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SHARP INEQUALITIES INVOLVING THE RICCI CURVATURE
FOR RIEMANNIAN SUBMERSIONS

M. GÜLBAHAR1, Ş. EKEN MERIÇ2, AND E. KILIÇ3

Abstract. In this paper, we obtain sharp inequalities on Riemannian manifolds
admitting a Riemannian submersion and give some characterizations using these
inequalities. We improve Chen-Ricci inequality for Riemannian submersion and
present some examples which satisfy this inequality.

1. Introduction

Riemannian invariants play the most fundamental role in Riemannian geometry.
These invariants determine the intrinsic and extrinsic characteristics of Riemannian
manifolds which affect the behaviour of the Riemannian manifold in general form.
Thus, in 1999, B.-Y. Chen studied the intrinsic and extrinsic invariants who established
an inequality involving Ricci curvature and squared mean curvature of a submanifold
in a real space form Rm(c) (see [4]). A generalization of this inequality was proved by
B.-Y. Chen in 2005 for arbitrary submanifolds in an arbitrary Riemannian manifold
(see [6]). Later, this inequality has been intensively studied for different ambient
spaces by several authors who are obtained some results (see [9, 10, 12,17–19,23–25]).
So, this inequality is well-known as Chen-Ricci inequality.

On the other hand, the notion of submersion is used in Physics as well as Differential
Geometry because of its applications in Kaluza-Klein theory, Yang-Mills theory and
general relativity. Hence, submersions are studied for different kinds of spaces by
several authors and new submersions are obtained such as Riemannian submersion,
almost Hermitian submersion, semi-Riemannian submersion and etc. (see [1, 2, 5, 7,
13–16,21]).
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In the present paper, our goal is to give some inequalities involving Ricci curvatures
and study Chen-Ricci inequality using Riemannian invariants which are the intrin-
sic and extrinsic characteristics of Riemannian manifolds admitting a Riemannian
submersion in Section 3, we compute the Ricci curvatures Ric′ of (B, g′) and Ric

∧
of

any fibre of Riemannian submersion π. Considering these computations, some cha-
racterizations are obtained. Next, the main notion of our paper, namely Chen-Ricci
inequality for Riemannian submersions, is given by Section 4. Here, we obtain some
results involving the intrinsic and extrinsic characteristics such as Ricci curvature,
scalar curvature and the squared mean curvature ‖H‖2. The last Section is devoted to
provide examples of Riemannian submersion which are satisfied Chen-Ricci inequality.

2. Preliminaries

Let (M, g) and (B, g′) be m and n dimensional C∞-Riemannian manifolds, respecti-
vely. π : M → B is a surjective map of M onto B is called a Riemannian submersion
if π has a maximal rank and the differential π∗ preserves the lengths of the horizontal
vectors. For any b ∈ B, the closed r-dimensional (r = m− n) submanifold π−1(b) of
M is obtained and it is called fibre of Riemannian submersion π. For any p ∈ M ,
denoting Vp = ker(π∗(p)) and it follows that V is an integrable distribution that is
called the vertical distribution. The sections of V are called the vertical vector fields.

Let H be a complementary distribution of V determined by the Riemannian metric
g. Then, one has:

TpM = Vp ⊕Hp.

Here, Hp is called the horizontal space at p. If a vector X on M is always orthogonal
to fibres, then it is called the horizontal vector on M .

Let χh(M) and χv(M) are the space of horizontal and vertical vector fields, re-
spectively. A Riemannian submersion is determined the invariant tensors T and A
which are defined as follows

AEF = h∇hEvF + v∇hEhF,

TEF = h∇vEvF + v∇vEhF,

where h and v are the projection morphisms of E,F ∈ χ(M) to χh(M) and χv(M),
respectively.

Let ∇ be the Levi-Civita connection of M with respect to the Riemannian metric
g and denote

TH :χv(M)× χv(M) 7→ χh(M),(2.1)
(U, V ) 7→ TH(U, V ) = h∇UV,

T V :χv(M)× χh(M) 7→ χv(M),(2.2)
(U,X) 7→ T V(U,X) = v∇UX,
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and
AH :χh(M)× χv(M) 7→ χh(M),(2.3)

(X,U) 7→ AH(X,U) = h∇XU,

AV :χh(M)× χh(M) 7→ χv(M),(2.4)
(X, Y ) 7→ AV(X, Y ) = v∇XY,

where U, V ∈ χv(M) and X, Y ∈ χh(M). Here, we note that TH is a symmetric
operator on χv(M)×χv(M) and AV is an anti-symmetric operator on χh(M)×χh(M).
From (2.1), (2.2), (2.3) and (2.4), we have

