = 0 yields that the only members of this subdirect product are these isomorphic to \mathbb{Z}_2 , as expected.
 - (ii) Each of the equations $x^3 = x$ and $x^3 = -x$ implies that $x^5 = x$ and so, as it is well-known, R has to be a subdirect product of isomorphic copies of the fields \mathbb{Z}_2 , \mathbb{Z}_3 and/or \mathbb{Z}_5 . But 3 = 0 yields that the only members of this subdirect product are isomorphic to \mathbb{Z}_3 , as expected.
 - (iii) As in the preceding two points, R is a subdirect product of $\prod_{\nu} \mathbb{Z}_5$ for some ordinal ν (see, e.g., [6]). We claim that $\nu = 1$, that is, R is embedded in \mathbb{Z}_5 which forces their isomorphism, as promised. In order to show that, we consider all elements of the kind (a, b), where a, b belong to the set $\{0, 1, 2, 3, 4\}$. However, all elements in R are $\overline{0} = (0, 0)$, $\overline{1} = (1, 1)$, $\overline{2} = (2, 2)$, $\overline{3} = (3, 3)$, $\overline{4} = (4, 4)$, which are exactly these $\overline{a} = (a, a)$ for b = a. Indeed, to verify this, one must to see that the elements 0, 1, 4 are solutions of the equation $x^3 = x$ while the elements 2, 3 are solutions of the equation $x^3 = -x$. Therefore, if some (a, b) lies in R for $a \neq b$, then 2(a, b) = (2a, 2b) or (a, b) + (a, a) = (2a, a+b) have again to lie in R whence by a direct check, which we leave to the reader, we will obtain that 2a, 2b and/or a + b are solutions of either of the different equations $x^3 = x$ or $x^3 = -x$, which is a contradiction. That is why, R cannot be properly embedded in $\mathbb{Z}_5 \times \mathbb{Z}_5$, and so the claim is sustained after all.

We also have the following parallel confirmation of the validity of point (iii) like this: Let P be the subring of R generated by 1, and thus note that $P \cong \mathbb{Z}_5$. We claim that P = R, so we assume in a way of contradiction that there exists $b \in R \setminus P$. With no loss of generality, we shall also assume that $b^3 = b$ since $b^3 = -b$ obviously implies that $(2b)^3 = 2b$ as 5 = 0 and $b \notin P \iff 2b \notin P$.

Let us now $(1+b)^3 = -(1+b)$. Hence $b = b^3$ along with 5 = 0 enable us that $b^2 = 1$. This allows us to conclude that $(1+2b)^3 \neq \pm (1+2b)$, however. In fact, if $(1+2b)^3 = 1+2b$, then one deduces that 2b = 3 and, by multiplying with 3, that $b = -1 \in P$ which is manifestly untrue. If now $(1+2b)^3 = -1-2b$, then one infers that $2b = 2 \in P$ which is false. That is why, $(1+b)^3 = 1+b$. This, in turn, guarantees that $b^2 = -b$. Moreover, $b^3 = b$ is equivalent to $(-b)^3 = -b$ as well as $b^3 = -b$ to $(-b)^3 = -(-b)$ and thus, by what we have proved so far applied to $-b \notin P$, it follows that $-b = b^2 = (-b)^2 = -(-b) = b$. Consequently, $2b = 0 = 6b = b \in P$ because 5 = 0, which is the wanted contradiction. We thus conclude that P = R, as expected.

We may discuss the last statement in the following way.

Remark 2.1. Actually, $x^3 = x$ for all x with 2 = 0 ensures that $x^2 = x$, while $x^3 = x$ or $x^3 = -x$ for all x with 3 = 0 assures that $x^3 = x$.

We now come to our chief tool here, which is the following one.

Theorem 2.1. Suppose R is a ring. Then the following five items are tantamount:

- (0) R is weakly tripotent;
- (1) all elements of R satisfy the equations $x^3 = x$ or $x^3 = -x$;
- (2) R is commutative such that every element is a sum of two idempotents with 6 = 0, or R is commutative such that every element is a sum or a difference of an involution and an idempotent with 10 = 0;
- (3) R is a subdirect product of isomorphic copies of Z₂ and/or Z₃, or of Z₂ and/or a single isomorphic copy of Z₅;
- (4) R is commutative semiprimitive weakly invo-clean with 6 = 0 or 10 = 0.

Proof. First of all, notice that the equivalence $(0) \Leftrightarrow (1)$ is just Definition 1.1 alluded to above.

 $(1) \Leftrightarrow (3)$ If (1) is valid, then we can combine Lemma 2.1 together with Proposition 2.1.

