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CHAIN CONDITION AND FUNDAMENTAL RELATION ON
(∆, G)-SETS DERIVED FROM Γ-SEMIHYPERGROUPS

S. OSTADHADI-DEHKORDI

Abstract. The aim of this research work is to define a new class of hyperstructure
as a generalization of semigroups, semihypergroups and Γ-semihypergroups that we
call (∆, G)-sets. Also, we define fundamental relation on (∆, G)-sets and prove some
results in this respect. Then, we introduce the notions of quotient (∆, G)-sets by
using a congruence relations. Finally, we introduce the concept of complete parts
and Noetherian(Artinian) (∆, G)-sets.

1. Introduction

The hypergroup notion was introduced in 1934 by a French mathematician F. Marty
[17], at the 8th Congress of Scandinavian Mathematicians. He published some notes on
hypergroups, using them in different contexts: algebraic functions, rational fractions,
non commutative groups. Algebraic hyperstructures are a suitable generalization of
classical algebraic structures. In a classical algebraic structure, the composition of
two elements is an element, while in an algebraic hyperstructure, the composition of
two elements is a set. Since then, hundreds of papers and several books have been
written on this topic, see [4–6].

The concept of Γ-semigroup defined by Sen and Saha [18] in 1986 that is a gene-
ralization of a semigroup. Many classical notions of semigroups have been extended
to Γ-semigroups and a lot of results on Γ-semigroups are published by a lot of mathe-
maticians, for instance, Chattopadhyay [2, 3], Hila [15, 16] and [18].

Recently, the notion of Γ-hyperstructure introduced and studied by many re-
searchers and represent an intensively studied field of research, for example, see
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[1, 7, 8, 11–14]. The concept of Γ-semihypergroups was introduced by Davvaz et al.
[1, 14] and is a generalization of semigroups, a generalization of semihypergroups and
a generalization of Γ-semigroups. Also, the concept of (∆, G)-set was introduced
by S. Ostadhadi-Dehkordi [9, 10]. He using them in different contexts such as twist
product, flat Γ-semihypergroup, absolutely flat Γ-semihypergroup and direct limit
that is important tools in the theory of homological algebra.

In this paper, by using a special scalar hyperoperations on Γ-semihypergroups we
denote the notions left(right) (∆, G)-set, (G1,∆, G2)-biset. Also, we introduced regu-
lar and strongly regular relations on (∆, G)-sets and by using fundamental relation
we define quotient (∆, G)-sets. Finally, we define the concept of complete part and
Noetherian(Artinian) (∆, G)-sets and prove some results in respect.

2. Introduction and preliminaries

In this section, we present some basic notions of Γ-semihypergroup. These defini-
tions and results are necessary for the next sections.

Let H be a non-empty set. Then, the map ◦ : H ×H → P ∗(H) is called hyperop-
eration or join operation on the set H, where P ∗(H) denotes the set of all non-empty
subsets of H. A hypergroupoid is a set H together with a (binary)hyperoperation.
A hypergroupoid (H, ◦) is called a semihypergroup if for all a, b, c ∈ H, we have
a ◦ (b ◦ c) = (a ◦ b) ◦ c. A hypergroupoid (H, ◦) is called quasihypergroup if for all
a ∈ H, we have a ◦ H = H ◦ a = H. A hypergroupoid (H, ◦) which is both a
semihypergroup and a quasihypergroup is called a hypergroup.

Definition 2.1 ([14]). Let G and Γ be nonempty sets and α : G × G → P ∗(G) be
a hyperoperation, where α is an arbitrary element in the set Γ. Then, G is called
Γ-hypergroupoid.

For any two nonempty subsets G1 and G2 of G, we define
G1αG2 =

⋃
g1∈G1,g2∈G2

g1αg2, G1α{x} = G1αx, {x}αG2 = xαG2.

A Γ-hypergroupoid G is called Γ-semihypergroup if for all x, y, z ∈ G and α, β ∈ Γ we
have

(xαy)βz = xα(yβz).

Example 2.1. Let Γ ⊆ N be a nonempty set. We define
xαy = {z ∈ N : z ≥ max{x, α, y}},

where α ∈ Γ and x, y ∈ N. Then, N is a Γ-semihypergroup.

Example 2.2. Let Γ = {α1, α2, . . . , αn}. Then, we define hyperoperations xαky =
xykZ. Hence, Z is a Γ-semihypergroup.

Example 2.3. Let G be a nonempty set and Γ be a nonempty set of G. Then, we
define xαy = {x, α, y}. Hence, G is a Γ-semihypergroup.
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Example 2.4. Let (Γ, ·) be a semigroup and {Aα}α∈Γ be a collection of nonempty dis-
joint sets and G = ⋃

α∈Γ Aα, for every g1, g2 ∈ G and α ∈ Γ, we define
g1α̂g2 = Aα1αα2 , where g1 ∈ Aα1 and g2 ∈ Aα2 . Then, G is a Γ̂-semihypergroup,
Γ̂ = {α̂ : α ∈ Γ}.

Let G be a Γ-semihypergroup. Then, an element eα ∈ G is called α-identity if
for every x ∈ G, we have x ∈ eααx ∩ xαeα and eα is called scalar α-identity if
x = eααx = xαeα. We note that if for every α ∈ Γ, e is a scalar α-identity, then
xαy = xβy, where α, β ∈ Γ and x, y ∈ G. Indeed,

xαy = (xβe)αy = xβ(eαy) = xβy.

Let G be a Γ-semihypergroup and for every α ∈ Γ has an α-identity. Then,
G is called a Γ-semihypergroup with identity. In a same way, we can define Γ-
semihypergroup with scalar identity.

A Γ-semihypergroup G is commutative when

xαy = yαx,

for every x, y ∈ G and α ∈ Γ.