∇UV = TH(U, V ) +∇
∧

UV,

∇VX = h∇VX + T V(U,X),
∇XU = AH(X,U) + v∇XU,

∇XY = h∇XY + AV(X, Y ),

for any U, V ∈ χv (M) and X, Y ∈ χh (M) (see [11]).
Denote R, R′, R

∧
and R∗ the Riemannian curvature tensors of Riemannan manifolds

M , B, the vertical distribution V and the horizontal distribution H, respectively.
Then, the Gauss- Codazzi type equations are given by the following

R (U, V, F,W ) =R
∧

(U, V, F,W ) + g
(
TH(U,W ), TH(V, F )

)
− g

(
TH(V,W ), TH(U, F )

)
,

R (X, Y, Z,H) =R∗(X, Y, Z,H)− 2g
(
AV(X, Y ), AV(Z,H)

)
+ g

(
AV(Y, Z), AV(X,H)

)
− g

(
AV(X,Z), AV(Y,H)

)
,

R (X, V, Y,W ) = g ((∇XT ) (V,W ) , Y ) + g ((∇VA) (X, Y ) ,W )

− g
(
T V(V,X), T V(W,Y )

)
+ g

(
AH(X, V ), AH(Y,W )

)
,

where
π∗(R∗(X, Y, Z)) = R

′(π∗(X), π∗(Y ), π∗(Z)),
for any X, Y, Z,H ∈ χh(M) and U, V, F,W ∈ χv(M) (for details, see [11]).

Using the above equalities, we get the following equations involving the sectional
curvatures:

(i) If α = Span{U, V } and U, V ∈ χv(M), then

(2.5) K (α) = K
∧

(α)−
∥∥∥TH(U, V )

∥∥∥2
+ g

(
TH(U,U), TH(V, V )

)
.

(ii) If α = Span{X, Y } and α′ = Span{π∗X, π∗Y } and for any vector fields X, Y ∈
χh(M), then

(2.6) K(α) = K ′(α′) + 3
∥∥∥AV(X, Y )

∥∥∥2
.
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(iii) If α = Span{X, V } for each vector fields U ∈ χv(M) and X ∈ χh(M), then

(2.7) K (α) = −g ((∇XT ) (V, V ) , X) +
∥∥∥T V(V,X)

∥∥∥2
−
∥∥∥AH(X, V )

∥∥∥2
.

Let π : M → B be a smooth map between Riemannian manifolds and let∇, ∇π−1TB

denote respectively, the Levi-Civita connection on M and the pull-back connection.
Then, we say that π is harmonic if its tension field τ(p) vanishes identically, that is

τ(p) = traceg(∇·π∗·) =
m∑
i=1

(∇π∗)(Ei, Ei) = 0,

where {Ei}i=1...m is an orthonormal basis ofM and∇π∗ denote the second fundamental
form of π, which is defined by

(∇π∗)(E,F ) = ∇π−1TB
E (π∗F )− π∗(∇EF ),

for any E,F ∈ χ(M).
Moreover, the mean curvature vector field H(p) of any fibre of Riemannian submer-

sion π at any p ∈M is given by
N = rH,

where
N =

r∑
j=1
TH(Uj, Uj)

and {U1, U2, . . . Ur} is an orthonormal basis of the vertical distribution V.
We here note that the horizontal vector field N vanishes if and only if any fibre

of Riemannian submersion π is minimal submanifold on M and this implies that
the tension field of π vanishes, identically. Hence, the Riemannian submersion π is
harmonic (for details, see [8]).

Furthermore, it is said to be π has totally geodesic fibres if both TH and T V vanish
on χh(M) and χv(M), respectively and π has totally umbilical fibres if

TH(U, V ) = g (U, V )H,
where U, V ∈ χv (M) and H is the mean curvature vector field of any fibre.

The horizontal distribution H is integrable if both AH and AV vanish on χh(M)
and χv(M), respectively.

Let {U1, . . . , Ur} be an orthonormal basis of χv(M). Then, it follows that

g (∇EN, X) =
r∑
j=1
g ((∇ET ) (Uj, Uj) , X) ,

for any E ∈ χ (M) and X ∈ χh (M) (see [11]).
The horizontal divergence of any vector field X on χh(M) is given by δ̌(X) and

defined by

δ̌(X) =
n∑
i=1

g(∇Xi
X,Xi),
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where {X1, . . . , Xn} is an orthonormal basis of χh(M). Then, one has

(2.8) δ̌(N) =
n∑
i=1

r∑
j=1

g ((∇Xi
T ) (Uj, Uj) , Xi) .

