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CHAIN CONDITION AND FUNDAMENTAL RELATION ON
(A,G)-SETS DERIVED FROM I'-SEMIHYPERGROUPS

S. OSTADHADI-DEHKORDI

ABSTRACT. The aim of this research work is to define a new class of hyperstructure
as a generalization of semigroups, semihypergroups and I'-semihypergroups that we
call (A, G)-sets. Also, we define fundamental relation on (A, G)-sets and prove some
results in this respect. Then, we introduce the notions of quotient (A, G)-sets by
using a congruence relations. Finally, we introduce the concept of complete parts
and Noetherian(Artinian) (A, G)-sets.

1. INTRODUCTION

The hypergroup notion was introduced in 1934 by a French mathematician F. Marty
[17], at the 8 Congress of Scandinavian Mathematicians. He published some notes on
hypergroups, using them in different contexts: algebraic functions, rational fractions,
non commutative groups. Algebraic hyperstructures are a suitable generalization of
classical algebraic structures. In a classical algebraic structure, the composition of
two elements is an element, while in an algebraic hyperstructure, the composition of
two elements is a set. Since then, hundreds of papers and several books have been
written on this topic, see [4-6].

The concept of I'-semigroup defined by Sen and Saha [18] in 1986 that is a gene-
ralization of a semigroup. Many classical notions of semigroups have been extended
to I'-semigroups and a lot of results on I'-semigroups are published by a lot of mathe-
maticians, for instance, Chattopadhyay [2,3], Hila [15,16] and [18].

Recently, the notion of I'-hyperstructure introduced and studied by many re-
searchers and represent an intensively studied field of research, for example, see
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[1,7,8,11-14]. The concept of I'-semihypergroups was introduced by Davvaz et al.
[1,14] and is a generalization of semigroups, a generalization of semihypergroups and
a generalization of I'-semigroups. Also, the concept of (A, G)-set was introduced
by S. Ostadhadi-Dehkordi [9,10]. He using them in different contexts such as twist
product, flat I'-semihypergroup, absolutely flat I'-semihypergroup and direct limit
that is important tools in the theory of homological algebra.

In this paper, by using a special scalar hyperoperations on I'-semihypergroups we
denote the notions left(right) (A, G)-set, (G1, A, G)-biset. Also, we introduced regu-
lar and strongly regular relations on (A, G)-sets and by using fundamental relation
we define quotient (A, G)-sets. Finally, we define the concept of complete part and
Noetherian(Artinian) (A, G)-sets and prove some results in respect.

2. INTRODUCTION AND PRELIMINARIES

In this section, we present some basic notions of I'-semihypergroup. These defini-
tions and results are necessary for the next sections.

Let H be a non-empty set. Then, the map o: H x H — P*(H) is called hyperop-
eration or join operation on the set H, where P*(H) denotes the set of all non-empty
subsets of H. A hypergroupoid is a set H together with a (binary)hyperoperation.
A hypergroupoid (H,o) is called a semihypergroup if for all a,b,c € H, we have
ao(boc) = (aob)oc. A hypergroupoid (H,o) is called quasihypergroup if for all
a € H, we have ao H = Hoa = H. A hypergroupoid (H,o) which is both a
semihypergroup and a quasihypergroup is called a hypergroup.

Definition 2.1 ([14]). Let G and I" be nonempty sets and o : G x G — P*(G) be
a hyperoperation, where « is an arbitrary element in the set I'. Then, G is called
I'-hypergroupoid.

For any two nonempty subsets G; and Gy of GG, we define

GiaGy = U giags, Giro{z} = Giaz, {x}aGy = xaGs.

91€G1,92€G2

A T-hypergroupoid G is called I'-semihypergroup if for all z,y,2 € G and o, 5 € I" we
have

(vay)Bz = za(yBz).
FExample 2.1. Let I' C N be a nonempty set. We define
zay ={z € N: z > max{z,a,y}},
where a € I' and x,y € N. Then, N is a ['-semihypergroup.

Ezample 2.2. Let I' = {ay,as,...,a,}. Then, we define hyperoperations xaxy =
xykZ. Hence, Z is a ['-semihypergroup.

Example 2.3. Let G be a nonempty set and I" be a nonempty set of G. Then, we
define zay = {z, o, y}. Hence, G is a I'-semihypergroup.
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Example 2.4. Let (I, -) be a semigroup and {A, }aer be a collection of nonempty dis-
joint sets and G = Ugjer Aa, for every ¢1,90 € G and a € I, we define
91092 = Aajaay, Where g1 € A, and go € A,,. Then, G is a f—semihypergroup,
I={a:ael}

Let G be a I'-semihypergroup. Then, an element e, € G is called a-identity if
for every x € G, we have © € e,axr N xae, and e, is called scalar a-identity if
T = eyax = rae,. We note that if for every a € T'; e is a scalar a-identity, then
xay = xfy, where o, § € I' and z,y € G. Indeed,

vay = (vfe)ay = zB(eay) = zBy.