Definition 2.2. Let G be a Γ-semihypergroup and ρ be an equivalence relation on
G. Then, ρ is called right regular relation if xρy and g ∈ G implies that for every
t1 ∈ xαg there is t2 ∈ yαg such that t1ρt2 and for every s1 ∈ yαg there is s2 ∈ xαg
such that s1ρs2. In a same way, we can define left regular relation. An equivalence
relation ρ is called strong regular when xρy and g ∈ G implies that for every t1 ∈ xαg
and t2 ∈ yαg, t1ρt2, for every α ∈ Γ.

Example 2.5. Let R = ⋃
n∈ZAn, where An = [n, n+ 1) and x, y ∈ R such that x ∈ An,

y ∈ Am and α ∈ Z. Then, R is a Ẑ-semihypergroup such that xα̂y = Anαm, where
α̂ ∈ Ẑ = {α̂ : α ∈ Z}. Let

xρy ↔ 2|n−m, x ∈ An, y ∈ Am.

Then, the relation ρ is strong regular. Also, x ∈ R, implies that

ρ(x) = {z ∈ R : z ∈ · · · [n− 4, n− 3) ∪ [n− 2, n− 1) ∪ [n, n+ 1) ∪ [n+ 2, n+ 3) · · · },

where x ∈ [n, n+ 1).

Proposition 2.1. Let G be a Γ-semihypergroup and ρ be a regular relation on G.
Then, [G : ρ] = {ρ(x) : x ∈ G} is a Γ̂-semihypergroup with respect the following
hyperoperation:

ρ(x)α̂ρ(y) = {ρ(z) : z ∈ ρ(x)αρ(y)},

where Γ̂ = {α̂ : α ∈ Γ}.

Proof. The proof is straightforward. �
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Corollary 2.1. Let G be a Γ-semihypergroup and ρ be an equivalence relation G.
Then, ρ is regular (strong regular) if and only if [G : ρ] is Γ̂-semihypergroup (Γ̂-
semigroup).

Definition 2.3 ([9]). Let G be a Γ-semihypergroup with identity and X, ∆ be
nonempty sets. Then, we say that X is a left (∆, G)- set if there is a scalar hyperaction
δ : G×X → P ∗(X) with the following properties:

(g1αg2)δx =g1δ(g2δx),
eαδx =x,

for every g1, g2 ∈ G, α ∈ Γ, x ∈ X and δ ∈ ∆.
When δ : G×X → X, then X is called scalar left (∆, G)-set.

Example 2.6. Let G be a Γ-semihypergroup with scalar identity, X and ∆ be nonempty
sets such that x0 ∈ X is a fixed element and δ : G × X → P ∗(X) defined by
δ(g, x) = {x0}, where δ ∈ ∆ and x ∈ X. Then, G is left (∆, G)-set.

Example 2.7. Let (G, ◦) be a semihypergroup and H be a subsemihypergroup of G.
Then, H is a left (∆, G)-set where ∆ = {◦}.

In a same way, we can define a right (∆, G)-set. LetG1 andG2 be Γ-semihypergroups
and X be a nonempty set. Then, we say that X is a (G1,∆, G2)-bisets if it is a left
(∆, G1)-set, right (∆, G2)-set and

(g1δ1x)δ2g2 = g1δ1(xδ2g2),
for every δ1, δ2 ∈ ∆, g1 ∈ G1, g2 ∈ G2 and x ∈ X. When X is a (G1,∆, G2)-bisets
and G1 = G2 = G, we sat that X is a (∆, G)-bisets.

If G is a commutative Γ-semihypergroup, then there is no distinction between a left
and a right (∆, G)-sets. A left (∆, G)-subset Y of X such that Y∆X ⊆ Y is called left
(∆, G)-subset of X. Let X be a left (∆, G)-set and Γ ⊆ ∆. Then, X is also (Γ, G)-set
where δ : G×X → P ∗(X) and δ ∈ Γ.

Definition 2.4. Let X be a left (∆, G)-set and Y be a left (∆, G)-subset of X. Then,
we say that Y closed, if for all y ∈ Y and g ∈ G from y ∈ gδb implies that b ∈ Y .

Definition 2.5. Let X be a (G,∆, G)-biset and Y be a (G,∆, G)-subbiset of X.
Then, Y is called invertible on a right(on a left) if for all y1, y2 ∈ Y and g ∈ G from
y1 ∈ y2δG(y1 ∈ Gδy2) it follows that y2 ∈ y1δG (y2 ∈ Gδy1).

Proposition 2.2. Let G be a Γ-semihypergroup and X be a (∆, G)-biset such that Y
be a (∆, G)-subbiset. Then, Y is invertible on the right if and only if {yδG}y∈Y is a
partition of X, for every y ∈ Y .

Proof. Suppose that Y is invertible on the right and y ∈ y1δG ∩ y2δG. Then, y1, y2 ∈
yδG. This implies that y1δG ⊆ yδG and y2δG ⊆ yδG. Also,

yδG ⊆ (y1δG)δG ⊆ y1δ(GΓG) ⊆ y1δG,
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and yδG ⊆ (y2δG)δG = y2δ(GΓG) ⊆ y2δG. Then, yδG = y1δG = y2δG. On the
other hand, y ∈ y1δG = yδG. Then, for every y ∈ Y , we have y ∈ yδG.

Conversely, let {yδG}y∈Y be a partition of Y and y1 ∈ y2δG. Then,

y1δG ⊆ (y2δG)δG ⊆ y2δ(GΓG) ⊆ y2δG,

whence y1δG = y2δG and so y1 ∈ y2δG = y1δG. Then, for all y ∈ Y we have y ∈ yδG.
Therefore, y2 ∈ y2δG = y1δG. �

Definition 2.6. Let X be a left (∆, G)-set and Y be a left (∆, G)-subset of X. Then,
Y is called ultraclosed if for all g ∈ G and δ ∈ ∆, we have gδY ∩ gδ(X − Y ) = ∅.

Proposition 2.3. Let X be a left (∆, G)-set and Y be a invertible (∆, G)-subset.
Then, X is closed.

