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A NEW CLASS OF CONFORMABLE FRACTIONAL SOBOLEV
SPACES AND p-ELLIPTIC PROBLEMS

ABDELLAH TAQBIBT1,2, GHIZLANE ZINEDDAINE1, ABDERRAZAK KASSIDI1,
AND ALI EL MFADEL1

Abstract. In this article, we introduce two new mathematical notions: the con-
formable fractional Sobolev space cW γ,p(Ω) and the conformable fractional p-
Laplacian operator, both defined via the conformable fractional derivative. We
investigate several qualitative properties of these concepts, including embeddings
and regularity results. As an application, we prove the existence of solutions to an
elliptic boundary value problem involving the conformable fractional p-Laplacian
operator.

1. Introduction

In recent years, elliptic operators and nonlocal fractional operators have attracted
significant attention, motivated by both theoretical developments and applications in
concrete models. In particular, nonlocal problems exhibiting p-growth structure have
been extensively investigated, as they provide an effective framework for modeling
anomalous diffusion phenomena. Such nonlocal behavior arises in various scientific
contexts in which the underlying dynamics deviate from classical power-law growth,
as documented in [12–14,19]. A substantial body of work has been devoted to issues
related to fractional diffusion.

(−△)sµ(y) = C(N, s) lim
ε→0+

∫
RN \B(y,ε)

µ(y) − µ(z)
|y − z|N+2s

dy,
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where y ∈ RN , s ∈ (0, 1), see, for example [8,17,31,32] and the references therein. To
delve deeper into the study of nonlocal problems, one can refer to Di Nezza, Palatucci,
and Valdinoci’s work in [16], which provides a thorough introduction to the subject.
Moreover, in recent references, the authors have explored the viability of results
obtained when replacing the Laplacian with the fractional Laplacian. Moreover, the
fractional p-Laplacian (−∆)s

p is the nonlinear nonlocal operator defined on smooth
functions, for p ∈ (1, +∞), s ∈ (0, 1) and N > sp, by

(−△)s
pµ(y) = 2 lim

ε↘0

∫
RN \B(y,ε)

|µ(y) − µ(z)|p−2 (µ(y) − µ(z))
|y − z|N+2s

dy, y ∈ RN ,

where B(y, ε) is the ball with center y and radius ε.
The definition presented here is consistent with the standard definition of the linear

fractional Laplacian operator (−∆)s for p = 2, up to a normalisation constant that
depends on N and s. A substantial literature is currently emerging on problems
involving these nonlocal operators (see [1, 10,16,22] for more details).

In particular, the study of fractional Sobolev spaces and the associated nonlocal
equations has gained considerable attention, owing to their wide range of physical
applications, including phase transition models, thin obstacle problems, layered me-
dia, minimal surface theory, and materials science (see [6, 7, 9, 29, 31]). Moreover,
a substantial amount of research has been devoted to partial differential equations
involving the degenerate fractional p-Laplacian, often addressed through variational
methods. For further developments in this direction, we refer the reader to [8, 11, 17].

It is natural to ask what results can be obtained by replacing the standard Laplacian
operator with a new Laplacian operator based on the conformal fractional derivative
given by

−△γ
pµ(y) := −

N∑
i=1

∂γ
i

(
|∂γ

i µ(y)|p−2∂γ
i µ
)

, y ∈ Ω,

where ∂γ
i = ∂γ

∂yi
is a conformable fractional derivative which can be specified below.

On the other hand, for certain problems modelling inhomogeneous materials, such as
the electro-rheology of fluids (sometimes called ”smart fluids“), the standard approach
based on Lebesgue spaces Lp(Ω) and Sobolev spaces W 1,p(Ω) is not sufficient. This
leads to the introduction of conformable fractional Sobolev spaces cW γ,p(Ω), where p
and γ are real numbers such that γ ∈ (0, 1) and p ∈ (1, +∞).