For more details, we refer to [3, pp. 243].

3. Ricci Curvature for Riemannian Submersions

In the present section, we study some inequalities involving Ricci curvatures on the
vertical and horizontal distributions for Riemannian submersions. Also, we consider
the equality cases of these inequalities and give some characterizations for Riemannian
submersions involving the fundamental tensors.

We begin to this section with the following lemma.

Lemma 3.1. Let (M, g) and (B, g′) be Riemannian manifolds admitting a Riemann-
ian submersion π : M → B and {U1, . . . , Ur, X1, . . . Xn} be an orthonormal basis of
TpM at any point p ∈M , such that V = Span{U1, . . . , Ur} and H = Span{X1, . . . Xn}.
Then, one has

Ric(Ui) = Ric
∧

(Ui) +
r∑
j=1

(
g
(
TH(Ui, Ui), TH(Uj, Uj)

)
(3.1)

−g
(
TH(Ui, Uj), TH(Ui, Uj)

))
+

n∑
j=1

(
g
(
T V(Ui, Xj), T V(Ui, Xj)

)
−g

(
AH(Xj, Ui), AH(xj, Ui)

)
− g

(
(∇Xj

T )(Ui, Ui), Xj

))
,

and

Ric(Xi) = Ric∗(Xi) +
r∑
j=1

(
g
(
T V(Uj, Xi), T V(Uj, Xi)

)
(3.2)

−g
(
AH(Xi, Uj), AH(Xi, Uj)

)
− g ((∇Xi

T )(Uj, Uj), Xi)
)

+ 3
n∑
j=1

g
(
AV(Xi, Xj), AV(Xi, Xj)

)
,

where
Ric
∧

(Ui) =
r∑
j=1

R
∧

(Ui, Uj, Uj, Ui)

and
Ric∗(Xi) =

n∑
j=1

R∗(Xi, Xj, Xj, Xi).

Proof. For Ui ∈ χv(M) and Xi ∈ χh(M), the Ricci curvatures are given as follows

(3.3) Ric(Ui) =
r∑
j=1

R(Ui, Uj, Uj, Ui) +
n∑
j=1

R(Ui, Xj, Xj, Ui)
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and

(3.4) Ric(Xi) =
r∑
j=1

R(Xi, Uj, Uj, Xi) +
n∑
j=1

R(Xi, Xj, Xj, Xi).

If we put Gauss-Codazzi type equations for Riemannian submersions in above equali-
ties (3.3) and (3.4), we get the required equalities. �

Notation. Let π : (M, g)→ (B, g′) be a Riemannian submersion between Riemannian
manifolds. Then, we have the following linear maps

TH
1 : χv(M)→ χh(M)∗ ; T V

1 : χv(M)→ χv(M)∗

TH
1 (U) = TH(U, V ), T V

1 (U) = T V(U,X),
T V

2 : χh(M)→ χv(M)∗

T V
2 (X) = T V(U,X),

and

AV
1 : χh(M)→ χv(M)∗ ; AH

1 : χh(M)→ χh(M)∗

AV
1 (X) = AV(X, Y ), AH

1 (X) = AH(X,U),
AH

2 : χv(M)→ χh(M)∗

AH
2 (U) = AH(X,U),

where χh(M)∗ and χv(M)∗ are the dual vector space of the horizontal and vertical
vector spaces χh(M) and χv(M), respectively. Moreover, the squared norms of above
linear maps are given as follows

‖TH
1 (U)‖2 =

r∑
j=1

g
(
TH(U,Uj), TH(U,Uj)

)
,

‖T V
1 (U)‖2 =

n∑
j=1

g
(
T V(U,Xj), T V(U,Xj)

)
,

‖T V
2 (X)‖2 =

r∑
j=1

g
(
T V(Uj, X), T V(Uj, X)

)
,

‖AV
1 (X)‖2 =

n∑
j=1

g
(
AV(X,Xj), AV(X,Xj)

)
,

‖AH
1 (X)‖2 =

r∑
j=1

g
(
AH(X,Uj), AH(X,Uj)

)
,

‖AH
2 (U)‖2 =

n∑
j=1

g
(
AH(Xj, U), AH(Xj, U)

)
,

where {U1, U2, . . . Ur} and {X1, X2, . . . Xn} are the orthonormal basis of the vertical
distribution χv(M) and the horizontal distribution χh(M), respectively.
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Considering above notions, we may give the following.

Theorem 3.1. Let (M, g) and (B, g′) be Riemannian manifolds admitting a Riemann-
ian submersion π : M → B. Then, one has

(3.5) Ric(U) ≤ Ric
∧

(U) + r.g
(
TH(U,U), N

)
+ ‖T V

1 (U)‖2 − δ̌
(
TH(U,U)

)
.