Proof. Suppose that y, x ∈ Y , δ ∈ ∆ and g ∈ G such that y ∈ gδx. Hence x ∈ gδy ⊆ Y
and we obtain x ∈ Y . �

Definition 2.7. Let X be a left (∆, G)-set and H be a Γ-subsemihypergroup of G.
Then, we define the following relation:

x1 ≡ x2 ⇔ x1 ∈ Hδx2.

This relation is denoted by x1H
∗x2.

Definition 2.8. Let X be a left (G,∆)-set and ρ be a regular relation on X. Then,
ρ is called regular if x1ρx2 implies that for every s1 ∈ gδx1 there is s2 ∈ gδx2 such
that s1ρs2 and for every t2 ∈ gδx2 there is t1 ∈ gδx1 such that t1ρt2, where x1, x2 ∈ X
and δ ∈ ∆. Also, an equivalence relation ρ is called strongly regular, when for every
s1 ∈ gδx1 and s2 ∈ gδx2 implies that s1ρs2.

Proposition 2.4. Let X be an invertible left (∆, G)-set such that G is commutative.
Then, the relation H∗ is regular.

Proof. Suppose that x ∈ X. Then, x = eαδx ∈ Hδx. It follows that xH∗x, i.e., H∗ is
reflexive. Let x1H

∗x2. Then, there exist δ ∈ ∆ and h ∈ H such that x1 ∈ hδx2 which
implies that x2 ∈ hδx1 ⊆ Hδx1 which meanies that x2H

∗x1 and so H∗ is symmetric.
Let x1, x2, x3 ∈ X such that x1H

∗x2 and x2H
∗x3. Then, there exist h1, h2 ∈ H such

that x1 ∈ h1δx2 and x2 ∈ h2δx3. Hence x1 ∈ h1δ(h2δx3) = (h1αh2)δx3 ⊆ Hδx3. This
implies that x1 ∈ Hδx3 and so H∗ is transitive.

Let x1, x2 be an arbitrary elements of X such that x1H
∗x2. It follows that x1 ∈

Hδx2. Hence there exist h1 ∈ H such that x1 ∈ h1δx2. Let g ∈ G and t1 ∈ gδx1.
Then,

t1 ∈ gδx1 ⊆ gδ(h1δx2) = (gαh1)δx2 = (h1αg)δx2 = h1δ(gδx2).
Hence there exists t2 ∈ gδx2 such that t1 ∈ h1δt2 ⊆ Hδt2. Thus, t1H∗t2. In a same
way, we can see for every s2 ∈ gδx2 there is s1 ∈ gδx1 such that s1H

∗s2. Therefore,
H∗ is a regular relation. �
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Proposition 2.5. Let X be a left (∆, G)-set and H be a Γ-subsemihypergroup of G.
Then, H∗(x) = Hδx.

Proof. The proof is straightforward. �

Theorem 2.1. Let X be a left (∆, G)-set and H be a Γ-subsemihypergroup of G.
Then, the set of all classes [X : H∗] = {H∗(x) : x ∈ X} is a left (∆̂, G)-set by the
following scalar hyperoperation:

gδ̂H∗(x) = {H∗(y) : y ∈ gδH∗(x)}.

Proof. Suppose that H∗(x1) = H∗(x2), g ∈ G and y ∈ gδH∗(x1). This implies that
x1 ∈ Hδx2. Hence, there are h1, h2 ∈ H such that y ∈ gδ(h1δx1) and x1 ∈ h2δx2. We
have

y ∈ gδ(h1δx1) ⊆ gδ(h1δ(h2δx2)) = gδ(h1αh2)δx2 ⊆ gδ(Hδx2) = gδH∗(x2).

Then, gδH∗(x1) ⊆ gδH∗(x2). In a same way, we can see, gδH∗(x2) ⊆ gδH∗(x1).
Hence,

gδ̂H∗(x1) = gδ̂H∗(x2).
Therefore, the scalar hyperoperation α̂ is well-defined. It is easy to see that

(g1αg2)δ̂H∗(x) = g1δ̂(g2δ̂H
∗(x)). �

Let X be a left (∆, G)-set. Then, we define an equivalence relation on X such that
smallest strongly regular relation on X. Suppose that X be a left (∆, G)-set and n
be a nonzero natural number. We say that

aβnb⇔ (∃δ1, δ2, . . . , δn ∈ ∆, x ∈ X, g1, g2, . . . , gn ∈ G) {a, b} ⊆ g1δ1g2δ2, . . . , gnδnx.

Let β = ⋃
n≥1 βn. Clearly, the relation β is reflexive and symmetric. Denote by β∗ the

transitive closure.
We say that xβδny when

aβδnb⇔ (∃x ∈ X, g1, g2, . . . , gn ∈ G) {a, b} ⊆ g1δg2δ, . . . , gnδx.

Let βδ = ⋃
n≥1 βδn and β∗δ be transitive closure. Obviously, β∗δ ⊆ β∗.

Let X be a (∆, G)-biset. Then, the relation βn defined on X as follows:

aβnb⇔ (∃x ∈ X, δi, γi ∈ ∆, gi, si ∈ G) {a, b} ⊆
n∏
i=1

(giδix)γisi.

In a same way, we can define βδ and transitive closure β∗δ .

Example 2.8. Let R be a Ẑ-semihyperring Example 2.5, x, y ∈ R such that β(x) = β(y)
and t1 = [x], t2 = [y]. Then, there exist g1, g2, . . . , gm ∈ R and δ̂1, δ̂2, . . . , δ̂m ∈ Ẑ such
that {x, y} ⊆ g1δ̂1g2δ̂2g3 . . . gm−1δ̂m−1gm. This implies that t1 = t2 = ∏m

i=1 giδigi+1.
Therefore, β(x) = β(y) if and only there exists n ∈ Z such that x, y ∈ [n, n + 1).
Hence β∗(x) = β∗(y) implies that x, y ∈ [n, n+ 1) for some n ∈ Z.
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Theorem 2.2. Let X be a left (∆, G)-set. Then, β∗ is the smallest strongly regular
relation on X.