The purpose of our paper is to introduce the Sobolev conformal fractional space
cW γ,p(Ω) and the conformal fractional p-Laplacian operator, and to discuss their
fundamental properties. In addition, we have investigated the existence of weak
solutions in different cases for the following problem

(1.1)

−△γ
pµ = −divγ(|∇γµ|p−2∇γµ) = |µ|q−2µ + g(y, µ), y ∈ Ω,

µ = 0, y ∈ ∂Ω,

where Ω ⊂ RN is a bounded domain, 1 < p, q ∈ [1, p) and g : Ω × R → R satisfies
Carathéodory condition.
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This article is organized as follows. In Section 2, we review definitions and findings
related to the conformable fractional derivative. Additionally, we introduce and
demonstrate fundamental properties of the conformable fractional Sobolev spaces
cW γ,p(Ω). In Section 3, we present significant properties of the conformable fractional
p-Laplacian operator. Finally, in Section 4, we discuss the existence of weak solutions
for problem (1.1) in various cases.

2. Definitions and Preliminaries

In this section, we present several definitions and results related to the conformable
fractional derivative. Various definitions of fractional derivatives exist in the litera-
ture; for example, in [23, 25], the authors introduce the following definition of the
conformable fractional derivative.

Definition 2.1 ([25]). Given a function g : R+ → R, γ ∈ (0, 1) and t > 0, the
conformable fractional derivative at order γ of g is defined by

(Dγg)(t) = lim
ε→0

g (t + ε e1−γ) − g(t)
ε

.

If g is γ-differentiable in (0, b), b > 0 and limt→0+(Dγg)(t) exists, then
(Dγg)(0) = lim

t→0+
(Dγg)(t).

Remark 2.1. Definition 2.1 remains valid for any function g defined on the set R.

We will now give some properties of this derivative, for more details see [4,24,25,27].

Proposition 2.1 ([25]). Let 0 < γ ≤ 1 and h, g be two γ-differentiable functions at a
point t > 0. Then,

(a) Dγ(ah + bg) = a Dγh + b Dγg, for all a, b ∈ R;
(b) Dγ (tp) = pe(γ−1)ttp−1, for any p real number;
(c) if λ is a constant function, then Dγ(λ) = 0;
(d) Dγ (hg) = f Dγg + g Dγh;
(e) Dγ(h

g
) = hDγg+gDγh

g2 ;
(f) in addition, if h is differentiable, then (Dγh)(t) = e(γ−1)th′(t).

Definition 2.2 ([25]). Let γ ∈ (n, n + 1], n ∈ N and g be a function n-differentiable
at t > 0. Then, the γ-fractional derivative of g is given as follows

(Dγg) (t) = lim
ε→0

g(n)
(
t + ε e(γ−1−n)t

)
− g(n)(t)

ε
,

if the limit exists.

Definition 2.3 ([25]). Let c ≥ 0, γ ∈ (0, 1) and g be a function defined on interval
(c, t]. Then, the γ-fractional integral of g is given as follows

Ic
γ(g)(t) =

∫ t

c
g(y)dγx =

∫ t

c
g(y)e(1−γ)ydy.
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Theorem 2.1 ([25]). If g : [c, +∞) → R is a continuous function and γ ∈ (0, 1], then,
for t > c, we have

Dγ
c I

c
γg(t) = g(t).

Lemma 2.1 ([25]). Let g : (c, d) → R be a γ-differentiable function. Then, for t > c,
we have

Ic
γDγ

c g(t) = g(t) − g(c).

2.1. The conformable fractional Sobolev space. In this section, we present the
definition and some basic properties of the conformable fractional Sobolev spaces.

Let Ω be a bounded open set of RN , N ∈ N∗ and p ∈ (1, +∞). The conformable
fractional Sobolev space, denoted by cW γ,p(Ω), is defined as the space of all real-valued
functions µ ∈ Lp(Ω) such that

∂γ
i µ ∈ Lp(Ω), i = 1, . . . , N,

where ∂γ
i = ∂γ

∂yi
is a conformable fractional derivative in the sense of distributions. In

addition, the following expression

(2.1) ∥µ∥γ,p =
(∫

Ω
|µ(y)|p dy +

N∑
i=1

∫
Ω

|∂γ
i µ(y)|p dy

)1/p

is a norm in linear space cW γ,p(Ω).
Throughout this work, we set ω = {ωi(y) = e(γ−1)pyi , 0 ≤ i ≤ N}. Then, ω is a

vector of weight functions, i.e., each component ωi(y) is a positive measurable function
almost everywhere in Ω. Additionally, we have

(2.2) wi ∈ L1
loc(Ω) and w

−1
p−1
i ∈ L1

loc(Ω), for every i ∈ {1, 2, . . . , N}.