Let G be a I'-semihypergroup and for every a« € I' has an a-identity. Then,
G is called a I'-semihypergroup with identity. In a same way, we can define I'-
semihypergroup with scalar identity.

A T-semihypergroup G is commutative when

Ty = yax,
for every x,y € G and a € I

Definition 2.2. Let G be a I'-semihypergroup and p be an equivalence relation on
G. Then, p is called right reqular relation if xpy and g € G implies that for every
t1 € xag there is to € yag such that t1pty and for every s; € yag there is sy € rag
such that s;pss. In a same way, we can define left reqular relation. An equivalence
relation p is called strong reqular when xpy and g € G implies that for every t; € zag
and ty € yag, tipty, for every a € I,

Ezxample 2.5. Let R = U, ez An, where A, = [n,n+1) and z,y € R such that x € A4,

y € Ay and a € Z. Then, R is a Z-semihypergroup such that xay = A,am, where
acZ={a:acZ}. Let

xpy <> 2ln—m, x€ A, y€ A,
Then, the relation p is strong regular. Also, x € R, implies that
ple)y={z€eR:ze€---n—4,n-3)Un—-2,n—1)Un,n+1)Un+2,n+3) -},
where z € [n,n + 1).

Proposition 2.1. Let G be a I'-semihypergroup and p be a regular relation on G.
Then, [G : p] = {p(x) : = € G} is a I'-semihypergroup with respect the following
hyperoperation:

p(x)aply) = {p(2) : z € p(x)ap(y)},
where T = {@ : a € '}

Proof. The proof is straightforward. 0J
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Corollary 2.1. Let G be a I'-semihypergroup and p be an equivalence relation G.
Then, p is regular (strong regular) if and only if (G : p| is I'-semihypergroup (I'-
semigroup).

Definition 2.3 ([9]). Let G' be a I'-semihypergroup with identity and X, A be
nonempty sets. Then, we say that X is a left (A, G)- setif there is a scalar hyperaction
d:G x X — P*(X) with the following properties:

(g1092)0x =g16(g20),
€0 =1,

for every g1, € G, a €', z € X and § € A.
When ¢ : G x X — X, then X is called scalar left (A, G)-set.

Example 2.6. Let G be a I'-semihypergroup with scalar identity, X and A be nonempty
sets such that xy € X is a fixed element and § : G x X — P*(X) defined by
3(g,x) = {xo}, where 6 € A and x € X. Then, G is left (A, G)-set.

Ezample 2.7. Let (G,0) be a semihypergroup and H be a subsemihypergroup of G.
Then, H is a left (A, G)-set where A = {o}.

In a same way, we can define a right (A, G)-set. Let G; and G be I'-semihypergroups
and X be a nonempty set. Then, we say that X is a (G, A, Gy)-bisets if it is a left
(A, Gq)-set, right (A, Gy)-set and

(91017)0292 = g101(2292),
for every 01,00 € A, g1 € G1, g2 € Gy and © € X. When X is a (Gy, A, Go)-bisets
and G = Gy = G, we sat that X is a (A, G)-bisets.

If G is a commutative ['-semihypergroup, then there is no distinction between a left
and a right (A, G)-sets. A left (A, G)-subset Y of X such that YAX C Y is called left
(A, G)-subset of X. Let X be a left (A, G)-set and I' C A. Then, X is also (I', G)-set
where § : G x X — P*(X) and 0 € I.

Definition 2.4. Let X be a left (A, G)-set and Y be a left (A, G)-subset of X. Then,
we say that Y closed, if for all y € Y and g € G from y € gdb implies that b € Y.

Definition 2.5. Let X be a (G,A,G)-biset and Y be a (G, A, G)-subbiset of X.
Then, Y is called invertible on a right(on a left) if for all y;,y, € Y and g € G from
y1 € y20G(y1 € Gdys) it follows that y € 110G (y2 € Goyy).

Proposition 2.2. Let G be a I'-semihypergroup and X be a (A, G)-biset such that' Y
be a (A, G)-subbiset. Then, Y is invertible on the right if and only if {ydG}yey is a
partition of X, for everyy € Y.

Proof. Suppose that Y is invertible on the right and y € y;0G N y20G. Then, y1,ys €
ydG. This implies that y,0G C ydG and y20G C ydG. Also,

y6G C (110G)3G C 116(GTG) C y10G,
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and ydG C (y20G)dG = y20(GT'G) C y20G. Then, yoG = 1,0G = y20G. On the
other hand, y € y,0G = yéG. Then, for every y € Y, we have y € ydG.
Conversely, let {ydG}, ey be a partition of Y and y; € y20G. Then,

116G C (1206G)8G C 126(GTG) C 426G,

whence y10G = y20G and so y; € y20G = 1;0G. Then, for all y € Y we have y € yiG.
Therefore, yy € y20G = y10G. O

Definition 2.6. Let X be a left (A, G)-set and Y be a left (A, G)-subset of X. Then,
Y is called ultraclosed if for all g € G and § € A, we have gdY Ngo(X —Y) = 0.