Proof. Suppose that aβ∗b be an arbitrary element of X. It follows that there exist
x0 = a, x1, . . . , xn = b such that for all i ∈ {0, 1, 2, . . . , n} we have xiβxi+1. Let
u1 ∈ gδa and u2 ∈ gδb, where g ∈ G, δ ∈ ∆. From xiβxi+1 it follows that there exists
a hyperproduct Pi, such that {xi, xi+1} ⊆ Pi and so gδxi ⊆ gδPi and gδxi+1 ⊆ gδPi+1,
which meanies that gδxiβgδxi+1. Hence for all i ∈ {0, 1, 2, . . . , n − 1} and for all
si ∈ gδxi we have siβsi+1. We consider s0 = u1 and sn = u2 then we obtain u1β

∗u2.
Then β∗ is strongly regular on a left.

Let ρ be a strongly regular relation on X. Then, we have

β1 = {(x, x) : x ∈ X} ⊆ ρ,

since ρ is reflexive. Let βn−1 ⊆ ρ and aβnb. Then, there exist g1, g2, . . . , gn ∈ G,
δ1, δ2, . . . , δn ∈ ∆ and x ∈ X such that {a, b} ⊆ ∏n

i=1 giδix = g1δ1
∏n
i=2 giδix. This

implies that there exits u, v ∈ ∏n
i=2 giδix such that a ∈ g1δ1u and v ∈ g1δ1v. We have

uβn−1v and according to the hypothesis, we obtain uρv. Since ρ is regular it follows
that aρb and βn ⊆ ρ. By induction, it follows that β ⊆ ρ. Therefore, β∗ ⊆ ρ. �

Proposition 2.6. Let X1 and X2 be left (∆, G)- and right (∆, G)-sets, respectively
and β∗X1, β

∗
X2 and β∗X1×X2 be relations on X1, X2 and X1 ×X2, respectively. Then,

(a, b)β∗X1×X2(c, d)⇔ aβ∗X1c, bβ
∗
X2d.

Proof. Suppose that (a, b)β∗X1×X2(c, d). Then,

{(a, b), (c, d)} ⊆
n∏
i=1

giδ̂i(x, y)γ̂isi =
(

n∏
i=1

giδix,
n∏
i=1

yγisi

)
.

This implies that {a, c} ⊆ ∏n
i=1 giδix and {b, d} ⊆ ∏n

i=1 yγisi. Then, aβ∗X1c and bβ
∗
X2d.

One can see that aβ∗X1c and bβ
∗
X2d implies that (a, b)β∗X1×X2(c, d). �

Corollary 2.2. Let X1 and X2 be left (∆, G)- and right (∆, G)-sets, respectively and
β∗X1, β

∗
X2 and β∗X1×X2 be relations on X1, X2 and X1 ×X2, respectively. Then,

[X1 ×X2 : β∗X1×X2 ] ' [X1 : β∗X1 ]× [X2 : β∗X2 ].

Definition 2.9. A map ϕ : X → Y from a left (∆, G)-set X into a left (∆, G)-set Y
is called morphism (G-morphism) if

ϕ(gδx) = gδϕ(x),

for every x ∈ X, δ ∈ ∆ and g ∈ G.

Example 2.9. Let (G, ◦) be a semihypergroup with scalar identity and G1 be a sub-
semihypergroup of (G, ◦). Then, G1 is a (Γ, G1)-biset in the obvious way, where
Γ = {◦}.
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Example 2.10. Let ρ be a left regular relation on Γ-semihypergroup G. Then, there is
a well-defined action of G on [G : ρ] given by

gα̂(ρ(x)) = {ρ(t) : t ∈ gαx},
where α̂ ∈ Γ̂ such that Γ̂ = {α̂ : α ∈ Γ}. Hence, with this definition [G : ρ] is a left
(Γ̂, G)-system.

It is easy to see that the cartesian product X × Y of a left (∆, G1)-set X and a
right (∆, G2)-set Y becomes (G1, ∆̂, G2)-biset if we make the obvious definitions

g1δ̂1(x, y) = {(t, y) : t ∈ g1δ1x}, (x, y)δ̂2g2 = {(x, t) : t ∈ yδ2g2},
where δ̂1, δ̂2 ∈ ∆̂, x ∈ X, y ∈ Y and g1 ∈ G1, g2 ∈ G2.

Let X and Y be (G1,∆, G2)- and (G2,∆, G3)-bisets, respectively and Z be a
(G1,∆, G3)-biset. Then, the cartesian product X × Y is (G1,∆, G3)-biset. A
(G1,∆, G3)-map ϕδ : X × Y → Z is called δ-bimap if

ϕ(xδg2, y) = ϕ(x, g2δy),
where x ∈ X, y ∈ Y , g2 ∈ G2 and δ ∈ ∆.

Definition 2.10 ([9]). A pair (P, ψ) consisting of (G1,∆, G3)-biset P and a δ-bimap
ψ : X × Y → P will be called a twist product of X and Y over G2 if for every
(G1,∆, G3)-biset Z and for every bimap ω : X × Y → Z there exists a unique bimap
ω : P → Z such that ω ◦ ψ = ω.

Suppose that ρ is an equivalence relation on X × Y as follows:
ρ = {(t1, t2) : t1 ∈ xδg, t2 ∈ gδy, x ∈ X, y ∈ Y, g ∈ G2}.

Let us define X	Y to be [X×Y : ρ∗], where ρ∗ is a transitive closure of ρ. We denote
a typical element ρ∗(x, y) by x	 y. By definition of ρ∗, we have xδg 	 y = x	 gδy,
where δ ∈ ∆.