Theorem 2.2. cW γ,p(Ω) is a Banach space.

Proof. It suffices to show that cW γ,p(Ω) is complete. Let {µn} be a Cauchy sequence
in cW p(Ω). Then, the sequence {µn} is a Cauchy sequence in Lp(Ω), and for each
i = 1, . . . , N , the sequence {∂α

i µn} is also a Cauchy sequence in Lp(Ω).
By the completness of Lp(Ω), there exist two functions ϑ, µ ∈ Lp(Ω) such that

lim
n→+∞

∂γ
i µn = ϑ, in Lp(Ω),

lim
n→+∞

µn = u, in Lp(Ω).
(2.3)

According to (2.3), a simple calculation shows that {∂iµn} is a convergent sequence in
Lp(Ω, w), with with a usual derivative ∂i. Then, there exists ν ∈ Lp(Ω, w) such that

lim
n→+∞

∂iµn = ν, in Lp(Ω, w),
lim

n→+∞
µn = u, in Lp(Ω).

(2.4)



CONFORMABLE FRACTIONAL SOBOLEV SPACES AND p-ELLIPTIC PROBLEMS 433

From (2.2) and (2.4), we get
lim

n→+∞
∂iµn = ν, in Lp(Ω, w),

lim
n→+∞

µn = u, in Lp(Ω, w).

By using the continuity of the derivation operator, we obtain
µ ∈ Lp(Ω), lim

n→+∞
∂iµn = ∂iµ, in Lp(Ω, w).

So, from the uniqueness of the limit we can get ν = ∂iµ. Moreover, µ ∈ cW γ,p(Ω)
and

∥µn − µ∥γ, p =
(∫

Ω
|µn(y) − µ(y)|p dy +

N∑
i=1

∫
Ω

|∂γ
i (µn(y) − µ(y))|p dy

)1/p

=
(∫

Ω
|µn(y) − µ(y)|p dy +

N∑
i=1

∫
Ω

|∂i (µn(y) − µ(y)) |pwi(y) dy)1/p

=
(∫

Ω
|µn(y) − µ(y)|p dy +

N∑
i=1

∫
Ω

|∂iµn(y) − ∂iµ(y)|pwi(y) dy

)1/p

=
(∫

Ω
|µn(y) − µ(y)|p dy +

N∑
i=1

∫
Ω

|∂iµn(y) − ν(y)|pwi(y) dy

)1/p

.

Taking n → +∞ and from (2.4), we get that Cauchy sequence {µn} converges to µ
in cW γ,p(Ω). Hence, cW γ,p(Ω) is a complete space. □

From the first expression in the formula (2.2), we know that C∞
0 (Ω) is a subspace

of cW γ,p(Ω) and therefore, we can define the subspace cW γ,p
0 (Ω) of cW γ,p(Ω) as the

closure of C∞
0 (Ω) with respect to the norm (2.1). Moreover, the norm

∥µ∥γ =
(

N∑
i=1

∫
Ω

|∂γ
i µ(y)|p dy

)1/p

is assigned to the Sobolev space cW γ,p
0 (Ω) which is equivalent to the norm (2.1).

Theorem 2.3. The spaces cW γ,p(Ω) and cW γ,p
0 (Ω) are reflexive and separable Banach

spaces.

Proof. According to the second expression in the formula (2.2) and taking into account
that Lp(Ω) is a reflexive and separable space, we can easily show that cW γ,p(Ω) and
W γ,p

0 (Ω) are reflexive Banach spaces. □

Theorem 2.4 (Conformable fractional Sobolev space embedding). For p ∈ (1, +∞)
we have the following.