Proposition 2.3. Let X be a left (A, G)-set and Y be a invertible (A, G)-subset.
Then, X 1is closed.

Proof. Suppose thaty,z € Y, 6 € Aand g € G such that y € gdx. Hence x € goy C Y
and we obtain x € Y. O

Definition 2.7. Let X be a left (A, G)-set and H be a ['-subsemihypergroup of G.
Then, we define the following relation:

T =29 11 € Hoxs.
This relation is denoted by x1H*x».

Definition 2.8. Let X be a left (G, A)-set and p be a regular relation on X. Then,
p is called regular if x1pxs implies that for every s; € gdz, there is sy € gdxs such
that sypsy and for every to € gdxs there is t; € gdxy such that typty, where zq1, 20 € X
and 0 € A. Also, an equivalence relation p is called strongly reqular, when for every
s1 € goxy and sy € gdxe implies that sypss.

Proposition 2.4. Let X be an invertible left (A, G)-set such that G is commutative.
Then, the relation H* is regular.

Proof. Suppose that x € X. Then, x = e,6x € Hox. It follows that xtH*z, i.e., H* is
reflexive. Let x1H*xy. Then, there exist § € A and h € H such that x; € hdxy which
implies that xo € hdxy C Hdx; which meanies that xoH*z; and so H* is symmetric.
Let z1, 29,3 € X such that x1H*z9 and zoH*x3. Then, there exist hy, hys € H such
that xr1 € hl(SIQ and To € hgél’g. Hence xr1 € hlé(hg(sl%’g) = (hﬂ)éhg)él‘g Q H6$3 This
implies that 1 € Hdxs and so H* is transitive.

Let x1, 75 be an arbitrary elements of X such that z1H*z,. It follows that x; €
H)xy. Hence there exist hy € H such that x; € hidzs. Let ¢ € G and t; € gdx;.
Then,

t1 € géxy C go(h1dxy) = (gahy )z = (hag)dxe = hyd(gdxs).

Hence there exists t5 € gdx, such that t; € hidtys C Hdty. Thus, t1H*t,. In a same
way, we can see for every sy € gdxy there is s; € gdxy such that s; H*sy. Therefore,
H* is a regular relation. U
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Proposition 2.5. Let X be a left (A, G)-set and H be a T'-subsemihypergroup of G.
Then, H*(x) = Héx.

Proof. The proof is straightforward. O

Theorem 2.1. Let X be a left (A, G)-set and H be a T'-subsemihypergroup of G.
Then, the set of all classes [X : H*| = {H*(z) : © € X} is a left (A, G)-set by the
following scalar hyperoperation:

gOH* () = {H"(y) : y € gsH"()}.

Proof. Suppose that H*(z1) = H*(x2), g € G and y € gdH*(z1). This implies that
x1 € Hdzy. Hence, there are hy, hy € H such that y € gd(hi10x1) and 1 € hodzy. We
have

y € go(h1dxz1) C gd(h10(hadxs)) = go(hiahs)dxe C gd(Hoxs) = gdH™ (22).

Then, gdH*(x1) C gdH*(z3). In a same way, we can see, goH*(z3) C gdH*(x1).
Hence,

ggH*(xl) = ggH*(@).
Therefore, the scalar hyperoperation a is well-defined. It is easy to see that
(glagz)gH*(ﬂﬂ) = 915(925}[*(37))- O

Let X be a left (A, G)-set. Then, we define an equivalence relation on X such that
smallest strongly regular relation on X. Suppose that X be a left (A, G)-set and n
be a nonzero natural number. We say that

aﬁnb = (351,(52, RN 7571 S A,ZE € X, 91,92,...,9n € G) {Cl,b} - 91619252, .. ,gnc;nx.

Let 8 = U,>1 Bn- Clearly, the relation f3 is reflexive and symmetric. Denote by 5* the
transitive closure.
We say that x[s»y when

a65"b g (ELCE S X7 91,92, -, 9n € G) {CL?b} C 915925a SR 7gn5x

Let 35 = U,>1 Bs» and S35 be transitive closure. Obviously, 85 C .
Let X be a (A, G)-biset. Then, the relation 3, defined on X as follows:

afyb< (FJz € X, 0,7 € A, gi,si € G) {a,b} C H Gi0i)Y;Si.

In a same way, we can define 35 and transitive closure ;.