Proposition 2.7 ([9]). Let X and Y be (G1,∆, G2)- and (G2,∆, G3)-bisets, respec-
tively. Then, two element x	 y and x′ 	 y′ are equal if and only if (x, y) = (x′, y′) or
there exist x1, x2, . . . , xn−1 in X, h1, h2, . . . , hn−1 ∈ G2 and δ ∈ ∆ such that

x ∈ x1δg1, x1δh1 = x2δg2, . . . , xiδgi = xi+1δgi+1, xn−1δhn−1 =x′δgn,
g1δy = h1δy1, g2δy1 = h2δy2, . . . , gi+1δyi =hi+1δyi+1

=gnδyn−1

=y′.

Theorem 2.3 ([9]). Let X and Y be (G1,∆, G2)- and (G2,∆, G3)-bisets. Then, the
twist product X and Y over G2 is unique up to isomorphism.

Proposition 2.8. Let X and Y be a scalar (∆, G)-bisets. Then, X 	 Y is a (∆, G)-
biset by following scalar hyperoperations:

gδ̂(x	 y) = gδx	 y, (x	 y)δ̂g = x	 yδg,
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where δ̂ ∈ ∆̂ and x ∈ X, y ∈ Y .

Proof. Suppose that x 	 y = x′ 	 y′. By Proposition 2.7, there exist δ ∈ ∆,
x1, x2, . . . , xn−1 ∈ X and h1, h2, . . . , hn−1 ∈ G, such that

x = x1δg1, x1δh1 = x2δg2, · · ·xiδhi = xi+1δgi+1

xn−1δhn−1 = x′δgn,

g1δy = h1δy1, g2δy1 = h2δy2, . . . , gi+1δyi = hi+1δyi+1

= gnδyn−1

= y′.

Hence,

gδx = gδ(x1δg1), gδ(x1δh1) = gδ(x2δg2), . . . , gδ(xiδhi) = gδ(xi+1δgi+1)
gδ(xn−1δhn−1) = gδ(x′δgn).

We have

gδx	 y = t1 	 g1δy = t1 	 h1δy = t1δh1 	 y1 = t2δg2 	 y1

...
= t′δgn 	 yn−1

= t′ 	 gnδyn−1

= gδx′ 	 y′,

where ti ∈ X. Then, the left scalar operation δ̂ is well-defined. Moreover,

(g1αg2)δ̂(x	 y) = (g1αg2)δx	 y = g1δ(g2δx)	 y = g1δ̂(g2δ̂(x	 y)),

where x ∈ X, y ∈ Y and g ∈ G. Hence X 	 Y is a left (∆̂, G)-set. In a same way, we
can see X 	 Y is also right (∆, G)-set. �

3. Complete Parts and Regular Relations

In this section we define the concept of complete parts and present some results.

Definition 3.1. Let X be a left (∆, G)-set and Y be a nonempty subset of X.
We say that Y is a complete part of X if for any nonzero natural number n and
g1, g2, . . . , gn ∈ G, δ1, δ2, . . . , δn ∈ ∆, x ∈ X, the following implication holds:

Y ∩
n∏
i=1

giδix 6= ∅ ⇒
n∏
i=1

giδixi ⊆ Y.

Proposition 3.1. Let X be a left (∆, G)-set and ρ be a strongly regular relation on
X. Then, the equivalence class x is a complete part of X.
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Proof. Suppose that g1, g2, . . . , gn ∈ G, δ1, δ2, . . . , δn ∈ ∆ and x ∈ X such that

ρ(x) ∩
n∏
i=1

giδ̂ix 6= ∅.

Then, there exists y ∈ ∏n
i=1 giδix such that yρx. The morphism π : X → [X : ρ] is

good and the scalar hyperoperation δ̂ defined on [X : ρ] is scalar operation. It follows
that

π(y) = ρ(y) = ρ(x) = π

(
n∏
i=1

giδix

)
=

n∏
i=1

π(giδix) =
n∏
i=1

giδ̂iπ(x).

This implies that ∏n
i=1 giδ̂ix ⊆ ρ(x). �

Proposition 3.2. Let X and Y be scalar (∆, G)-bisets such that X1 ⊆ X be a
complete part. Then, X1 	 Y is also complete part in X 	 Y .

Proof. The proof is straightforward. �

Let A be a nonempty subset of (∆, G)-sets X. Then, denoted by C(A) the complete
closure of A, which is the smallest complete part of X, that contain A.

Denote K1(A) = A and for all n ≥ 1 denote

Kn+1(A) =
{
x ∈ X : (∃t ∈ N) x ∈

t∏
i=1

giδix,Kn(A) ∩
t∏
i=1

giδix

}
.

Let K(A) = ⋃
n≥1Kn(A).

Theorem 3.1. Let X be a left (∆, G)-set and A be a nonempty subset of A. Then,
C(A) = K(A).

Proof. Suppose that K(A) ∩ ∏t
i=1 giδix 6= ∅. Then, there exits n ≥ 1 such that

Kn(A) ∩∏t
i=1 giδix 6= ∅ which meanies that ∏t

i=1 giδix ⊆ Kn+1(A). This implies that
K(A) is a complete part of X.

Let C1 be a complete pat of X such that A ⊆ C1. Then, by induction we prove that
K(A) ⊆ C1. We have K1(A) ⊆ C1 and suppose that Kn(A) ⊆ C1. Let x ∈ Kn+1(A).
Then, there exists t ∈ N such that a ∈ ∏t

i=1 giδix and Kn(A) ∩∏t
i=1 giδix 6= ∅. Hence,

C1 ∩
∏t
i=1 giδix 6= ∅ implies that ∏t

i=1 giδix ⊆ C1. We obtain a ∈ C1. Therefore,
C(A) = K(A). �

Proposition 3.3. Let X be a left (∆, G)-set and x be an arbitrary element of X.
Then,

(1) for all n ≥ 2 we have Kn(K2(x)) = Kn+1(x);
(2) for every x, y ∈ X, x ∈ Kn(y)⇔ y ∈ Kn(x).