(a) If N > p, then, for each r such that p ≤ r < Np
N−p

,
cW γ,p(Ω) ↪→ Lr(Ω).
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More precisely, under the given conditions, there is C > 0 such that

∥µ∥Lr ≤ C∥µ∥γ,p, for every µ ∈ cW γ,p(Ω).

(b) If N = p, then for each r satisfying p ≤ r ≤ +∞, then we have
cW γ,p(Ω) ↪→ Lr(Ω).

Proof. Let µ ∈ cW γ,p(Ω), we can easily established
N∑

i=0

∫
Ω

|∂iµ(y)|p ≤ C ′
N∑

i=0

∫
Ω

|∂γ
i µ(y)|p, C ′ > 0.(2.5)

On the other hand, from W 1,p(Ω) ↪→ Lr(Ω) and (2.5), we find the results. □

The embedding of conformable fractional Sobolev space remain true locally, i.e., in
any open compactly included in Ω. They remain true globally if we replace cW γ,p(Ω)
by cW γ,p

0 (Ω). We notice that (cW γ,p
0 (Ω), ∥ · ∥γ) is a uniformly convex Banach space.

Remark 2.2. We know that w0(y) ≡ 1 and for all λ ∈
(

N
p

, +∞
)

∩
(

1
p−1 , +∞

)
, we have

w−λ
i ∈ L1(Ω), for every i = 1, . . . , N.

We noticed that the expression (2.2) is stronger than the second expression in the
formula (2.2). Then,

∥µ∥γ =
(

N∑
i=1

∫
Ω

|∂γ
i µ|p dy

)1/p

is a norm defined on cW γ,p
0 (Ω) and it is equivalent to the norm (2.1). Moreover, the

imbedding
cW γ,p

0 (Ω) ↪→ Lr(Ω)
is compact for every r ≥ 1 if pλ ≥ N(λ+1) and for every 1 ≤ r ≤ p∗

1 if pλ < N(λ+1),
where p1 = pλ

λ+1 and p∗
1 is the Sobolev conjugate of p1 (see [18, p. 30, 31]).

3. Properties of Conformable Fractional p-Laplacian Operator

In this section, we will discuss the conformable fractional p-Laplacian operator
defined by:

−△γ
pµ = −divγ(|∇γµ|p−2∇γµ) = −

N∑
i=1

∂γ
i

(
|∂γ

i µ|p−2∂γ
i µ
)

.

Let

K(µ) = 1
p

N∑
i=1

∫
Ω

|∂γ
i µ(y)|pdy, µ ∈ Y := cW γ,p

0 (Ω),
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where K ∈ C1(cW γ,p
0 (Ω),R) (for more details, see [15]), and the conformable fractional

p-Laplacian operator is the derivative of operator K in the conformable weak sense.
We define Q = DγK : Y → Y∗, so

⟨Qµ, ν⟩ =
N∑

i=1

∫
Ω

|∂γ
i µ(y)|p−2∂γ

i µ(y)∂γ
i ν(y)dy,

for all ν, µ ∈ Y.

Lemma 3.1. The operator Q is
(i) continuous, bounded and strictly monotone;
(ii) of type (S+), i.e., if lim supn→+∞⟨Qµn − Qµ, µn − µ⟩ ≤ 0 and µn ⇀ µ in Y,

then µn → µ in Y;
(iii) is homeomorphism.

Proof. (i) It is clear that Q is continuous and bounded. For all τ, θ ∈ RN , we have

(3.1)
[
(|τ |p−2τ − |θ|p−2θ)(τ − θ)

]
(|τ |p + |θ|p)(2−p)/p ≥ (p − 1)|τ − θ|p, 1 < p < 2,

and

(3.2)
(
|τ |p−2τ − |θ|p−2θ

)
(τ − η) ≥

(1
2

)p

|τ − θ|p, p ≥ 2.

By using (3.1) and (3.2), we can obtain the strictly monotonicity of Q (see [26]).
(ii) According to (i), if µn ⇀ µ and lim supn→+∞⟨Qµn − Qµ, µn − µ⟩ ≤ 0, then

lim
n→+∞

⟨Qµn − Qµ, µn − µ⟩ = 0.