Conversely, if (3) holds, then all elements of R are solutions of the equations $x^3 = x$ or $x^3 = -x$, because the elements from \mathbb{Z}_2 and \mathbb{Z}_3 satisfy $x^3 = x$, whereas the elements of \mathbb{Z}_2 satisfy $x^2 = x = -x$ and hence $x^3 = -x$ as well as the elements of \mathbb{Z}_5 satisfy the same equation $x^3 = -x$ along with the equation $x^3 = x$, as needed.

 $(3)\Rightarrow(2)$ If R is in the first subdirect product, as noted before, it follows from [5] that any its element is the sum of two idempotents, so we may assume that R is embedded in the second subdirect product. Knowing that each element c of the subdirect product of copies of \mathbb{Z}_2 is an idempotent e and that each element d of \mathbb{Z}_5 is a sum or a difference of an involution and an idempotent, say v + f or v - f, we detect that (e, v + f) = (1, v) + (1 - e, f) which is again the sum of an involution and an idempotent as 2 = 0 in \mathbb{Z}_2 and that (e, v - f) = (1, v) - (1 - e, f) which is also the difference of an involution and an idempotent. With this at hand, point (2) is true.

 $(2)\Rightarrow(4)$ If 6=0, what suffices to prove is that the sum e+f for some $e, f \in Id(R)$ is a sum or a difference of an involution and an idempotent. In fact, when 2=0, e+f must be an idempotent, say h, and hence h=1-(1-h) satisfies our requirement. If now 3=0, then e+f=(1+e)-(1-f) where $(1+e)^2=1+3e=1$ and $(1-f)^2=1-f$, as required. Since with the aid of the Chinese Remainder Theorem R can be decomposed as the direct product of two such rings having characteristics 2 and 3, respectively, we are set.

Likewise, one observes that the sum e+f satisfies $(e+f)^3 = e+f$ which is definitely right because $(e+f)^3 = e+6ef+f = e+f$ taking into account that 6 = 0.

 $(3) \Leftrightarrow (4)$ This equivalence follows by an application of [3] (cf. [2] too).

WT RINGS

Consulting with the proof of this theorem, one deduces that $\mathbb{Z}_2 \times \mathbb{Z}_5$ is weakly tripotent, but $\mathbb{Z}_3 \times \mathbb{Z}_5$ is not so. We close the work with the following challenging question.

Problem 2.1. What is the isomorphic structure of the so-called weakly *n*-potent rings, where $n \in \mathbb{N}$, i.e., rings whose elements satisfy the equations $x^n = x$ or $x^n = -x$?

What can be currently said is that $x^n = vx$, for $v^2 = 1$, is amounting to $x^{2n-1} = x$, where $v = x^{2n-2} + x^{n-1} - 1$, x^{2n-2} is an idempotent and x^{n-1} is a tripotent.

In particular, for n = 3, one may check that the equation $x^3 = vx$, that is, $x = vx^3$ is equivalent to $x^5 = x$, where $v = x^4 + x^2 - 1$ is an involution, i.e., $v^2 = 1$. Certainly, weakly *n*-potent rings must be commutative reduced and, therefore, they have to be a subdirect product of domains, each of which satisfies these two conditions.

Acknowledgements. The author is appreciated to the referees for their careful reading of the manuscript and expert suggestions made.

References

- P. V. Danchev, On weakly clean and weakly exchange rings having the strong property, Publ. Inst. Math. (Beograd) (N.S.) 101(1) (2017), 135–142.
- [2] P. V. Danchev, Invo-clean unital rings, Commun. Korean Math. Soc. 32(1) (2017), 19–27.
- [3] P. V. Danchev, Weakly invo-clean unital rings, Afr. Mat. 28(7-8) (2017), 1285–1295.
- [4] P. V. Danchev and W. Wm. McGovern, Commutative weakly nil clean unital rings, J. Algebra 425(5) (2015), 410–422.
- Y. Hirano and H. Tominaga, Rings in which every element is the sum of two idempotents, Bull. Aust. Math. Soc. 37 (1988), 161–164.
- [6] T. Y. Lam, A First Course in Noncommutative Rings, Second Edition, Graduate Texts in Math. 131, Springer-Verlag, Berlin-Heidelberg-New York, 2001.

¹INSTITUTE OF MATHEMATICS & INFORMATICS, BULGARIAN ACADEMY OF SCIENCES, SOFIA 1113, BULGARIA *Email address*: danchev@math.bas.bg, pvdanchev@yahoo.com