Proof. (1) We prove the equality by induction. We have

K2(K2(x)) =
{
x ∈ X : (∃t ∈ N) x ∈

t∏
i=1

giδix,K2(x) ∩
t∏
i=1

giδix 6= ∅
}

= K3(x).
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Let Kn−1(K2(x)) = Kn(x). Then,

Kn(K2(x)) =
{
x ∈ X : (∃t ∈ N) x ∈ ∏t

i=1 giδix,Kn−1(K2(x)) ∩∏t
i=1 giδix 6= ∅

}
= Kn+1(x).

(2) We check the equivalence by induction. For n = 2, we have

x ∈ K2(y) =
{
x ∈ X : (∃t ∈ N) x ∈

t∏
i=1

giδix,K1(y) ∩
t∏
i=1

giδix 6= ∅
}
.

This implies that {y, x} ⊆ ∏t
i=1 giδix and y ∈ K2(x). Suppose that the following

equivalence holds:
x ∈ Kn−1(y)⇔ y ∈ Kn−1(x).

We check that x ∈ Kn(y)⇔ y ∈ Kn(x). Let x ∈ Kn(y). Then, there exists ∏t
i=1 giδia

with x ∈ ∏t
i=1 giδia and there exists b ∈ ∏t

i=1 giδia∩Kn−1(y). It follows that b ∈ K2(x)
and y ∈ Kn−1(b). Hence, y ∈ Kn−1(K2(x)) = Kn(x). Similarly, we obtain the converse
implication. �

Definition 3.2. Let X be a left (∆, G)-set. Then, we define the relation ω as follows:

(x, y) ∈ ω ⇔ (∃n ≥ 1) x ∈ Kn(y).

Theorem 3.2. Let X be a left (∆, G)-set. Then, the relation ω is an equivalence and
coincide with β∗.

Proof. By Proposition 3.3, the relation ω is an equivalence. Let (x1, x2) ∈ β. Then,
{x1, x2} ⊆

∏n
i=1 giδix, where gi ∈ G, δi ∈ ∆ and t ∈ N. Hence, x1, x2 belong to

the same scalar hyperoperation and so, x1 ∈ K2(x2) ⊆ K(x2). This implies that
β ⊆ ω and β∗ ⊆ ω. Let (x, y) ∈ K and x 6= y. Then, there exists n ≥ 1, such
that (x, y) ∈ Kn+1, which means that there exists a scalar hyperproduct P1, such
that x ∈ P1 and P1 ∩Kn(y) 6= ∅. Let x1 ∈ P1 ∩Kn(y). Then, {x, x1} ⊆ P1. Hence
(x, x1) ∈ β. Since x1 ∈ Kn(y) it follows that there exists a scalar hyperproduct P2
such that x1 ∈ P2 and P2 ∩Kn−1(y) 6= ∅. Let x2 ∈ P2 ∩Kn−1(y). Then, x2 ∈ Kn−1(y)
and {x1, x2} ⊆ P2. After finite number of steps, we obtain there exists a scalar
hyperoperation Pn such that {xn−1, xn} ⊆ Pn and xn ∈ Kn−(n−1)(y) = {y}. �

4. Fundamental, Noetherian and Artinian (∆, G)-Sets

In this section, we introduce the notion of right Noetherian and Artinian (∆, G)-sets
and define fundamental (∆, G)-sets.

Let X be a left (∆, G)-set such that G be a Γ-semihypergroup and Γ ⊆ ∆. We
define a relation ρ on ∆×X as follows:

((δ1, x1), (δ2, x2)) ∈ ρ⇔ gδ1x1 = gδ2x2, for all g ∈ G,

where δ1, δ2 ∈ ∆ and x1, x2 ∈ X. Obviously, ρ is an equivalence.
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Let Θ[X] = [∆ × X : ρ] denote the set of all equivalence classes. We denote the
equivalence class (δ, x) by [δ, x]. We define a relation ε on Γ×G as follows:

((δ1, g1), (δ2, g2)) ∈ ε⇔ gδ1g1 = gδ2g2, for all g ∈ G,
where g1, g2 ∈ G and δ1, δ2 ∈ Γ. Obviously, ε is an equivalence relation and [δ, g] denote
the equivalence class containing (δ, g). We denote Θ[G] = {[δ, g] : g ∈ G, δ ∈ Γ}. We
define a hyperoperation ◦ on Θ[G] as follows:

[δ1, g1] ◦ [δ2, g2] = {[δ1, z] : z ∈ g1δ2g2},
where δ1, δ2 ∈ ∆ and g1, g2 ∈ G. This hyperoperation is well-defined. Indeed, let
[δ1, g1] = [γ1, h1] and [δ2, g2] = [γ2, , h2], where δ1, δ2, γ1, γ2 ∈ Γ and g1, g2, h1, h2 ∈ G.
Then,

gδ1g1 = gγ1h1, gδ2g2 = gγ2h2, for all g ∈ G.
Hence,

(gδ1g1)δ2g2 = (gγ1h1)γ2h2, for all g ∈ G,
and

gδ1(g1δ2g2) = gγ1(h1γ2h2).
Thus,

[δ1, g1] ◦ [δ2, g2] = [γ1, h1] ◦ [γ2, h2].
Also

([δ1, g1] ◦ [δ2, g2]) ◦ [δ3, g3] = ({[δ1, z] : z ∈ g1δ2g2}) ◦ [δ3, g3]
=

⋃
z∈g1δ2g2

[δ1, z] ◦ [δ3, x]

=
⋃

z∈g1δ2g2

{[δ1, t] : t ∈ zδ3g3}

=
⋃

t∈(g1δ2g2)δ3g3

[δ1, t]

=
⋃

t∈g1δ2(g2δ3g3)
[δ1, t]

= [δ1, g1] ◦ ([δ2, g2] ◦ [δ3, g3]).
Therefore, (Θ[G], ◦) is a semihypergroup.

Let ◦ be a scalar hyperoperation ◦ : Θ[G]×Θ[X]→ P ∗(Θ[X]) such that
[δ1, g] ◦ [δ2, x] = {[δ1, z] : z ∈ gδ2x}.