From (3.1) and (3.2), ∇γun converges in measure to ∇γµ in Ω, and thus
∇γµn(y) → ∇γµ(y), a.e. y ∈ Ω.

By Fatou Lemma, we infer

(3.3) lim inf
n→+∞

1
p

N∑
i=1

∫
Ω

|∂γ
i µn(y)|pdy ≥ 1

p

N∑
i=1

∫
Ω

|∂γ
i µ(y)|pdy.

Since µn ⇀ µ, we obtain
lim

n→+∞
⟨Qµn, µn − µ⟩ = lim

n→+∞
⟨Qµn − Qµ, µn − µ⟩ = 0.

On the other hand, we have

⟨Qµn, µn − µ⟩ =
N∑

i=1

∫
Ω

|∂γ
i µn(y)|pdy −

N∑
i=1

∫
Ω

|∂γ
i µn(y)|p−2∂γ

i µn(y)∂γ
i µ(y)dy

≥
N∑

i=1

∫
Ω

|∂γ
i µn(y)|pdy −

N∑
i=1

∫
Ω

|∂γ
i µn(y)|p−1|∂γ

i µ(y)|dy

≥
N∑

i=1

∫
Ω

|∂γ
i µn(y)|pdy −

N∑
i=1

∫
Ω

[
p − 1

p
|∂γ

i µn(y)|p + 1
p

|∂γ
i µ(y)|p

]
dy
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≥ 1
p

N∑
i=1

∫
Ω

|∂γ
i µn(y)|pdy − 1

p

N∑
i=1

∫
Ω

|∂γ
i µ(y)|pdy.(3.4)

By using (3.3) and (3.4), we can get

(3.5) lim
n→+∞

1
p

N∑
i=1

∫
Ω

|∂γ
i µn(y)|pdy = 1

p

N∑
i=1

∫
Ω

|∂γ
i µ(y)|pdy.

According to (3.5), the integrals of the functions family
{

1
p

∑N
i=1 |∂γ

i µn(y)|p
}

are abso-
lutely equi-continuity on Ω (see [28, Chapiter 6, Section 3]. Moreover, since

1
p

N∑
i=1

|∂γ
i µn(y) − ∂γ

i µ(y)|p ≤ C
[1
p

N∑
i=1

|∂γ
i µn(y)|p + 1

p

N∑
i=1

|∂γ
i µ(y)|p

]
,

the integrals of the family
{

1
p

∑N
i=1 |∂γ

i µn(y) − ∂γ
i µ(y)|p

}
are absolutely equi-continuous

on Ω (cf. [28]), and thus

lim
n→+∞

1
p

N∑
i=1

∫
Ω

|∂γ
i µn(y) − ∂γ

i µ(y)|pdy = 0,

implies that

(3.6) lim
n→+∞

1
p

N∑
i=1

∫
Ω

|∂γ
i µn(y) − ∂γ

i µ(y)|pdy = 0.

From (3.6), µn → µ (see [20, 21,30]).
(iii) By using the strictly monotonicity, Q is an injection. As,

lim
∥µ∥γ→+∞

⟨Qµ, µ⟩
∥ µ ∥γ

= lim
∥µ∥γ→+∞

∫
Ω

|∇γµ|pdy

∥ u ∥γ

= +∞,

then Q is coercive, and from Minty-Browder Theorem (see [34]) Q is a surjection. So,
Q admits an inverse mapping Q−1 : Y∗ → Y.

On the other side, if gn, g ∈ Y∗ such that limn→+∞ gn = g and if

µn = Q−1gn, µ = Q−1g,

then

Qµn = gn, Qµ = g.

So, {µn} is bounded in Y.
Without loss of generality, we suppose that µn ⇀ µ0. Since gn → g, then

lim
n→+∞

⟨Qµn − Qµ0, µn − µ0⟩ = lim
n→+∞

⟨gn, µn − µ0⟩ = 0.

As Q satisfies property (ii) of Lemma 3.1, we deduce that µn → µ, so Q−1 is continuous.
□
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4. Existence of Solutions

In this section we will discuss the existence of weak solutions of the problem (1.1)
in various cases.