The equality case of (3.5) holds for a unit vertical vector field U ∈ χv(M) if and only
if

TH(U, V ) = 0,
AH(X,U) = 0,

for any V ∈ χv(M) and X ∈ χh(M), respectively. Here, we note that the equality case
of (3.5) holds for any U ∈ χv(M) if and only if both TH and AH vanish identically.

Ric(U) ≥Ric
∧

(U) + r.g
(
TH(U,U), H(p)

)
− ‖TH

1 (U)‖2(3.6)

− ‖AH
2 (U)‖2 − δ̌

(
TH(U,U)

)
.

The equality case of (3.6) holds for a unit vertical vector field U ∈ χv(M) if and only
if

T V(U,X) = 0, for any X ∈ χh(M).
Notice that the equality case of (3.6) holds for any U ∈ χv(M) if and only if T V

vanishes identically.

Proof. At any point p ∈ M , we have the equality (3.1) for unit vertical vector field
U ∈ χv(M). Using above Notation in equality (3.1),

Ric(Ui) = Ric
∧

(Ui) + r.g
(
TH(Ui, Ui), H(p)

)
− ‖TH

1 (Ui)‖2(3.7)

+ ‖T V
1 (Ui)‖2 − ‖AH

2 (Ui)‖2 − δ̌
(
TH(U,U)

)
.

Putting U = Ui for (1 ≤ i ≤ r) in (3.7), the required statement is obtained. �

Theorem 3.2. Let (M, g) and (B, g′) be Riemannian manifolds admitting a Riemann-
ian submersion π : M → B. Then, one has

(3.8) Ric(X) ≤ Ric∗(X) + g (∇XN, X) + ‖T V
2 (X)‖2 + 3‖AV

1 (X)‖2.

The equality case of (3.8) holds for a unit horizontal vector field X ∈ χh(M) if and
only if

(3.9) AH(X, V ) = 0, for any V ∈ χv(M).

Here, we note that the equality case of (3.8) holds for all unit horizontal vector field
X ∈ χh(M) if and only if AH vanishes identically.

(3.10) Ric(X) ≥ Ric∗(X) + g (∇XN, X)− ‖AH
1 (X)‖2.
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The equality case of (3.10) holds for a unit horizontal vector field X ∈ χh(M) if and
only if

T V(V,X) = 0, for any V ∈ χv(M),
AV(X, Y ) = 0, for any Y ∈ χh(M).

Notice that the equality case of (3.10) holds for all unit horizontal vector fields X ∈
χh(M) if and only if both T V and AV vanish identically.

Proof. At any point p ∈M , we have the equality (3.2) for unit horizontal vector field
X ∈ χh(M). Using above Notation in equality (3.2),

Ric(Xi) = Ric∗(Xi) + g (∇XN, X) + ‖T V
2 (X)‖2 − ‖AH

1 (X)‖2(3.11)
− 3‖AV

1 (X)‖2.

Putting X = Xi for (1 ≤ i ≤ n) in (3.11), the required statement is obtained. �

Remark 3.1. Let π : M → B be a Riemannian submersion between Riemannian
manifolds. Using M. Falcitelli, S. Ianus and A. M. Pastore’s book (see [11]), we
recall that the fundamental tensor A vanishes identically if and only if the horizontal
distribution H is integrable. In particular, the vanishing of fundamental tensor T
imply that the Riemannian submersion π has any fibre which is totally geodesic
submanifold of M .

Remark 3.2. Considering the equalities (2.5), (2.6) and (2.7), if M has non-positive
sectional curvatures, then the horizontal distibution H is integrable and the Riemann-
ian manifold B has non-positive sectional curvature. Also, in [20], C. Pro and F.
Wilhelm proved that there is no Riemannian submersion π : M → B to a space B
with the non-positive Ricci curvature for any compact Riemannian manifold with the
positive Ricci curvature.

Corollary 3.1. Let (M, g) and (B, g′) be Riemannian manifolds and π : M → B be a
Riemannian submersion with totally geodesic fibres. Considering above Remark, one
can see that the Riemannian submersion π preserves the positive Ricci curvature.

In particular, if M is an Einstein manifold and the equality case of (3.8) holds for
any unit horizontal vector field X ∈ χh(M), then both manifolds M and B are flat.

4. Chen-Ricci Inequality

In this section, we give our main notion of the present paper which is about Chen-
Ricci inequality for Riemannian submersions. We study relations between the intrinsic
and extrinsic invariants using fundamental tensors and obtain some characterizations
for Riemannian submersions.