This scalar hyperoperation is well-defined. Indeed, let [δ1, g1] = [δ2, g2] and [δ3, x1] =
[δ4, x2] such that g1, g2 ∈ G, δ1, δ2 ∈ ∆, x1, x2 ∈ X and δ3, δ4 ∈ ∆. Then,

gδ1g1 = gδ2g2, gδ3x1 = gδ4x2, for all g ∈ G.
This implies that (gδ1g1)δ3x1 = (gδ2g2)δ4x2. Hence,

[δ1, g1] ◦ [δ3, x1] = [δ2, g2] ◦ [δ4, x2].
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Thus the scalar hyperoperation ◦ is well-defined. Let [δ1, g1], [δ2, g2] ∈ Θ[G] and
[δ3, x] ∈ Θ[X], where δ1, δ2 ∈ Γ. Then,

([δ1, g1] ◦ [δ2, g2]) ◦ [δ3, x] = ({[δ1, z] : z ∈ g1δ2g2}) ◦ [δ3, x]
=

⋃
z∈g1δ2g2

[δ1, z] ◦ [δ3, x]

=
⋃

z∈g1δ2g2

{[δ1, t] : t ∈ zδ3x}

=
⋃

t∈(g1δ2g2)δ3x

[δ1, t]

=
⋃

t∈g1δ2(g2δ3x)
[δ1, t]

= [δ1, g1] ◦ ([δ2, g2] ◦ [δ3, x]).
Therefore, Θ[X] is a left Θ[G]-set and is called fundamental left (∆, G)-set.

Let Θ[X] be a fundamental left (∆, G)-set, H ⊆ Θ[X] and T ⊆ X. Then, we define
[H] ={x ∈ X : [δ, x] ∈ H for all δ ∈ ∆},

[[T ]] ={[δ, x] ∈ Θ[X] : gδx ⊆ T for all g ∈ G}.
A nonempty subset T of a left (∆, G)-set X is called left (∆, G)-subset of X when
G∆T ⊆ T . A nonempty subset H of Θ[X] is called left Θ[G]-subset if Θ[G] ◦H ⊆ H.

Proposition 4.1. Let X be a left (∆, G)-set and H ⊆ Θ[X] be a complete part. Then,
[H] is a complete part of X.

Proof. Suppose that

[H] ∩
n∏
i=1

giδix 6= ∅.

This implies that there exists a ∈ X such that a ∈ [H] ∩∏n
i=1 giδix. Then, for every

δ ∈ ∆, [δ, a] ∈ H. This implies that

[δ, a] ∈ H ∩
n∏
i=1

[δ, gi] ◦ [δi, x].

Since [H] is a complete part, ∏n
i=1[δ, gi] ◦ [δi, x] ⊆ H. Then,{

b ∈
n∏
i=1

giδix : ∀δ ∈ ∆, [δ, b]
}
⊆ H.

Therefore, [H] is a complete part. �

Proposition 4.2. Let X be a left (∆, G)-set and T ⊆ X is a complete part. Then,
[[T ]] is also a complete part of Θ[X].

Proof. Suppose that

[[T ]] ∩
n∏
i=1

[δi, gi] ◦ [δ, x] 6= ∅.
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This implies that{
[δ1, z] : z ∈

n∏
i=1

giδx

}
∩ [[T ]] 6= ∅ ⇒

(
∃z ∈

n∏
i=1

giδx

)
[δ1, z] ∈ [[T ]]

⇒
(
∃z ∈

n∏
i=1

giδx

)
(∀g ∈ G) gδ1z ⊆ T

⇒ gδ
n∏
i=1

giδx ∩ T 6= ∅

⇒ (∀g ∈ G) gδ
n∏
i=1

giδx ⊆ T

⇒
n∏
i=1

[δi, gi] ◦ [δ, x] 6= ∅ ⊆ [[T ]].

Therefore, [[T ]] is also complete part of Θ[X]. �

Proposition 4.3. Let X be a left (∆, X)-set such that T ⊆ X. Then, C[[T ]] =
[[C(T )]].

Proof. Since C(T ) is a complete part by Proposition 4.2, [[C(T )]] is also complete
part of Θ[X]. Also, [[T ]] ⊆ [[C(T )]]. Let T1 be a complete part contain [[T ]]. Hence,
C[[T ]] ⊆ T1. Thus, [[C(T )]] is a smallest compte part contain [[T ]]. Therefore,
C[[T ]] = [[C(T )]]. �

Theorem 4.1. Let X be a left (∆, G)-set and Θ[X] be a fundamental left (∆, G)-set.
Then,

(i) If H is a left Θ[G]-subset of Θ[X], then [H] is a left (∆, G)-subset of X;
(ii) If T is a left (∆, G)-subset of X, then [[T ]] is a left Θ[G] of Θ[X].

Proof. (i) Suppose that x ∈ [H]. Then, for every δ ∈ ∆ we have [δ, x] ∈ H. Since H
is a left Θ[G]-set of Θ[X], thus [δ1, g] ◦ [δ, x] ⊆ H. So {[δ1, t] : t ∈ gδx} ⊆ H. This
implies that gδx ⊆ [H]. Therefore, [H] is a left (∆, G)-set of X.
(ii) Let [δ, x] ∈ [[T ]] and [δ1, g] ∈ Θ[G]. Then, for all g ∈ G, gδx ⊆ T . Now,

[δ1, g] ◦ [δ, x] = {[δ1, t] : t ∈ gδx} ⊆ [[T ]].

Therefore, [[T ]] is a left Θ[G]-subset of Θ[X]. �

Let X be a left (∆, G)-set and T be a nonempty subset of X. Then,

[[[T ]]] = {x ∈ X : ∀δ ∈ ∆, [δ, x] ∈ [[T ]]} = {x ∈ X : gδx ⊆ T for all δ ∈ ∆, g ∈ G}.