Definition 4.1. Let µ ∈ cW γ,p
0 (Ω). We say that µ is a weak solution of the problem

(1.1), if
N∑

i=1

∫
Ω

|∂γ
i µ(y)|p−2∂γ

i µ(y)∂γ
i ν(y)dy =

∫
Ω

[
|µ|q−2µ + g(y, µ)

]
νdy,

for all ν ∈ Y := cW γ,p
0 (Ω).

Case 1. In this case, we will investigate the existence of weak solutions of (1.1)
when the right-hand side g depends only on x.

Theorem 4.1. Assume that g(y, µ) = g(y) satisfies g ∈ Lq(Ω), where q ∈ R, such
that q ∈ (1, +∞) and 1

q
+ 1

p∗ < 1. Then, the problem (1.1) admits a unique weak
solution.

Proof. By using [21, Proposition 2.5], for each ν ∈ Y, ⟨g, ν⟩ :=
∫

Ω g(y)νdy defines a
continuous linear function on cW γ,p

0 (Ω). As Q is a homeomorphism, (1.1) admits a
unique weak solution.

From now on, it is assumed that g(y, µ) satisfies the following hypothesis:
(A1) |g(y, t)| ≤ c1 + c2|t|r−1, where r ∈ [1, p∗), for all (y, t) ∈ Ω × R.
Let

(4.1) ϕ(µ) = 1
p

N∑
i=1

∫
Ω

|∂γ
i µ(y)|pdy − Ψ(µ), µ ∈ Y,

where

(4.2) Ψ(µ) =
∫

Ω
G(y, µ)dy + 1

q

∫
Ω

|µ|qdy.

In the formula (4.1), it is clear that ϕ ∈ C1(Y,R). Then, the weak solutions of the
problem (1.1) are critical points of ϕ (see [15,35]). On the other hand from (4.2), Ψ′ :
Y → Y∗ is completely continuous, and thus Ψ is weakly continuous. □

Case 2. It is assumed in this instance that g meets the following assumption:
(4.3) |g(y, t)| ≤ C1 + C2|t|r−1, where r ∈ [1, p), for all (y, t) ∈ Ω × R.

Theorem 4.2. Under assumption (4.3), the problem (1.1) admits a weak solution.

Proof. According to (4.3) we know that |G(y, t)| ≤ C(1 + |t|r). Then,

ϕ(µ) = 1
p

N∑
i=1

∫
Ω

|∂γ
i µ(y)|pdy −

∫
Ω
G(y, µ)dy − 1

q

∫
Ω

|µ|qdy

≥ 1
p

∥µ∥p
γ − C

∫
Ω

|µ|rdy − C3 − 1
q

∫
Ω

|µ|qdy
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≥ 1
p

∥µ∥p
γ − C4∥µ∥r

γ − C5.

Therefore,
lim

∥µ∥γ→+∞
ϕ(µ) = +∞.

As ϕ is weakly lower semi-continuous, then ϕ posses a minimum point µ in Y, and
therefore (1.1) admits a weak solution which is this minimum point of ϕ. □

Case 3. In this case, we will consider the problem (1.1), taking into account (A1)
and the following conditions

(A2) exists N > 0, η > p such that 0 < ηG(y, t) ≤ tg(y, t), |t| ≥ N , y ∈ Ω,
where G(y, t) =

∫ t
0 g(y, s)ds;

(A3) g(y, t) = ot→0(|t|r−1), y ∈ Ω uniformuly and r > p.
Definition 4.2. Let ϕ : Y → R be a function. A functional ϕ is said to satisfy the
Palais-Smale condition (denoted by (PS)) if any sequence {µn} ⊂ Y with {ϕ(µn)} is
bounded and limn→+∞ ∥ϕ′(µn)∥γ = 0 admits a convergent subsequence.