We begin to this section with some notions as follows.
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Notation. Let π : M → B be a Riemannian submersion between Riemannian manifolds
and {Xi, Uj}1≤i≤n;1≤j≤r be a local orthonormal frame on M . Then, we recall the
squared norms of invariant tensors as follows:

‖TH‖2 =
r∑

i,j=1
g
(
TH(Ui, Uj), TH(Ui, Uj)

)
,

‖T V‖2 =
r∑
i=1

n∑
j=1

g
(
T V(Ui, Xj), T V(UiXj)

)
,

‖AH‖2 =
r∑
i=1

n∑
j=1

g
(
AH(Xj, Ui), AH(Xj, Ui)

)
,

‖AV‖2 =
n∑

i,j=1
g
(
AV(Xi, Xj), AV(Xi, Xj)

)
.

Now, we need the following lemma to prove our main inequality.

Lemma 4.1. Let (M, g) and (B, g′) be Riemannian manifolds admitting a Riemann-
ian submersion π : M → B. A local orthonormal frame {Xi, Uj}1≤i≤n;1≤j≤r on
M , such that the horizontal and vertical distributions are spanned by {Xi}1≤i≤n and
{Uj}1≤j≤r, respectively. Then, one has:

2τ (p) = 2τ
∧

(p) + 2τ ∗(p) + r2 ‖H(p)‖2 −
∥∥∥TH

∥∥∥2
+ 3

∥∥∥AV
∥∥∥2

(4.1)

− δ̌(N) +
∥∥∥T V

∥∥∥2
−
∥∥∥AH

∥∥∥2
,

where
τ
∧

(p) =
∑

1≤i<j≤r
K
∧

(Ui, Uj)

and
τ ∗ (p) =

∑
1≤i<j≤n

K∗ (Xi, Xj)

are the scalar curvatures of the vertical distribution V and the horizontal distribution
H, respectively.

Proof. At any point p ∈M , the scalar curvature τ(p) is given by

τ(p) = 1
2

r∑
i,j=1

R (Ui, Uj, Uj, Ui) + 1
2

n∑
i,j=1

R (Xi, Xj, Xj, Xi)(4.2)

+ 1
2

n∑
i=1

r∑
j=1

R (Xi, Uj, Uj, Xi) .

If we consider equality (2.8) and use above notation in (4.2), the equality (4.1) is
obtained. �

Lemma 4.2. Let (M, g) and (B, g′) be Riemannian manifolds admitting a Riemann-
ian submersion π : M → B. A local orthonormal frame {Xi, Uj}1≤i≤n;1≤j≤r on
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M , such that the horizontal and vertical distributions are spanned by {Xi}1≤i≤n and
{Uj}1≤j≤r, respectively and at any point p ∈M , we get

‖TH‖2 = 1
2r

2‖H(p)‖2 + 1
2

n∑
s=1

(T s11 − T s22 − · · · − T srr)2(4.3)

+ 2
n∑
s=1

r∑
j=2

(T s1j)2 − 2
n∑
s=1

∑
2≤i<j≤n

(
T siiT

s
jj − (T sij)2

)
,

where T sij = g
(
TH(Ui, Uj), Xs

)
.

Theorem 4.1 (Chen-Ricci inequality). Let (M, g) and (B, g′) be a Riemannian ma-
nifolds admitting a Riemannian submersion π : M → B. A local orthonormal frame
{Xi, Uj}1≤i≤n;1≤j≤r on M , such that the horizontal and vertical distributions are span-
ned by {Xi}1≤i≤n and {Uj}1≤j≤r, respectively.
a) For any unit vertical vector field U ∈ χv(M), we have

(4.4) RicV(U)− Ric
∧

(U)− τ ∗(p) ≤ 1
4r

2‖H(p)‖2 + 1
2‖T

V‖2 + 3
2‖A

V‖2 − 1
2 δ̌(N),

where
RicV(U) =

r∑
j=1

R(U,Uj, Uj, U).

b) The equality case of (4.4) holds for a unit vertical vector field U ∈ χv(M) if and
only if AH vanishes identically and

T (U, V ) = 0, for all V ∈ χh(M) orthogonol to U,(4.5)

TH(U,U) = r

2H(p)

are satisfied.
c) For all unit vertical vector fields U ∈ χv(M), the equality case of (4.4) satisfies if
and only if AH vanishes identically and we have either:
(i) if r = 2, π has totally umbilical fibres, or,
(ii) if r 6= 2, π has totally geodesic fibres.

