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ON φ̌-SEMISYMMETRIC LP -KENMOTSU MANIFOLDS WITH A
QSNM-CONNECTION ADMITTING RICCI SOLITONS

RAJENDRA PRASAD1, ABDUL HASEEB2, AND UMESH KUMAR GAUTAM1

Abstract. In the present work, we characterize Lorentzian para-Kenmotsu (briefly,
LP -Kenmotsu) manifolds with a quarter-symmetric non-metric connection (briefly,
QSNM-connection) ∇̂ satisfying certain φ̈-semisymmetric conditions admitting Ricci
solitions. At the end of the paper, a 3-dimensional example of LP -Kenmotsu
manifolds with a connection ∇̂ is given to verify some results of the present paper.

1. Introduction

In a (2n + 1)-dimensional connected and C∞-smooth semi-Riemannian manifold
(M, ǧ), the Levi-Civita connection ∇̌, the Riemannian-Christoffel curvature tensor Ř,
the projective curvature tensor P̌ , the concircular curvature tensor V̌ , the conformal
curvature tensor Č and the D-conformal curvature tensor B̌ are defined by [5,6]

Ř(Ě, F̌ )W̌ =∇̌Ě∇̌F̌ W̌ − ∇̌F̌ ∇̌ĚW̌ − ∇̌[Ě,F̌ ]W̌ ,

(1.1)

P̌ (Ě, F̌ )W̌ =Ř(Ě, F̌ )W̌ − 1
2n [Š(F̌ , W̌ )Ě − Š(Ě, W̌ )F̌ ],

(1.2)

V̌ (Ě, F̌ )W̌ =Ř(Ě, F̌ )W̌ − ř

2n(2n+ 1)[ǧ(F̌ , W̌ )Ě − ǧ(Ě, W̌ )F̌ ],

(1.3)
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Č(Ě, F̌ )W̌ =Ř(Ě, F̌ )W̌ − 1
(2n− 1)[Š(F̌ , W̌ )Ě − Š(Ě, W̌ )F̌

(1.4)

+ ǧ(F̌ , W̌ )Q̌Ě − ǧ(Ě, W̌ )Q̌F̌ ] + ř

2n(2n− 1)[ǧ(F̌ , W̌ )Ě − ǧ(Ě, W̌ )F̌ ],

B̌(Ě, F̌ )W̌ =Ř(Ě, F̌ )W̌ + 1
2(n− 1)[Š(Ě, W̌ )F̌ − Š(F̌ , W̌ )Ě + ǧ(Ě, W̌ )Q̌F̌

(1.5)

− ǧ(F̌ , W̌ )Q̌Ě − Š(Ě, W̌ )η̌(F̌ )ξ + Š(F̌ , W̌ )η̌(Ě)ξ − η̌(Ě)η̌(W̌ )Q̌F̌

+ η̌(F̌ )η̌(W̌ )Q̌Ě]− k − 2
2(n− 1)[ǧ(Ě, W̌ )F̌ − ǧ(F̌ , W̌ )Ě] + k

2(n− 1)
× [ǧ(Ě, W̌ )η̌(F̌ )ξ − ǧ(F̌ , W̌ )η̌(Ě)ξ + η̌(Ě)η̌(W̌ )F̌ − η̌(F̌ )η̌(W̌ )Ě],

respectively, where ř is the scalar curvature, Š and Q̌ are the Ricci tensor and the
Ricci operator, respectively such that Š(Ě, F̌ ) = ǧ(Q̌Ě, F̌ ) and k = ř+4n

2n−1 .
The connection ∇̂ which is linear and defined on (M, ǧ) is said to be a quarter-

symmetric [11] if its torsion tensor Ť

(1.6) Ť (Ě, F̌ ) = ∇̂ĚF̌ − ∇̂F̌ Ě − [Ě, F̌ ] = η̌(F̌ )φ̌Ě − η̌(Ě)φ̌F̌ ,

where φ̌ is a (1, 1)-tensor field and η̌ is a 1-form. If moreover, ∇̂ satisfies the condition

(1.7) (∇̂Ě ǧ)(F̌ , W̌ ) = −η̌(F̌ )ǧ(φ̌Ě, W̌ )− η̌(W̌ )ǧ(F̌ , φ̌Ě),

where Ě, F̌ , W̌ ∈ χ(M) and χ(M) is the set of all differentiable vector fields on M ,
then connection ∇̂ is called a QSNM-connection. The authors in [2, 3, 7, 12] have
studied QSNM-connection in various manifolds.

