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NOVEL WAVELET APPROACH FOR SOLVING FRACTIONAL
BAGLEY-TORVIK PROBLEMS

MINE AYLIN BAYRAK1, SERTAÇ ERMAN2, ALI DEMIR1, AND AHMET BÜYÜK1

Abstract. The primary purpose of this study is to construct truncated solutions
for fractional Bagley-Torvik problems (FBT) by developing a novel method including
newly defined Clique wavelets and collocation points. Clique wavelets are defined by
utilizing Clique polynomials on [0, 1]. The convergence of this method is investigated
and supported by illustrative examples through tables and figures. As a result, the
efficiency and effectiveness of the method is proved by theorems and examples.

1. Introduction

In the mathematical modelling of various processes in physics,geophysics, polymer
rheology, regular variation in thermodynamics, biophysics, blood flow phenomena,
aerodynamics, electrodynamics of complex medium, visco-elasticity, etc., fractional
differential equations (FDE’s) are utilized in common since they reflects the behaviour
of the processes much more better than ordinary differential equations [1–13]. The
properties of FDE’s such as hereditary properties make them to play a significant role
to analyze the present and future development of the processes [14, 15]. Therefore,
the complicated processes can be modelled by FDE’s with less difficulty compared
with nonlinear differential equations [16]. As a result, many researchers use FDE’s as
an excellent tool to model and analyze a number of processes in science. However, to
acquire analytical solutions of FDE’s is much more difficult compared with ordinary
differential equations. Consequently, a number of numerical methods such as Adomian
decomposition method [17], homotopy perturbation method [18], the generalized
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Taylor collocation [19], a fractional linear multi-step method and a predictor-corrector
(PC) method of the Adams type method [20], the Haar wavelet method [21, 22], an
iterative reproducing kernel algorithm [23], etc. have been established to construct
numerical or approximate solutions for them.

Wavelets can be defined as oscillatory functions with compact support. Diverse
polynomials such as Chebyshev, Legendre, Hermite, Bernstein and Lucas polynomials
[24–32] have been used in wavelet theory to develop some wavelet schemes to construct
truncated or analytical solutions of differential equations. Generally orthogonality
properties of these polynomials leads to a bases for important spaces in which a
wide range of problems in system analysis, optimal control, numerical analysis, signal
analysis and time-frequency analysis, etc., are solved analytically or approximately
[33,34].

FBT, proposed by Bagley and Torvik, is used to model visco-elastically damped
structures where visco-elasticity is defined by a fractional derivative. FBT allows us
to analyze the qualitative behavior of real material. Therefore it plays a prominent
role in engineering and applied sciences. The order of the fractional derivative of
damping term in FBT leads to the model of various processes but in FBT it is equal
to 3

2 which implies that damping depends on frequency. Moreover, in the modeling of
the behavior of rigid plate or a gas embedded in a viscous fluid in a fluid [9,23]

In this study, we take a different approach by constructing Clique Wavelets to solve
fractional Bagley-Torvik equation which have been used commonly in visco-elasticity
theory. The novel contribution of this research is that the Clique wavelets are defined
and used together with collocation points first time in this study. Even though Clique
polynomials introduced by Fisher and Solow [35] are not orthogonal polynomials, they
form a bases for L2[0, 1] which allows us to define Clique wavelets.

The following fractional FBT in Caputo sense is taken into consideration:
D2y(t) + λ1D

αy(t) + λ2y(t) = f(t),(1.1)
y(0) = µ1, κ1y

′(0) + κ2y(1) = µ2,(1.2)
where 0 < α ≤ 2, the operator Dα denotes the Caputo fractional derivative of order
α, λ1 and λ2 are constants and the function f is continuous on the interval [0, 1].

The present paper is outline as follows. The fundamental definitions are given in
Preliminaries. In Section 3, the establishment of wavelets which is used in suggested
method is illustrated. In Section 4, the implementation and algorithm of proposed
method is presented. The convergence analysis is given in Section 5. In the final
section, four different examples are presented to illustrate the implementation and
the effectiveness of the proposed method.
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2. Preliminaries

Definition 2.1. The Riemann-Liouville integral for α is [3, 36]:

Jαf(t) =
{ 1

Γ(α)
∫ t

0(t − τ)α−1f(τ)dτ, α > 0,

f(t), α = 0.
(2.1)

Definition 2.2. The αth order fractional derivative in Caputo sense is given by [3,36]

Dαf(t) =
{ 1

Γ(m−α)
∫ t

0(t − τ)m−α−1f (m)(τ)dτ, m − 1 < α < m, m ∈ N,
dmf
dtm (t), α = m.