Proof. If we put (4.3) in (4.1), we have

2τ (p) = 2τ
∧

(p) + 2τ ∗(p) + 1
2r

2 ‖H(p)‖2 − 1
2

n∑
s=1

(T s11 − T s22 − · · · − T srr)2

− 2
n∑
s=1

r∑
j=2

(T s1j)2 + 2
n∑
s=1

∑
2≤i<j≤n

(
T siiT

s
jj − (T sij)2

)
+ 3

∥∥∥AV
∥∥∥2

− δ̌(N) +
∥∥∥T V

∥∥∥2
−
∥∥∥AH

∥∥∥2
.

Since
n∑
s=1

∑
2≤i,j≤n

(
T siiT

s
jj − (T sij)2

)
= τ(p)− RicV(U1) + Ric

∧
(U1)− τ

∧
(p),
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we get

(4.6) τ ∗(p) + Ric
∧

(U1)− RicV(U1) ≤ 1
4r

2‖H(p)‖2 + 3
2‖A

V‖2 + 1
2‖T

V‖2 + 1
2 δ̌(N),

Putting U = U1 in (4.6), we obtain (4.4).
The equality case of (4.4) is valid for a unit vertical vector field U ∈ χv(M) if and

only if AH vanishes identically,
(4.7) T s12 = · · · = T s1r = 0 and T s11 = T s22 + · · ·+ T srr, s ∈ {1, . . . , n},
which is equivalent to (4.5).

Now, we shall prove the next statement. Suppose that the equality case of (4.4) is
valid for all unit vertical vector field U ∈ χv(M), since TH is a symmetric operator
on χV(M)× χV(M) and in view of (4.7), then we have
(4.8) T sij = 0, 2T sii = T s11 + T s22 + · · ·T srr,
for any i 6= j ∈ {1, . . . , r} and s ∈ {1, . . . , n}. From (4.8), we get
(4.9) (r − 2)(T s11 + T s22 + · · ·+ T srr) = 0.
Hence, either T s11 + · · ·+T srr = 0 or r = 2. If T s11 +T s22 + · · ·+T srr = 0, then, from (4.8),
we obtain T sii = 0 for all i ∈ {1, . . . , r} and s ∈ {1, . . . , n}. Also, using (4.9), one has
T sij = 0 for all i, j ∈ {1, . . . , r} and s ∈ {1, . . . , n} which implies that π has totally
geodesic fibres at p ∈M . If r = 2, then from (4.8) we have 2T s11 = 2T s22 = (T s11 + T s22)
for all s ∈ {1, . . . , n}, which shows that π has totally umbilical fibres at p ∈M . The
proof of the converse is straightforward. �

In particular case, we obtain the following.

Corollary 4.1. Let (Rm, g) be m-dimensional Euclidean space and (B, g′) be n-
dimensional Riemanian manifold admitting a Riemannian submersion π : Rm → B.
Then, one has as follows
(i) For any unit vertical vector field U ∈ χv(Rm), one has

(4.10) RicV(U)− Ric
∧

(U) ≤ 1
4r

2‖H(p)‖2 + 3
2‖A

V‖2 − 1
2 δ̌(N).

(ii) The equality case of (4.10) holds for a unit vertical vector field U ∈ χv(Rm) if
and only if the equality (4.5) is satisfied.
(iii) The equality case of (4.10) holds for all unit vertical vector field U ∈ χv(Rm) if
and only if AH vanishes, identically and either r = 2, π has totally umbilical fibres or
π has totally geodesic fibres.

We recall here the following definition from [22].

Definition 4.1. Let π : (M,J, g)→ (B, g′) be an anti-invariant Riemannian submer-
sion from almost Hermitian manifold to Riemannian manifold. Then, π is called a
Lagrangian Riemannian submersion if dimension of the vertical distribution V is equal
to the dimension of the horizontal distribution H, i.e., dim(kerπ∗) = dim(kerπ∗)⊥.
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In this case, an almost complex structure J reverses the vertical and horizontal dis-
tributions, i.e., JV = H.

In particular case, above Chen-Ricci inequality for Lagrangian Riemannian submer-
sion π is satisfied, as follows.

Corollary 4.2. Let π : (M,J, g)→ (B, g′) be a Lagrangian Riemannian submersion
from a Kähler manifold to Riemannian manifold. Then,
(a) For any unit vertical vector field U ∈ χv(M), we have

(4.11) RicV(U)− Ric
∧

(U)− τ ∗(p) ≤ 1
4n

2‖H(p)‖2 + 1
2‖T

V‖2 − 1
2 δ̌(N).