In an LP -Kenmotsu manifold, a relation between the connections ∇̂ and ∇̌ is given
by
(1.8) ∇̂ĚF̌ = ∇̌ĚF̌ + η̌(F̌ )φ̌Ě.

On a Riemannian manifold (M, ǧ), a Ricci soliton (ǧ, U, λ̌) is a generalization of an
Einstein metric such that (see [9, 10]) £̌U ǧ + 2Š + 2λ̌ǧ = 0, where Š, £̌U and λ̌ are
the Ricci tensor, the Lie derivative operator along the vector field U on M and a real
constant, respectively. A Ricci soliton is said to be shrinking, steady or expanding
according as λ̌ < 0, λ̌ = 0 or λ̌ > 0, respectively.

The present work is arranged in the following manner. After Introduction, a
brief introducton of LP -Kenmotsu manifolds is given in Section 2. In Section 3, we
find the relation between the curvature tensors of an LP -Kenmotsu manifold with
the connections ∇̌ and ∇̂. In Section 4, we study LP -Kenmotsu manifolds with a
connection ∇̂ admitting Ricci solitons. φ̌-projectively semisymmetric, φ̌-concircularly
semisymmetric, φ̌-conformally semisymmetric and φ̌-D-conformally semisymmetric
LP -Kenmotsu manifolds with a connection ∇̂ admitting Ricci solitons have been
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studied in Section 5. At the end of the paper, a 3-dimensional example of LP -
Kenmotsu manifolds with a connection ∇̂ is given to verify some results of the present
paper.

2. Preliminaries

A (2n+ 1)-dimensionsional differentiable manifold M with structure (φ̌, ξ, η̌, ǧ) is
said to be a Lorentzian almost paracontact metric manifold, if it admits φ̌: a tensor
field of type (1, 1), ξ: a contravariant vector field, η̌: a 1-form and ǧ: a Lorentzian
metric satisfying [8]

η̌(ξ) =− 1,(2.1)

φ̌2Ě =Ě + η̌(Ě)ξ,(2.2)

φ̌ξ =0, η̌(φ̌Y ) = 0,(2.3)

ǧ(φ̌Ě, φ̌F̌ ) =ǧ(Ě, F̌ ) + η̌(Ě)η̌(F̌ ),
ǧ(Ě, ξ) =η̌(Ě),(2.4)

Φ̌(F̌ , Ě) =Φ̌(Ě, F̌ ) = ǧ(Ě, φ̌F̌ ),(2.5)

for any Ě, F̌ on M .
For ξ: a killing vector field, the (para) contact structure is said to be a K-(para)

contact. In this case, we have

(2.6) ∇̌Ěξ = φ̌Ě.

A Lorentzian almost paracontact manifold M is called an LP -Sasakian manifold if

(∇̌Ěφ̌)F̌ = ǧ(Ě, F̌ )ξ + η̌(F̌ )Ě + 2η̌(Ě)η̌(F̌ )ξ,

for any Ě, F̌ on M.
Now, we define a new manifold called a Lorentzian para-Kenmostu (briefly, LP -

Kenmotsu) manifold:

Definition 2.1. A Lorentzian almost paracontact manifold is called Lorentzian para-
Kenmostu (briefy, LP -Kenmostu) manifold if [1]

(2.7) (∇̌Ěφ̌)F̌ = −ǧ(φ̌Ě, F̌ )ξ − η̌(F̌ )φ̌Ě,

for any Ě, F̌ on M.

In the Lorentzian para-Kenmostu manifold, we have

∇̌Ěξ =− φ̌2Ě,

(∇̌Ě η̌)F̌ =− ǧ(φ̌Ě, φ̌F̌ ).
Moreover, on an LP -Kenmotsu, the following relations hold [1]:

ǧ(Ř(Ě, F̌ )W̌ , ξ) =η̌(Ř(Ě, F̌ )W̌ ) = ǧ(F̌ , W̌ )η̌(Ě)− ǧ(Ě, W̌ )η̌(F̌ ),
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Ř(ξ, Ě)F̌ =− Ř(Ě, ξ)F̌ = ǧ(Ě, F̌ )ξ − η̌(F̌ )Ě,
Ř(Ě, F̌ )ξ =η̌(F̌ )Ě − η̌(Ě)F̌ ,
Ř(ξ, Ě)ξ =Ě + η̌(Ě)ξ,
Š(Ě, ξ) =(dimM − 1)η̌(Ě), Š(ξ, ξ) = −(dimM − 1),

Q̌ξ =(dimM − 1)ξ,

for any Ě, F̌ , W̌ on M .