Ezample 2.8. Let R be a Z-semihyperring Example 2.5, 2,y € R such that B(x) = B(y)
and t; = [z], to = [y]. Then, there exist g1, go, ..., gm € R and 61,02, ...,0m € Z such
that {z,y} C 101020235 - - - Gm—10m—1Gm. This implies that t; = to = [T, 9i6iGit1-
Therefore, f(x) = B(y) if and only there exists n € Z such that z,y € [n,n + 1).
Hence p*(x) = 8*(y) implies that x,y € [n,n + 1) for some n € Z.
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Theorem 2.2. Let X be a left (A, G)-set. Then, * is the smallest strongly reqular
relation on X.

Proof. Suppose that af*b be an arbitrary element of X. It follows that there exist
Ty = a,x1,...,T, = b such that for all i € {0,1,2,...,n} we have x;8x;,1. Let
uy € goa and uy € gob, where g € G, 0 € A. From x;5x,;,, it follows that there exists
a hyperproduct P;, such that {z;,z;11} C P; and so gdz; C goP; and gdx;41 C gd Py,
which meanies that gdx;B8gdz; ;. Hence for all i € {0,1,2,...,n — 1} and for all
s; € gox; we have s;8s;11. We consider sqg = u; and s, = us then we obtain u;5*us.
Then £* is strongly regular on a left.
Let p be a strongly regular relation on X. Then, we have

Pr=A{(x,2) :x € X} Cp,

since p is reflexive. Let 8,1 C p and af,b. Then, there exist ¢1,go,...,9, € G,
d1,02,...,0, € A and x € X such that {a,b} C [T, g:0ix = g101 [115 g;0;x. This
implies that there exits u,v € []}", g;0;,x such that a € g;6;u and v € g;6;v. We have
uf,_1v and according to the hypothesis, we obtain upv. Since p is regular it follows
that apb and S, C p. By induction, it follows that g C p. Therefore, 3* C p. O

Proposition 2.6. Let X; and X5 be left (A, G)- and right (A, G)-sets, respectively
and Bx,, By, and B, «x, be relations on Xy, Xy and Xy X Xy, respectively. Then,

(a7 b)/B}l XX2 (67 d) ~ a/g}k(lc’ bﬁ}k(zd
Proof. Suppose that (a,b)B8%, . x,(c,d). Then,

{(a,b), (e.d)} € T] g(a y) s = (Hg@-m, Hy%si) |
=1 =1 =1

This implies that {a,c} C [TiL; gid;z and {b,d} C [T, yyisi. Then, af%, c and bS5, d.
One can see that af%, c and b3y, d implies that (a,b)5%, . x, (¢, d). O

Corollary 2.2. Let X; and X5 be left (A, G)- and right (A, G)-sets, respectively and
Bx,, Bk, and Bx, . x, be relations on X1, Xy and X, x Xs, respectively. Then,

[Xl X X2 : 6§(1><X2] ~ [Xl : 5}'}1] X [XQ : 5;}2]
Definition 2.9. A map ¢ : X — Y from a left (A, G)-set X into a left (A, G)-set Y
is called morphism (G-morphism) if
p(g0x) = gop(x),
for every x € X,0 € A and g € G.

Ezample 2.9. Let (G,0) be a semihypergroup with scalar identity and G be a sub-
semihypergroup of (G,0). Then, G; is a (I', Gy)-biset in the obvious way, where

I' ={o}.
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FEzxample 2.10. Let p be a left regular relation on I'-semihypergroup G. Then, there is
a well-defined action of G on [G : p| given by

ga(p(x)) = {p(t) : t € gox},
where @ € T such that T' = {a : & € T'}. Hence, with this definition [G : p] is a left
(T, G)-system.

It is easy to see that the cartesian product X x Y of a left (A, G;)-set X and a
right (A, Gy)-set Y becomes (G, A, G)-biset if we make the obvious definitions

g (z,y) = {(t,y) 1 t € gidwz}, (z,9)02g0 = {(x,1) : t € ydaga},

where 31,32 € ﬁ, re X, yeY and g1 € Gy, g2 € Go.

Let X and Y be (G1,A,Gs)- and (G, A, G3)-bisets, respectively and Z be a
(G1,A,G3)-biset. Then, the cartesian product X x Y is (Gp, A, Gs)-biset. A
(G1,A,G3)-map @5 : X x Y — Z is called §-bimap if

p(xdg2,y) = p(, g20y),
where x € X, y €Y, g0 € Gy and § € A.
Definition 2.10 ([9]). A pair (P, ) consisting of (G, A, G5)-biset P and a d-bimap
¥ X xY — P will be called a twist product of X and Y over G, if for every

(G1, A, G3)-biset Z and for every bimap w: X X Y — Z there exists a unique bimap
w: P — Z such that wo ¢ = w.

Suppose that p is an equivalence relation on X x Y as follows:
p={(t1,t2) : t; € xdg,ty € goy,x € X,y €Y, g9 € Go}.