(b) The equality case of (4.11) holds for a unit vertical vector field U ∈ χv(M) if and
only if TH(U, V ) = 0, for any V ∈ χv(M) orthogonal to U and TH(U,U) = n

2H(p),
are satisfied.
(c) For any unit vector field U ∈ χv(M), the equality case of (4.11) holds if and only
if we have either
(i) if n = 2, one has

τ
∧

(p)− n(n− 1)‖H(p)‖2 = τ ∗(p),
(ii) or, if n 6= 2,

τ
∧

(p)− n2‖H(p)‖2 = τ ∗(p),
where τ

∧
(p) and τ ∗(p) denote the scalar curvatures of the vertical and horizontal dis-

tributions of π, respectively.

Moreover, we here note that the fundamental tensor field A vanishes, identically
in the theory of Lagrangian Riemannian submersion. Hence, one can see that the
inequality (4.11) is satisfied for such a submersion which is given above relation (4.4)
for Riemannian submersion.

5. Some Examples of Riemannian Submersions satisfy Chen-Ricci
Inequality

In the last section, we give two examples which satisfy inequality (4.4).

Example 5.1. Let M be a submanifold of R5 with coordinates {x1, x2, x3, x4, x5}, such
that

cotx3 = x1

x2
, x2 6= 0, x3 ∈

(
0, π2

)
.

Let us consider the mapping π : M → R3 is given by
π(x1, x2, x3, x4, x5) = (x1 cosx3 + x2 cosx3, x4, x5).

Then, the Jacobian matrix J of π is equal to

J =

sin x3 cosx3 0 0 0
0 0 0 1 0
0 0 0 0 1

 .
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Since rank J = R3, the mapping π is a submersion. On the other hand, the horizontal
space and the vertical space of M are as follows

H = Span
{
X1 = sin x3

∂

∂x1
+ cosx3

∂

∂x2
, X2 = ∂

∂x4
, X3 = ∂

∂x5

}
and

(5.1) V = Span
{
U1 = − cosx3

∂

∂x1
+ sin x3

∂

∂x2
, U2 = ∂

∂x3

}
,

respectively. Hence, it is clear that π : (M, g)→ R3 is a Riemannian submersion. By
straightforward computations, we have

T V(U2, X1) = −U1 and TH(U1, U2) = X1.

Other components of operators TH, T V, AH and AV vanish identically. Furthermore,

τ ∗(p) = 0, Ric
∧

(U1) = 1, and RicV(U1) = 0.

Thus, it is clear that the Riemannian submersion π in Example (5.1) which is satisfied
inequality (4.4).

The next example is satisfied inequality (4.4) as follows.

Example 5.2. Let C be the catenoid given by the following parametrization

X(v, u) = (cosh v cosu, cosh v sin u, v)

and π : C → B be a submersion such that the manifold B is the profile curve and
the projection π is a mapping which carries (cosh v cosu, cosh v sin u, v) to (cosh v, v).
Then, the horizontal and vertical spaces of C, respectively as follows

H = Span{Xv = (sinh v cosu, sinh v sin u, 1)},
V = Span{Xu = (− cosh v sin u, cosh v cosu, 0)}.

By straightforward computation, we obtain

〈Xv, Xv〉 = cosh2 v, 〈Xu, Xv〉 = 0, 〈Xu, Xu〉 = cosh2 v,

where 〈, 〉 is the inner product of the induced metric g of R3. On the other hand,

〈Xvv, Xv〉 = −〈Xuu, Xv〉 = 〈Xuv, Xu〉 = cosh v sinh v,
〈Xvv, Xu〉 = 〈Xuv, Xv〉 = 〈Xuu, Xu〉 = 0.

If we choose an orthonormal basis of TpC as{
e1 = 1

cosh vXu, e2 = 1
cosh vXv

}
,

we get

TH(e1, e1) = − sinh ve2, T V(e1, e2) = sinh ve2, and AV(e2, e2) = AH(e2, e1) = 0.
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Then, the Gauss curvature of catenoid C

R(e1, e2, e2, e1) = − 1
cosh4 v

is obtained.

Acknowledgements. The authors would like to thank the reviewers for their valua-
ble comments and constructive suggestions.