(2.2)

Definition 2.3. The Clique polynomials on a bounded interval of the real line [a, b],
b > a ≥ 0, are defined as follows:

Pn(t) =
n∑

k=0

(
n

k

)
tk.(2.3)

In general, the clique polynomial is given by,

Pn(t) = (1 + t)n =
(

n

0

)
+

(
n

1

)
t +

(
n

2

)
t2 + · · · +

(
n

n

)
tn.(2.4)

For n = 0, 1 in (2.4), we get P0(t) = 1 and P1(t) = 1 + t. This set of polynomials have
the following recursive formulation

Pn+1(t) = (1 + t)Pn(t), n = 0, 1, . . .(2.5)

3. Construction of Clique Wavelets

In this section, Clique polynomials on the interval [0, 1] are utilized to establish
Clique wavelets Wj,i(t) for j = 0, 1, . . . , 2k − 1 and i = 0, 1, . . . , n on [0, 1) as in the
following form:

Ψj,i(t) =
{

1√
σi

2 k
2 Pi(2kt − j), if t ∈

[
j

2k , j+1
2k

)
,

0, otherwise,
(3.1)

where k and n are non-negative integers and σi = 22n−1
2n+1 .

The sets of Clique wavelets are bases for L2[0, 1]. The followings present the related
Clique wavelets for k = 1 and n = 2

Ψ0,0(t) =


1√
σ0

√
2P0(2t), if t ∈

[
0, 1

2

)
,

0, if t ∈
[

1
2 , 1

)
,

(3.2)

Ψ0,1(t) =


1√
σ1

√
2P1(2t), if t ∈

[
0, 1

2

)
,

0, if t ∈
[

1
2 , 1

)
,

(3.3)

Ψ0,2(t) =


1√
σ2

√
2P2(2t), if t ∈

[
0, 1

2

)
,

0, if t ∈
[

1
2 , 1

)
,

(3.4)
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Ψ1,0(t) =

 0, if t ∈
[
0, 1

2

)
,

1√
σ0

√
2P0(2t − 1), if t ∈

[
1
2 , 1

)
,

(3.5)

Ψ1,1(t) =

 0, if t ∈
[
0, 1

2

)
,

1√
σ1

√
2P1(2t − 1), if t ∈

[
1
2 , 1

)
,

(3.6)

Ψ1,2(t) =

 0, if t ∈
[
0, 1

2

)
,

1√
σ2

√
2P2(2t − 1), if t ∈

[
1
2 , 1

)
.

(3.7)

Therefore, an approximation of a function y in L2[0, 1) can be constructed in terms
of Clique wavelets as:

yn(t) ≈
2k−1∑
j=0

n∑
i=0

cj,iΨj,i(t),(3.8)

where the coefficients cj,i are obtained by the following inner product

cj,i = ⟨Ψj,i(t), yn(t)⟩ =
1∫

0

Ψj,i(t)yn(t)dt.(3.9)

4. Implementation of the Proposed Method

In the establishment of the approximate solution y for the problem (1.1)–(1.2) in
terms of special polynomials as

2k−1∑
j=0

n∑
i=0

cj,iΨj,i(t)(4.1)

the following steps below are taken.
Step 1. Substituting the nth degree approximation of (4.1) into the (1.1) yields

the following equation:
2k−1∑
j=0

n∑
i=0

cj,iΨ′′
j,i(t) + λ1

2k−1∑
j=0

n∑
i=0

cj,iD
αΨj,i(t) + λ2

2k−1∑
j=0

n∑
i=0

cj,iΨj,i(t) = f(t),(4.2)

where m − 1 < α ⩽ m.
Step 2. Collocating (4.2) at the nodes tr = r

n
, r = 0, 1, 2, . . . , n, leads to the

following system of fractional ordinary differential equations:
2k−1∑
j=0

n∑
i=0

cj,iΨ′′
j,i(tr) + λ1

2k−1∑
j=0

n∑
i=0

cj,iD
αΨj,i(tr) + λ2

2k−1∑
j=0

n∑
i=0

cj,iΨj,i(tr) = f(tr),(4.3)

where m − 1 < α ⩽ m.
Step 3. Plugging the nth degree approximation of (4.2) into in the initial and

boundary conditions (1.2) yields the following system of algebraic equations, we can
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obtain ([α] + 1) equations as follows:
2k−1∑
j=0

n∑
i=0

cj,iΨj,i(0) =µ1,(4.4)

κ1

2k−1∑
j=0

n∑
i=0

cj,iΨ′
j,i(0) + κ2

2k−1∑
j=0

n∑
i=0

cj,iΨj,i(1) =µ2.(4.5)

Step 4. Finally, a system of fractional algebraic equations are obtained. The
unknown coefficients cj,i, j = 0, 1, . . . , 2k −1, i = 0, 1, . . . , n, are determined by RPSM
which allows us to construct the approximate solution yn(x, t).