In order to establish Theorem 4.3, we will first prove the following technical lemma.
Lemma 4.1. Assume that (A2) holds. Then, ϕ satisfies the (PS) condition.
Proof. Assume that {µn} ⊂ Y, limn→+∞ ∥ϕ′(µn)∥γ = 0 and {ϕ(µn)} is bounded. Thus,

C ≥ ϕ(µn) =1
p

N∑
i=1

∫
Ω

|∂γ
i µn(y)|pdy −

∫
Ω
G(y, µ)dy − 1

q

∫
Ω

|µ|qdy

≥1
p

N∑
i=1

∫
Ω

|∂γ
i µn(y)|pdy −

∫
Ω

µn

η
f(y, µn)dy − c − 1

q

∫
Ω

|µ|qdy

≥
(

1
p

− 1
η

)
N∑

i=1

∫
Ω

|∂γ
i µn(y)|pdy

+
∫

Ω

1
η

(
N∑

i=1
|∂γ

i µn(y)|p − µnf(y, µn)
)

dy − c − 1
q

∫
Ω

|µ|qdy

≥
(

1
p

− 1
η

)
∥∇γµn∥p

Lp − 1
η

∥ϕ′(µn)∥γ∥µn∥γ − C6.

So, {∥µn∥γ} is bounded.
Without loss of generality, we assume that µn ⇀ µ, so

lim
n→+∞

Ψ′(µn) = Ψ′(µ).

Since limn→+∞ (Qµn − Ψ′(µn)) = limn→+∞ ϕ′(µn) = 0, we obtain
lim

n→+∞
Qµn = Ψ′(µ).

As Q is a homeomorphism, µn → µ, which implies that ϕ satisfies the (PS) condition.
□
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Theorem 4.3. Suppose that (A1)-(A3) hold. Then, the problem (1.1) has a non-trivial
solution.

Proof. We will show that the assumptions of the Mountain Pass Lemma hold for ϕ.
By Lemma 4.1, we have ϕ satisfies the (PS) condition in Y. As p < r < p∗ and

thanks to Theorem 2.4, there exists C0 > 0 such that
∥µ∥Lp ≤ C0∥µ∥γ, for all µ ∈ Y.

Let θ > 0 such that θ Cp
0 ≤ 1

2p
, by variants of (A1)-(A3), we have

G(y, t) ≤ θ|t|p + Cθ|t|r,
for all (y, t) ∈ Ω × R. Since

ϕ(µ) ≥ 1
p

N∑
i=1

∫
Ω

|∂γ
i µn(y)|pdy − θ

∫
Ω

|µ|pdy − Cθ

∫
Ω

|µ|rdy − 1
q

∫
Ω

|µ|qdy

≥ 1
p

∥µ∥p
γ − θCp

0∥µ∥p
γ − C(θ)∥µ∥r

γ − C∥µ∥q
γ

≥ 1
2p

∥µ∥p
γ − C ′

θ, when ∥µ∥γ ≤ 1,

there are two strictly positive numbers ξ > 0 and ϱ > 0 such that
ϕ(µ) ≥ ϱ, for all µ ∈ Y and ∥µ∥γ = ξ.

From (A2), we can see that
G(y, t) ≥ C|t|η, for all y ∈ Ω, |t| ≥ M.

For ν ∈ Y\{0} and t > 1, we can obtain

ϕ(tν) = 1
p

N∑
i=1

∫
Ω

|t ∂γ
i ν(y)|pdy −

∫
Ω
G(y, tν)dy − 1

q

∫
Ω

|tν|qdy

≤ tp

p

N∑
i=1

∫
Ω

|∂γ
i ν(y)|pdy − ctη

∫
Ω

|ν|ηdy − tq

q

∫
Ω

|ν|qdy.

Therefore,
lim

t→+∞
ϕ(tν) = −∞.

As ϕ(0) = 0, applying Mountain Pass Lemma (see [15]), ϕ has at least one non-trivial
critical point. It follows that the problem (1.1) has at least one nontrivial solution. □

Case 4. Here, we make the same assumptions as in Theorem 4.3, except that we
replace (A3) with the following assumption

(A4) g(y, −t) = −g(y, t), for all y ∈ Ω, t ∈ R.
Let Y be a reflexive and separable Banach space. Then, there exist {ei} ⊂ Y and

{e∗
i } ⊂ Y∗ such that

Y∗ = span{e∗
i , i = 1, 2, . . .}, Y = span{ei, i = 1, 2, . . .},
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and

⟨e∗
j , ei⟩ =

{
1, if j = i,
0, otherwise.