Definition 2.2. An LP -Kenmotsu manifold is called an η-Einstein manifold if its
Ricci tensor satisfies [4] Š(Ě, F̌ ) = a1ǧ(Ě, F̌ ) + a2η̌(Ě)η̌(F̌ ), where a1 and a2 are
smooth functions on M .

3. Curvature Tensor of LP -Kenmotsu Manifolds with a Connection ∇̂

The curvature tensor R̂ of an LP -Kenmotsu manifold with a connection ∇̂ is defined
by
(3.1) R̂(Ě, F̌ )W̌ = ∇̂Ě∇̂F̌ W̌ − ∇̂F̌ ∇̂ĚW̌ − ∇̂[Ě,F̌ ]W̌ .

From (1.8), (2.1), (2.4), (2.6), (2.7) and (3.1), we obtain
(3.2) R̂(Ě, F̌ )W̌ = Ř(Ě, F̌ )W̌ − ǧ(Ě, W̌ )φ̌F̌ + ǧ(F̌ , W̌ )φ̌Ě,
where Ř(Ě, F̌ )W̌ is given by (1.1). Contracting Ě in (3.2), we get
(3.3) Ŝ(F̌ , W̌ ) = Š(F̌ , W̌ ) + ǧ(F̌ , W̌ )ψ̌ − ǧ(φ̌F̌ , W̌ ).
From (3.3), it follows that

Q̂F̌ = Q̌F̌ + ψ̌F̌ − φ̌F̌ ,
Contracting again F̌ and W̌ in (3.3), we obtain
(3.4) r̂ = ř + 2nψ̌,
where Q̂ is the Ricci operator, Ŝ is the Ricci tensor and r̂ is the scalar curvature with
respect to ∇̂.

Lemma 3.1. In a (2n + 1)-dimensional LP -Kenmotsu manifold with a connection
∇̂, we have

R̂(Ě, F̌ )ξ =η̌(F̌ )Ě − η̌(Ě)F̌ + η̌(F̌ )φ̌Ě − η̌(Ě)φ̌F̌ ,

R̂(ξ, Ě)F̌ =− R̂(Ě, ξ)F̌ = ǧ(Ě, F̌ )ξ − η̌(F̌ )Ě − η̌(F̌ )φ̌Ě,(3.5)

R̂(ξ, Ě)ξ =η̌(Ě )̌ξ + Ě + φ̌Ě,

Ŝ(Ě, ξ) =(2n+ ψ̌)η̌(Ě), Ŝ(ξ, ξ) = −(2n+ ψ̌),(3.6)

∇̂Ěξ =− Ě − η̌(Ě)ξ − φ̌Ě,(3.7)

Q̂ξ =(2n+ ψ̌)ξ,(3.8)
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for any Ě, F̌ on M .

4. Ricci soliton on LP -Kenmotsu manifolds with a connection ∇̂

Suppose that an LP -Kenmotsu manifold with a connection ∇̂ admits a Ricci soliton
(ǧ, ξ, λ̌). Then in view of (1.9), we have

(4.1) ( ̂̌£ξǧ)(F̌ , W̌ ) + 2Ŝ(F̌ , W̌ ) + 2λ̌ǧ(F̌ , W̌ ) = 0.
By using (3.7) and (1.6), we find

(4.2) ( ̂̌£ξǧ)(F̌ , W̌ ) = −2[ǧ(F̌ , W̌ ) + η̌(F̌ )η̌(W̌ )].
Combining (4.1) and (4.2), we obtain
(4.3) Ŝ(F̌ , W̌ ) = (1− λ̌)ǧ(F̌ , W̌ ) + η̌(F̌ )η̌(W̌ ).
Taking W̌ = ξ in (4.3) and then using (2.1), (2.3), we get
(4.4) Ŝ(F̌ , ξ) = −λ̌η̌(F̌ ).
Thus from (3.6) and (4.4), it follows that
(4.5) λ̌ = −(2n+ ψ̌).
Hence, (4.3) together with (4.5) leads to the following theorem.