References
[1] P. Alegre, B.-Y. Chen, M. I. Munteanu, Riemannian submersions, δ-invariants and optimal

inequality, Ann. Glob. Anal. Geom. 42 (2012), 317–331.
[2] M. Atçeken, Anti-invariant Riemannian submersions from a locally Riemannian product mani-

fold to any Riemannian manifold, Gulf Journal of Mathematics 1(2013), 25–35.
[3] A. L. Besse, Einstein Manifolds, Berlin-Heidelberg-New York, Spinger-Verlag, 1987.
[4] B.-Y. Chen, Relations between Ricci curvature and shape operator for submanifolds with arbitrary

codimensions, Glasg. Math. J. 41(1999), 33–41.
[5] B.-Y. Chen, Riemannian submersions, minimal immersions and cohomology class, Proc. Japan

Acad. Ser. A. 81 (2005), 162–167.
[6] B.-Y. Chen, A General optimal inequality for arbitrary Riemannian submanifolds, Journal of

Inequalities in Pure and Applied Mathematics 6(3) (2005), Article ID: 77.
[7] B.-Y. Chen, Pseudo-Riemannian Geometry, δ-Invariants and Applications, World Scientific

Publishing, Hackensack, NJ, 2011.
[8] B.-Y. Chen, S. W. Wei, p-harmonic morphisms, cohomology classes and submersions, Tamkang

J. Math. 40 (2009), 377–382.
[9] S. Deng, An improved Chen-Ricci inequality, Int. Electron. J. of Geom. 2 (2009) 39–45.

[10] Ş. Eken, M. Gülbahar, E. Kılıç: Some Inequalities for Riemannian submersions, An. Ştiinţ.
Univ. Al. I. Cuza Iaşi. Math. (N.S.), (in press).

[11] M. Falciteli, S Ianus, A. M. Pastore, Riemannian Submersions and Related Topics, World
Scientific Publishing Co. Pte. Ltd, 2004.

[12] S. Hong, K. Matsumoto, M. M. Tripathi, Certain basic inequalities for submanifolds of locally
conformal Kähler space forms, SUT J. Math. 41(1) (2005), 75–94.

[13] Y. Gündüzalp, Slant submersions from almost product Riemannian manifolds, Turkish. J. Math.
37 (2013), 863–873.

[14] S. Ianus, R. Mazzocco, G. E. Vilcu, Riemannian submersions from quaternionic manifolds, Acta
Appl. Math. 104 (2008), 83–89.

[15] S. Ianus, A. M. Ionescu, R. Mazzocco, G. E. Vilcu, Riemannian submersions from almost contact
metric manifolds, Abh. Math. Semin. Univ. Hambg. 81 (2011), 101–114.

[16] S. Ianus, A. M. Ionescu, R. Mocanu, G. E. Vilcu, Riemannian Submersions from almost contact
metric manifolds, Abh. Math. Semin. Univ. Hambg. 81 (2011), 101–114.

[17] J. S. Kim, M. M. Tripathi, J. Choi, Ricci curvature of submanifolds in locally conformal almost
cosyplectic manifolds, Indian J. Pure App. Math. 35 (2004), 259–271.

[18] A. Mihai, Inequalities on the Ricci curvature, J. of Math. Ineq. 9(2015), 811–822.
[19] C. Özgür, C. Murathan, Chen inequalities for submanifolds of a cosymplectic space form with

a semi-symmetric metric connection, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Math. (N.S.) 2 (2012),
395–408.

[20] C. Pro, F. Wilhelm, Riemannian submersions need not preserve positive Ricci curvature, Proc.
Amer. Math. Soc. 142 (2014), 2529–2535.



SHARP INEQUALITIES INVOLVING THE RICCI CURVATURE 293

[21] B. Şahin, Riemannian submersion from almost Hermitian manifolds, Taiwan. J. Math. 17
(2013), 629–659.

[22] H. M. Taştan, On Lagrangian submersions, Hacet. J. Math. Stat. 43 (2014), 993–1000.
[23] M. M. Tripathi, Chen-Ricci inequality for submanifolds of contact metric manifolds, J. Adv.

Math. Stud. 1 (2008), 111–134.
[24] G. E. Vilcu, B.-Y. Chen inequalities for slant submanifolds in quaternionic space forms, Turkish.

J. Math. 34 (2010), 115–128.
[25] D. W. Yoon, Inequality for Ricci curvature of slant submanifolds in cosymplectic space forms,

Turkish. J. Math. 30 (2006), 43–56.

1Department of Mathematics
Faculty of Science
Siirt University
Turkey
E-mail address: mehmetgulbahar85@gmail.com

2Department of Mathematics
Faculty of Science
Karadeniz Technical University
Turkey
E-mail address: semsieken@hotmail.com

3Department of Mathematics
Faculty of Science
İnönü University
Turkey
E-mail address: erol.kilic@inonu.edu.tr


	1. Introduction
	2. Preliminaries
	3. Ricci Curvature for Riemannian Submersions
	4. Chen-Ricci Inequality
	5. Some Examples of Riemannian Submersions satisfy Chen-Ricci Inequality
	Acknowledgements.

	References