For convenience, we can write
Xk = ⊕k

i=1Yi, Zk = ⊕+∞
i=kYi,

where Yi = span{ei}.
For the sequel, we need the following lemma.

Lemma 4.2. Let r ∈ R such that 1 < r < p∗ and

λk = sup
{
∥µ∥Lr , ∥µ∥γ = 1, µ ∈ Zk

}
.(4.4)

Then, limk→+∞ λk = 0.

Proof. According to (4.4), it is clear that 0 < λk+1 ≤ λk, so the sequence {λk} is
convergent, and thus

lim
k→+∞

λk = λ ≥ 0.

Let µk ∈ Zk such that

∥µk∥γ = 1, 0 ≤ λk − ∥µk∥Lr <
1
k

.

So there is a subsequence of {µk} (which we still denote by µk) such that
µk ⇀ µ and ⟨e∗

j , µ⟩ = lim
k→+∞

⟨e∗
j , µk⟩ = 0, where j = 1, 2, . . .

Then, µ = 0, and thus µk ⇀ 0. Since cW γ,p
0 (Ω) ↪→ Lr(Ω) is compact, so µk → 0,

in Lr(Ω). Hence, we obtain limk→+∞ λk = 0. □

Theorem 4.4. Suppose that (A1), (A2) and (A4) hold, then ϕ has a sequence of
critical points {µn} such that

lim
n→+∞

ϕ(µn) = +∞

and (1.1) has infinite many pairs of solutions.

Proof. Combining (A2) with (A4), we conclude that ϕ is an even functional and verifies
the condition (PS). We will show that if k is large enough there is δk > ρk > 0 such
that

(B1) bk := inf{ϕ(µ), µ ∈ Zk and ∥µ∥γ = ρk};
(B2) ak := max{ϕ(µ), µ ∈ Xk and ∥µ∥γ = δk}.
It is clear that

lim
k→+∞

bk = +∞ and ak ≤ 0.

By Fountain Theorem (see [33, Theorem 3.6]), we establish the assertion of Theorem
4.4.



CONFORMABLE FRACTIONAL SOBOLEV SPACES AND p-ELLIPTIC PROBLEMS 441

(B1) For each µ ∈ Zk, |µ| = ρk = (crλr
k)

1
p−r , we can obtain

ϕ(µ) =1
p

N∑
i=1

∫
Ω

|∂γ
i µ(y)|pdy −

∫
Ω
G(y, µ)dy − 1

q

∫
Ω

|µ|qdy

≥1
p

N∑
i=1

∫
Ω

|∂γ
i µ(y)|pdy − c

∫
Ω

|µ|rdy − c1 − 1
q

∫
Ω

|µ|qdy

≥1
p

∥µ∥p
γ − c∥µ∥r

Lr − c2 − 1
q

∥µ∥q
γ

≥


1
p
∥µ∥p

γ − c − c1 − 1
q
∥µ∥q

γ, if ∥µ∥Lr ≤ 1,

1
p
∥µ∥p

γ − c λr
k∥µ∥r

Lr − c1 − 1
q
∥µ∥q

γ, if ∥µ∥Lr > 1,

≥1
p

|µ|p − cλr
k|µ|r − c3 − 1

q
∥µ∥q

γ

=1
p

(c rλr
k)

p
p−r − cλr

k(c rλr
k)

r
p−r − c3 − 1

q
(c rλr

k)
q

p−r .

Since p < r and limk→+∞ λk = 0. Then,

lim
k→+∞

[(
1
p

− 2
r

)
(c r λr

k)
p

p−r − c3

]
= +∞.

(B2) According (A2), we have G(y, t) ≥ c1|t|η − c2. By using η > p and dimXk = k,
we obtain

lim
∥µ∥→+∞

Ψ(µ) = −∞, for µ ∈ Xk.

□
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