5. Convergence and Error Analysis

The primary purpose of this section is to investigate the convergence analysis of
the Clique polynomials in L2 norm for fractional BTP. In other words, the series for
an approximation of a function in terms of Clique polynomials converges to the exact
solution as it is expanded by increasing the number of base elements. The definition
of L2([0, 1]) is given as [37]

L2([0, 1]) = {ℓ : [0, 1] → R | ℓ is a measurable and ∥ℓ∥ < +∞},(5.1)
where

∥ℓ∥2 =
1∫

0

|ℓ(t)|2dt(5.2)

indicates the induced norm related to the following inner product of the space
L2([0, 1]):

⟨ℓ(t), r(t)⟩ =
1∫

0

ℓ(t)r(t)dt.(5.3)

We first consider a finite-dimensional subspace of L2([0, 1]) of the form
CN = Span⟨Ψ0,0(t), Ψ0,1(t), . . . , Ψ0,N(t), Ψ1,0(t), Ψ1,1(t), . . . , Ψ1,N(t), , . . . ,

Ψ2k−1,0(t), Ψ2k−1,1(t), . . . , Ψ2k−1,N(t)⟩.(5.4)

Clearly, dim(CN) = (2k − 1) × N and CN is a complete subspace of L2([0, 1]) since
it is closed and finite-dimensional. Every function u ∈ L2([0, 1]) has a unique best
approximation u∗ ∈ CN in the following sense

∥u(t) − u∗(t)∥ ⩽ ∥u(t) − v(t)∥, for all v ∈ CN .(5.5)

Theorem 5.1. Let ℓN denote the interpolating function of u ∈ CN([0, 1]) at N
Chebyshev nodes in the interval [0, 1]. Then, for every t ∈ [0, 1], we have

∥u(t) − ℓN(t)∥ ⩽
∥u∥∞

22N−1N ! ,(5.6)
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where ∥u∥∞ := max
t∈[0,1]

|u(N)(t)|.
Since, the sets of Clique wavelets form a bases for L2([0, 1]), every function u ∈

L2([0, 1]) can be represented by the series form in terms of Clique wavelet polynomials
as

u(t) =
+∞∑
j=0

+∞∑
i=0

cj,iΨj,i(t).(5.7)

The restriction of it to the finite dimensional subspace CN of L2([0, 1]), a truncated
series of u can be written as

u(t) ≈ uN(t) =
2k−1∑
j=0

N∑
i=0

cj,iΨj,i(t).(5.8)

Proof. See [38,39]. □

Theorem 5.2. For the best approximation uN to u ∈ CN([0, 1]) ∩ L2([0, 1]) in the
space CN , the following inequality holds

∥EN(t)∥2 = ∥u(t) − uN(t)∥2 ≤ ∥u(t) − v(t)∥2, for all v ∈ CN .(5.9)

The above inequality holds for v = ℓ ∈ CN . As a result, we deduce that

∥EN(t)∥2 ≤
1∫

0

∣∣∣∣ ∥u∥∞

22N+1(N + 1)!

∣∣∣∣2dt ≤
[ ∥u∥∞

22N+1(N + 1)!

]2
.(5.10)

As N tends to infinity, the desired result is obtained.

6. Illustrative Examples

The primary aim of this section is to present the implementation of the method by
illustrative examples and check their accuracy.

Example 6.1. Consider the following fractional BTP as [3, 41]:

D
3
2 y(t) + D2y(t) + y(t) = 7t + t3 + 8t

3
2

√
π

+ 1,(6.1)

y(0) = y′(0) = 1,(6.2)

for which y(t) = t3 + t + 1 denotes the analytic solution.

The Clique wavelet solution of the problem (6.1)–(6.2) is the excellent truncated
solution with higher accuracy for the exact solution compare to the other the existing
methods. It is seen that the Figure 1 that as the number of Clique wavelets increases
in the subspace CN , the truncated solutions get closer to the exact solution. As it is
presented in Table 1 that the accuracy of the presented method is higher than the
other existing methods.
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Figure 1. A Graphical presentation of truncated solutions (in green
and pink) with regard to n = 2, 3 and exact solution (in blue) for
Example 6.1.