Let us define X &Y to be [X xY : p*], where p* is a transitive closure of p. We denote
a typical element p*(z,y) by z © y. By definition of p*, we have xdg &y = x © gdy,
where § € A.

Proposition 2.7 ([9]). Let X and Y be (G1,A,Gs)- and (G, A, G3)-bisets, respec-
tively. Then, two element v ©y and ' ©y' are equal if and only if (z,y) = (2',y') or
there exist x1,%o,...,Tn_1 in X, hi,ho,..., hy_1 € Gy and 6 € A such that
r € 210g1, £10hy = 130gs, . . ., 1i0gi = Ti110Gis1, Tn10hn_1 =2'0gn,
910y = h10y1, g20y1 = hadya, . . ., Gi+10Y;i =hi110Yit1
:gn(synfl
:y/.
Theorem 2.3 ([9]). Let X and Y be (G1, A, Gs)- and (G, A, G3)-bisets. Then, the
twist product X andY over Gy is unique up to isomorphism.

Proposition 2.8. Let X and Y be a scalar (A, G)-bisets. Then, X ©Y is a (A, G)-
biset by following scalar hyperoperations:

~

go(x0y) =gér oy, (x0y)dg=x0 ydy,
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wheregeﬁand:pEX,er.

Proof. Suppose that * &y = 2’ © 3. By Proposition 2.7, there exist 0 € A,
T1,To, ..., Tp_1 € X and hq, ho, ..., h,—1 € G, such that

x = 210g1, x10hy = x20Ga, - - - x;0h; = ;41041
Tp_10h,_1 = 2'0g,,
910y = h1dyr, g20y1 = hadya, . .., Git10y; = hiy10yin
= 9n0Yn—1
= y/_

Hence,

gox = 95(5751591), 95($15h1) = 95(%592)7 e 795(1‘@‘5}&1‘) =
96(Tn-10hn_1) =

(7i410Gi41)

go
go(2'dgy).

We have
9513 &) Yy = tl o 915y = tl . hléy = t15h1 o Y1 = t2692 o U1

= t/(sgn O Yn—1
=t © gndynfl
= goxr' Oy,
where t; € X. Then, the left scalar operation 5 is well-defined. Moreover,
(1a92)0(z © y) = (grag2)02 S y = 16(g202) S y = 16(g26(x S ),

where 2 € X, y € Y and g € G. Hence X ©Y is a left (A, G)-set. In a same way, we
can see X OY is also right (A, G)-set. O

3. COMPLETE PARTS AND REGULAR RELATIONS

In this section we define the concept of complete parts and present some results.

Definition 3.1. Let X be a left (A, G)-set and Y be a nonempty subset of X.
We say that Y is a complete part of X if for any nonzero natural number n and
91,92, ---,9n € G, 01,00,...,0, € A, x € X, the following implication holds:

=1 =1

Proposition 3.1. Let X be a left (A, G)-set and p be a strongly reqular relation on
X. Then, the equivalence class x is a complete part of X.
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Proof. Suppose that g1, 92,...,9, € G, 61,02,...,0, € A and x € X such that
p(z) N ] gidix # 0.
i=1

Then, there exists y € [/~ g;0;x such that ypz. The morphism 7 : X — [X : p| is
good and the scalar hyperoperation § defined on [X : p] is scalar operation. It follows
that
) = pt0) = pte) = (T g ) = [T too) = T it
i=1 i=1 i=1
This implies that [T, g:0;z C p(x). O

Proposition 3.2. Let X and Y be scalar (A, G)-bisets such that X; C X be a
complete part. Then, X1 &Y 1is also complete part in X Y.

Proof. The proof is straightforward. O

Let A be a nonempty subset of (A, G)-sets X. Then, denoted by C(A) the complete
closure of A, which is the smallest complete part of X, that contain A.

Denote K;(A) = A and for all n > 1 denote

t t
=1

=1 i—
Let K (A) = Ups1 Kn(A).

Theorem 3.1. Let X be a left (A, G)-set and A be a nonempty subset of A. Then,
C(A) = K(A).

Proof. Suppose that K(A) NII'_; g:0;x # 0. Then, there exits n > 1 such that
K. (A) NTIi_, gid;x # 0 which meanies that [['_, g;0;x C K,1(A). This implies that
K(A) is a complete part of X.

Let C be a complete pat of X such that A C . Then, by induction we prove that
K(A) C C;. We have K;(A) C € and suppose that K,(A) C Cy. Let z € K, 11(A).
Then, there exists ¢t € N such that a € [['_; g:0;x and K, (A) NTIi_, gid;x # 0. Hence,
Cy NII_, gi0ix # O implies that [T'_, ;0,4 C C;. We obtain a € C;. Therefore,

C(A) = K(A). O
Proposition 3.3. Let X be a left (A,G)-set and x be an arbitrary element of X.
Then,

(1) for alln > 2 we have K,,(Ks(z)) = Kpi1(2);
(2) for every x,y € X, x € K,(y) &y € K,(x).