This implies that T is a left (∆, G)-subset of [[[T ]]]. Also, when H ⊆ Θ[X], we have

[[[H]]] = {[δ, x] ∈ Θ[X] : gδx ⊆ [H] for all g ∈ G}
= {[δ, x] ∈ Θ[X] : [δ1, t] ∈ H for all g ∈ G, δ1 ∈ ∆, t ∈ gδx}.
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Let H be a left Θ[G]-subset of Θ[X]. Then, for every δ1 ∈ Γ, g ∈ G and [δ, x] ∈ H
we have

[δ1, g] ◦ [δ, x] = {[δ1, t] : t ∈ gδx} ⊆ H.

When H is a left Θ[G]-subset of Θ[X], we have H ⊆ [[[H]]].
Let X be a left (∆, G)-set such that eα is a unit element of G where α ∈ Γ. Then,

[δ, eα] ◦ [δ, x] = [δ, eαδx] = [δ, x].
This implies that [δ, eα] is a left unity of Θ[X].

Proposition 4.4. Let X be a left (∆, G)-set and T be a left (∆, G)-subset of X.
Then, [[[T ]]] = T .

Proof. The proof is straightforward. �

Definition 4.1. Let X be a left (∆, G)-set. Then, X is said Noetherian, when X
satisfies the ascending chain condition on left (∆, G)-subsets and X is said Artinian
when X satisfies the descending chain condition.

Theorem 4.2. Let X be a left (∆, G)-set such that Θ[X] is Noetherian (Artinian)
Θ[G]-set. Then, X is Noetherian left (∆, G)-set.

Proof. Suppose that X1 ⊆ X2 ⊆ X3 ⊆ · · · ⊆ Xn ⊆ · · · be an ascending chain of left
(∆, G)-set of X. Hence [X1] ⊆ [X2] ⊆ [X3] ⊆ · · · ⊆ [Xn] · · · is an ascending chain
in Θ[X]. Since Θ[X] is Noetherian thus there exists a positive integer n such that
[Xn] = [Xn+k] for every k ∈ N. This implies that Xn = [[[Xn]] = [[Xn+k]]] = Xn+k for
every k ∈ N. Therefore, X is Noetherian left (∆, G)-set. In a same way, when X is
Artinian left (∆, G)-set, then Θ[X] is also Θ[G]-set. �

Corollary 4.1. Let X be a left (∆, G)-set and Θ[X] is Artinian Θ[G]-set. Then, X
is Artinian left (∆, G)-set.

Definition 4.2. Let X be a left (∆, G)-set and A be a nonempty subset of X. Then,
intersection of all ideals of X containing A is a left (∆, G)-set generated by A and
denoted by < A >.

Proposition 4.5. Let X be a left (∆, G)-set and A ⊆ X. Then, < A >= G∆A.

Proof. Suppose that H = G∆A. Obviously, A ⊆ H and H is a left (∆, G)-set of X.
Indeed,

G∆H = G∆(G∆A) = (GΓG)∆A ⊆ G∆A = H.

Let C be a left (∆, G)-subset of X such that A ⊆ C. Then,
H = G∆A ⊆ G∆C ⊆ C.

Therefore, H is a smallest left (∆, G)-set contain A and H =< A >. �

Let X be a left (∆, G)-set and every nonempty of left (∆, G)-subset of X partially
ordered by inclusion has a maximal element. Then, we say that maximum condition
holds for left (∆, G)-sets.
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Theorem 4.3. Let X be a left (∆, G)-set. Then, the following conditions are equiva-
lent:

(i) X is Noetherian;
(ii) X satisfies the maximum condition for left (∆, G)-sets;
(iii) every left (∆, G)-subset of X is finitely generated.

Proof. (i)⇒(ii) Suppose that Λ is a nonempty set of left (∆, G)-subsets which has
no maximal element. Let Λ1 ∈ Λ. Then, there exists an element Λ2 ∈ Λ such that
Λ1 ⊂ Λ2. Also, there exists an element Λ3 ∈ Λ such that Λ2 ⊂ Λ3. By continuing this
process we have the accenting chain Λ1 ⊂ Λ2 ⊂ Λ3 ⊂ · · · . This is impossible.

(ii)⇒(iii) Let X1 be a left (∆, G)-set and Ω = {< A >: A is a finite subset of X1}.
By (ii), Ω has a maximal element < A0 >. Now, if x ∈ X1, then < A0 ∪ {x} >∈ Ω.
By Maximality of < A0 > we have x ∈< A0 >. Therefore, X1 is finite generated.

(iii)⇒(i) Suppose that X1 ⊆ X2 ⊆ · · · is a accenting chain of left (∆, G)-sets and
T = ⋃

n≥1Xn. One can see that T is a left (∆, G)-set of X. By (iii), T is finite gene-
rated. Then, there exist x1, x2, . . . , xn ∈ X such that T =< x1, x2, . . . , xn >. Hence
for 1 ≤ k ≤ n there exists Xk such that xk ∈ Xik . We put m := max{i1, i2, . . . , in}.
Hence, for every t ≥ m we have Im = It. �

Theorem 4.4. Let Ω be a partition (∆, G)-set such that Ω = ⋃
t∈X At. Then, H is a

left (∆, G)-subset of X if and only if ΩH = ⋃
t∈H At is a left (∆, G) of Ω.

Proof. Suppose that H is a left (∆, G)-set of X. Then,

G∆̂ΩH = G∆̂
⋃
t∈H

At =
⋃
t∈H

G∆̂At =
⋃

t∈G∆H
At ⊆

⋃
t∈H

At = ΩH .

Hence ΩH is a left (∆, G)-subset of Ω.
Conversely, suppose that ΩH is a left (∆, G)-subset of Ω, g ∈ G, δ ∈ ∆ and h ∈ H.

Choose x ∈ Ah. Since ΩH is a left (∆, G)-subset of ΩH , we have
gδ̂x = {Az : z ∈ gδh} ⊆ ΩH .

Hence ,gδh ⊆ H. �

Corollary 4.2. Let Ω be a partition (∆, G)-set such that X is Noetherian (Artinian)
(∆, G)-set. Then, Ω is Noetherian (Artinian).
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