Table 1. Comparison of results for n = 3.

t VIM [44] FIM [44] SLC[43] LWS[45] CWM
0.01 0.08214 2.76e-3 2.57e-02 1.99e-15 2.22e-16
0.25 0.17315 3.42e-3 1.51e-01 1.22e-14 4.44e-16
0.5 0.10515 1.01e-3 5.44e-01 4.90e-14 0
0.75 1.34104 4.98e-3 1.083448 1.10e-13 0

1 4.11359 5.01e-3 1.676130 1.96e-13 0

Example 6.2. Consider the following fractional BTP as [40]:

D2y(t) − 2
5D

3
2 y(t) − 1

2y(t) = −1
2t3 + 3

4t2 + 183
32 t − 3 − 4

5 ·
√

t(−3 + 4t)√
π

,(6.3)

y(0) = 0, y′(0) = 9
16 ,(6.4)

for which y(t) = t3 − 3
2t2 + 9

16t denotes to the analytic solution.

The Clique wavelet solution of the problem (6.3)–(6.4) is the excellent truncated
solution with higher accuracy for the exact solution compare to the other the existing
methods. It is seen that the Figure 2 that as the number of Clique wavelets increases
in the subspace CN , the truncated solutions get closer to the exact solution.

As it is presented in Table 2 that the accuracy of the presented method is higher
than the other existing methods.

Example 6.3. Consider the following fractional BTP as [41]:

D2y(t) + D
3
2 y(t) + y(t) = t3 + 5t + 8 t

3
2

√
π

,(6.5)

y(0) = y′(0) = 0,(6.6)
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Figure 2. A Graphical presentation of truncated solutions (in pink)
with regard to n = 4 and exact solution (in blue) for Example 6.2.

Table 2. Comparison of results for various n.

x N = 2 N = 3 N = 4
0.1 1.71e-02 7.13e-04 6.25e-16
0.25 9.74e-02 3.70e-03 5.00e-16
0.50 3.27e-01 9.77e-03 1.11e-16
0.75 5.95e-01 1.07e-02 1.67e-16

1 8.09e-01 1.11e-13 2.22e-16

for which y(t) = t(t2 − 1) denotes the analytic solution.

The Clique wavelet solution of the problem (6.5)–(6.6) is the excellent truncated
solution with higher accuracy for the exact solution compare to the other the existing
methods. It is seen from the Figure 1, as the number of Clique wavelets increases
in the subspace CN , the truncated solutions get closer to the exact solution. As it is
presented in Table 3 that the accuracy of the presented method is higher than the
other existing methods.

Example 6.4. Consider the following fractional BTP as [42]:
D2y(t) − Dαy(t) = −1 − Eα((t − 1)α), 0 < α ⩽ 1,(6.7)
y(0) = y(1) = 0,(6.8)

for which y(t) = t(1 − Eα((t − 1)α)) denotes to the analytic solution.

The Clique wavelet solution of the problem (6.7)–(6.8) is the excellent truncated
solution with higher accuracy for the exact solution compare to the other existing
methods. It is seen from the Figure 4, as the number of Clique wavelets increases
in the subspace CN , the truncated solutions get closer the exact solution. As it is
presented in Table 4 that the accuracy of the presented method is higher than the
other existing methods.
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Figure 3. A Graphical presentation of truncated solutions (in green
and pink) with regard to n = 2, 3 and exact solution (in blue) for
Example 6.3

Table 3. Comparison of results for various n.

x N = 3 [45]
0.2 5.551e-17 9.575e-15
0.4 1.665e-16 3.758e-14
0.6 1.110e-16 8.426e-14
0.8 0 1.497e-13
1 0 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure 4. A Graphical presentation of truncated solutions (in pink,
green and red) with regard to α = 1, 0.9, 9.8 and exact solution (in blue)
for Example 6.4.

7. Conclusion

In this research, a novel method is developed by defining Clique wavelets and using
them with collocation points to construct truncated solutions of the Bagley-Torvik
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Table 4. Comparison of results for various n.

x N = 2 N = 3 N = 4 N = 5
0.1 1.29e-02 2.71e-03 2.47e-04 9.35e-05
0.25 1.86e-02 3.63e-03 5.47e-04 8.75e-05
0.50 4.07e-03 1.20e-01 2.76e-05 4.05e-05
0.75 1.53e-02 9.60e-02 1.05e-04 2.51e-05

1 0 0 4.16e-17 2.22e-16

initial value problems. Its convergence analysis is also presented and supported by
illustrative examples. It is shown that obtained truncated solutions have higher
accuracy compare to other methods. As a result, the effectiveness and accuracy of
this Clique wavelets method is investigated and illustrated. This effective approach
can be also utilized to obtain other fractional problems in applied sciences. In the
future work, this method will be taken into consideration to construct truncated
solutions of time-fractional initial value problems and inverse problems.
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