Proof. (1) We prove the equality by induction. We have

Ky(Ky(z)) = {x eX:(FteN)ze ﬁgidix,Kg(x) N ﬁgi&x # @} = Kj(x).

i=1



CHAIN CONDITION AND FUNDAMENTAL RELATION ON (A, G)-SETS 31

Let K, 1(K3(x)) = K, (z). Then,
K, (Ky(x)) ={z€X:(@teN) xell, g K, 1(K(x)) NI, gidiw # 0}

= n+1<x)'

(2) We check the equivalence by induction. For n = 2, we have

¢ ¢
r € Ky(y) = {x € X:(3teN)ze [[ghz Ki(y) N]] g:bix # Q)} :
i=1 i=1
This implies that {y,z} C [I}_; ;0,7 and y € Ky(x). Suppose that the following
equivalence holds:
re K, 1(y) e ye K, 1(x).

We check that z € K, (y) & y € K,(r). Let x € K,(y). Then, there exists [['_, g:0;a
with z € [['_; ¢g:0;a and there exists b € [[i_; g;0;aN K, _1(y). It follows that b € Ky(z)
and y € K,,_1(b). Hence, y € K,,_1(Ks(z)) = K,(x). Similarly, we obtain the converse
implication. U

Definition 3.2. Let X be a left (A, G)-set. Then, we define the relation w as follows:
(,y) Ewe (In>1) z € Ky(y).

Theorem 3.2. Let X be a left (A, G)-set. Then, the relation w is an equivalence and
coincide with B*.

Proof. By Proposition 3.3, the relation w is an equivalence. Let (x1,25) € 8. Then,
{z1,29} C [IX, gi0ix, where g; € G, 6; € A and t € N. Hence, 21,29 belong to
the same scalar hyperoperation and so, 1 € Ky(xs) C K(x3). This implies that
f C wand f* C w. Let (z,y) € K and = # y. Then, there exists n > 1, such
that (r,y) € K11, which means that there exists a scalar hyperproduct P;, such
that x € P, and P, N K, (y) # 0. Let 21 € P, N K,(y). Then, {x,2:} C P,. Hence
(r,z1) € B. Since x; € K,(y) it follows that there exists a scalar hyperproduct P,
such that 1 € Py and PN K, _1(y) # 0. Let x5 € PoN K, _1(y). Then, 25 € K,,_1(y)
and {x1,22} C P,. After finite number of steps, we obtain there exists a scalar
hyperoperation P, such that {z,_1,z,} C P, and z,, € K,,_(»—1)(y) = {y}. O

4. FUNDAMENTAL, NOETHERIAN AND ARTINIAN (A, G)-SETS

In this section, we introduce the notion of right Noetherian and Artinian (A, G)-sets
and define fundamental (A, G)-sets.

Let X be a left (A, G)-set such that G be a I'-semihypergroup and I' C A. We
define a relation p on A x X as follows:

((61, 1), (02, 22)) € p < goixy = gdawo, for all g € G,

where 01,9, € A and x1, 25 € X. Obviously, p is an equivalence.
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Let ©[X] = [A x X : p] denote the set of all equivalence classes. We denote the
equivalence class (9, z) by [d, z]. We define a relation € on I" x G as follows:

((01,91), (02, 92)) € € & gbi1g1 = gbago, forall g € G,

where g1, g2 € G and 41, d; € I'. Obviously, € is an equivalence relation and [, g] denote
the equivalence class containing (¢, g). We denote O[G] = {[,g] : g € G,d € I'}. We
define a hyperoperation o on O[G] as follows:

[01, 91] © [02, go] = {[61, 2] : 2 € g102g2},
where 1,0, € A and ¢;,g92 € GG. This hyperoperation is well-defined. Indeed, let
(01, g1] = [11, h1] and [2, go] = [y2, , he|, where 61,00, 71,72 € T and ¢y, go, hy1, ho € G.
Then,
90191 = gnih1,  gdaga = gy2he, forall g € G.

Hence,
(90191)0292 = (gy1h1)y2he, forall g € G,
and
961(916292) = g1 (h1y2ha).
Thus,
[01, 91] 0 [02, go] = [v1, ] © [72, ha].
Also

([01, 91] © [02, ga]) © [03, 93] = ({[61, 2] : 2 € g10292}) © [33, g3]
= U [01, 2] o [03, ]

2€916292

= U {[61,1] : t € 20395}

2€910292

= U [517 t]

te(g10292)0393

= U [517 t]

t€g102(920393)
= [51791] o ([52792] o [53793])-

Therefore, (O[G], o) is a semihypergroup.
Let o be a scalar hyperoperation o : O[G] x O[X] — P*(©[X]) such that

[01, 9] 0 [62, 2] = {[01, 2] : = € gdou}.

This scalar hyperoperation is well-defined. Indeed, let [0, 1] = [J2, g2] and [03, 1] =
[04, o] such that g1, g2 € G, 81,02 € A, x1,29 € X and 63,04 € A. Then,

g01g1 = gdaga, gdsxy = gisxe, for all g € G.
This implies that (gd1g1)d3x1 = (gd2g2)dszs. Hence,
[01, 91] © 05, 21] = [02, g2] © [d4, 2]
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Thus the scalar hyperoperation o is well-defined. Let [0, ¢1], [0, g2] € ©O[G] and
[03, 2] € ©[X], where d1,02 € . Then,

([01, 91] © [0, go]) © [03, 2] = ({[d1, 2] : 2 € g10292}) © 03, 2]
= U [01, 2] o [d3, ]

2€910292

= U {l61.1]:t € 2032}

2€916292

= U [517 t]

te(g10292)d3x

= U [61’ t]

t€g102(g2032)
= [01, 91] © ([02, g2 © [33, x]).

Therefore, ©[X] is a left ©[G]-set and is called fundamental left (A, G)-set.
Let ©[X] be a fundamental left (A, G)-set, H C ©[X] and T'C X. Then, we define

[H] ={z € X : [§,z] € H for all § € A},
[[T]] ={[d, z] € O[X] : gz C T for all g € G}.

A nonempty subset 7" of a left (A, G)-set X is called left (A, G)-subset of X when
GAT C T. A nonempty subset H of O[X] is called left ©[G|-subset if O|G| o H C H.

Proposition 4.1. Let X be a left (A, G)-set and H C ©[X] be a complete part. Then,
[H] is a complete part of X.

Proof. Suppose that

i=1
This implies that there exists a € X such that a € [H] N[[; g;0;x. Then, for every
d € A, [d,a] € H. This implies that

[0,a] € HN ﬁ[é, gi] o [ds, z].

i=1
Since [H] is a complete part, [T [0, g;] o [0;, 2] C H. Then,
{b € [[ gidiz : V6 € A, [(5,6]} C H.
i=1
Therefore, [H]| is a complete part. O

Proposition 4.2. Let X be a left (A, G)-set and T' C X is a complete part. Then,
[[T]] is also a complete part of O[X].

Proof. Suppose that
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This implies that

{[51,4 e ﬁgiéx} AT £ 0 = (Elz c ﬁgﬁx) 61, 2] € [[T]]

i=1 =1

= (Elz € Hgﬁx) Vge @) ghzCT

=1

= g6 [[g:02NT #0

i=1

= (Vge @) gd[[gibz CT
i=1

= ]116:, g1l o [0,] # 0 < [[T].

i=1
Therefore, [[T] is also complete part of ©[X]. O

Proposition 4.3. Let X be a left (A, X)-set such that T C X. Then, C[[T]] =
[C(T)]]-

Proof. Since C(T') is a complete part by Proposition 4.2, [[C(T)]] is also complete
part of O[X]. Also, [[T]] C [[C(T)]]. Let T} be a complete part contain [[T]]. Hence,
Cl[T)] € Ti. Thus, [[C(T)]] is a smallest compte part contain [[T]]. Therefore,
ClT = fle]]- O

Theorem 4.1. Let X be a left (A, G)-set and O[X] be a fundamental left (A, G)-set.
Then,

(i) If H is a left ©[G]-subset of O[X], then [H] is a left (A, G)-subset of X;
(ii) If T is a left (A, G)-subset of X, then [[T]] is a left O|G] of ©[X].

Proof. (i) Suppose that = € [H]. Then, for every 6 € A we have [d,z] € H. Since H
is a left ©[G]-set of ©[X], thus [d1,g] o [0, 2] C H. So {[d1,t] : t € gdx} C H. This
implies that gox C [H]. Therefore, [H] is a left (A, G)-set of X.

(ii) Let [0, x] € [[T]] and [d1, 9] € ©[G]. Then, for all g € G, gox C T. Now,

[01, 9] 0 6, 2] = {[d1,1] : ¢ € gba} C [[T]].
Therefore, [[T]] is a left ©[G]-subset of O[X]. O
Let X be a left (A, G)-set and T be a nonempty subset of X. Then,
[[T]]={ze X :VoeAo,z] €[[T]]} ={x € X :gdx CTforalld e A, geG}
This implies that 7" is a left (A, G)-subset of [[[T]]]. Also, when H C O[X], we have

[[[H]]] {[6,z] € O[X] : gdx C [H] for all g € G}
={[d,z] € ©[X] :[d1,t] € H for all g € G,0, € A,t € gdz}.
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Let H be a left O[G]-subset of ©[X]. Then, for every 6; € I', g € G and [0, 2] € H
we have
[01,9] o [, 2] = {[d1,t] : t € gox} C H.

When H is a left ©[G]-subset of O[X], we have H C [[[H]]].

Let X be a left (A, G)-set such that e, is a unit element of G where a € I". Then,

[0, eq) © [0, 2] = [d, eadx] = [0, x].

This implies that [J, e,] is a left unity of ©[X].
Proposition 4.4. Let X be a left (A,G)-set and T be a left (A, G)-subset of X.
Then, [[[T]]] = T-

Proof. The proof is straightforward. 0

Definition 4.1. Let X be a left (A, G)-set. Then, X is said Noetherian, when X
satisfies the ascending chain condition on left (A, G)-subsets and X is said Artinian
when X satisfies the descending chain condition.

Theorem 4.2. Let X be a left (A, G)-set such that ©[X] is Noetherian (Artinian)
©[G]-set. Then, X is Noetherian left (A, G)-set.

Proof. Suppose that X; C Xy C X3 C--- C X,, C--- be an ascending chain of left
(A, G)-set of X. Hence [X;] C [Xs] C [X3] C -+ C [X,] - is an ascending chain
in O[X]. Since ©[X] is Noetherian thus there exists a positive integer n such that
[ X,] = [X1k] for every k € N. This implies that X,, = [[X,]] = [[Xn+k]]] = Xnir for
every k € N. Therefore, X is Noetherian left (A, G)-set. In a same way, when X is
Artinian left (A, G)-set, then ©[X] is also O[G]-set. O

Corollary 4.1. Let X be a left (A, G)-set and O[X] is Artinian O[G]-set. Then, X
is Artinian left (A, G)-set.

Definition 4.2. Let X be a left (A, G)-set and A be a nonempty subset of X. Then,

intersection of all ideals of X containing A is a left (A, G)-set generated by A and
denoted by < A >.

Proposition 4.5. Let X be a left (A, G)-set and A C X. Then, < A >= GAA.

Proof. Suppose that H = GAA. Obviously, A C H and H is a left (A, G)-set of X.
Indeed,
GAH = GA(GAA) = (GTG)AA C GAA = H.
Let C be a left (A, G)-subset of X such that A C C. Then,
H=GAACGAC CC.
Therefore, H is a smallest left (A, G)-set contain A and H =< A >. O
Let X be a left (A, G)-set and every nonempty of left (A, G)-subset of X partially

ordered by inclusion has a maximal element. Then, we say that maximum condition

holds for left (A, G)-sets.
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Theorem 4.3. Let X be a left (A, G)-set. Then, the following conditions are equiva-
lent:

(i) X is Noetherian;
(ii) X satisfies the mazimum condition for left (A, G)-sets;
(iii) every left (A, G)-subset of X is finitely generated.

Proof. (i)=-(ii) Suppose that A is a nonempty set of left (A, G)-subsets which has
no maximal element. Let Ay € A. Then, there exists an element Ay, € A such that
Ay C Asy. Also, there exists an element Az € A such that Ay C A3. By continuing this
process we have the accenting chain Ay C Ay C A3 C ---. This is impossible.

(ii)=(iii) Let X; be a left (A, G)-set and Q@ = {< A >: A is a finite subset of X, }.
By (ii), © has a maximal element < Ay >. Now, if x € Xj, then < Ay U {z} >€ Q.
By Maximality of < Ay > we have x €< Ay >. Therefore, X; is finite generated.

(iii)=(i) Suppose that X; C Xy C --- is a accenting chain of left (A, G)-sets and
T = U,>1 X»n. One can see that 1" is a left (A, G)-set of X. By (iii), T is finite gene-
rated. Then, there exist x1,x9,...,2, € X such that T' =< xy,x9,...,2, >. Hence
for 1 < k < n there exists X such that z; € X;,. We put m := max{iy, iy, .
Hence, for every t > m we have I,,, = .

L in).
[l

Theorem 4.4. Let Q be a partition (A, G)-set such that Q = U,ex A¢. Then, H is a
left (A, G)-subset of X if and only if Qg = User At s a left (A, G) of .

Proof. Suppose that H is a left (A, G)-set of X. Then,
GAQy=GA|JA = GA4= |J AcC 4=

teH teH teGAH teH
Hence Qy is a left (A, G)-subset of (.
Conversely, suppose that Qy is a left (A, G)-subset of Q,g € G, § € Aand h € H.
Choose x € Aj,. Since Qy is a left (A, G)-subset of Qp, we have

gbx = {A.:z € gdh} C Qp.
Hence ,g0h C H. O

Corollary 4.2. Let Q be a partition (A, G)-set such that X is Noetherian (Artinian)
(A, G)-set. Then, Q2 is Noetherian (Artinian).
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