Theorem 4.1. If an LP -Kenmotsu manifold M with a connection ∇̂ admits a Ricci
soliton (ǧ, ξ, λ̌), then M is an η-Einstein manifold and its Ricci solition will be ex-
panding, shrinking or steady according to ψ̌ < −2n, ψ̌ > −2n or ψ̌ = −2n.

Now, assumig that (ǧ, U, λ̌) is a Ricci soliton on an LP -Kenmotsu manifold with
a connection ∇̂ such that U is pointwise collinear with ξ, i.e., U = βξ, where β is a
function. Then (1.9) holds and we have
βǧ(∇̂Ěξ, F̌ ) + (Ěβ)η̌(F̌ ) + βǧ(Ě, ∇̂F̌ ξ) + (F̌ β)η̌(Ě) + 2Ŝ(Ě, F̌ ) + 2λ̌ǧ(Ě, F̌ ) = 0,

which in view of (3.7) and (1.6) becomes
(4.6) −2β[ǧ(Ě, F̌ )+η̌(Ě)η̌(F̌ )]+(Ěβ)η̌(F̌ )+(F̌ β)η̌(Ě)+2Ŝ(Ě, F̌ )+2λ̌ǧ(Ě, F̌ ) = 0.
Replacing F̌ by ξ in (4.6) and using (2.1), (2.4) and (3.6), we find
(4.7) − (Ěβ) + [(ξβ) + 2(2n+ ψ̌) + 2λ̌]η̌(Ě) = 0,
which by taking Ě = ξ and using (2.1) yields
(4.8) (ξβ) + (2n+ ψ̌) + λ̌ = 0.
Combining the equations (4.7) and (4.8), we find
(4.9) dβ = [(2n+ ψ̌) + λ̌]η̌.
Now, applying d on (4.9), we get
(4.10) [(2n+ ψ̌) + λ̌]η̌ = 0 =⇒ λ̌ = −(2n+ ψ̌), dη̌ 6= 0.
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Thus, from (4.9) and (4.10), we obtain dβ = 0, i.e., β is a constant. Therefore, (4.6)
reduces to
(4.11) Ŝ(Ě, F̌ ) = (β − λ̌)ǧ(Ě, F̌ ) + βη̌(Ě)η̌(F̌ ).
Hence, (4.10) together with (4.11) leads the following theorem.

Theorem 4.2. If an LP -Kenmotsu manifold M with a connection ∇̂ admits a Ricci
soliton (ǧ, U, λ̌) such that U is pointwise collinear with ξ, then U is a constant multiple
of ξ and M is an η-Einstein manifold and its Ricci solition will be expanding, shrinking
or steady according to ψ̌ < −2n, ψ̌ > −2n or ψ̌ = −2n.

5. Ricci soliton on φ̌-semisymmetric LP -Kenmotsu manifolds with a
connection ∇̂

Definition 5.1. An LP -Kenmotsu manifold with a connection ∇̂ is called φ̌-proje-
ctively semisymmetric if (see [13]) P̂ (Ě, F̌ ) · φ̌ = 0 for all Ě, F̌ on M .

Analogous to the equation (1.2), the projective curvature tensor with a connection
∇̄ is given by

(5.1) P̂ (Ě, F̌ )W̌ = R̂(Ě, F̌ )W̌ − 1
2n [Ŝ(F̌ , W̌ )Ě − Ŝ(Ě, W̌ )F̌ ].

Suppose that a (2n+ 1)-dimensional LP -Kenmotsu manifold with a connection ∇̂ is
φ̌-projectively semisymmetric, therefore

(5.2) (P̂ (Ě, F̌ ) · φ̌)W̌ = P̂ (Ě, F̌ )φ̌W̌ − φ̌P̂ (Ě, F̌ )W̌ = 0,

for all Ě, F̌ , W̌ on M . From (5.1), we find

P̂ (Ě, F̌ )φ̌W̌ =R̂(Ě, F̌ )φ̌W̌ − 1
2n [Ŝ(F̌ , φ̌W̌ )Ě − Ŝ(Ě, φ̌W̌ )F̌ ],(5.3)

φ̌P̂ (Ě, F̌ )W̌ =φ̌R̂(Ě, F̌ )W̌ − 1
2n [Ŝ(F̌ , W̌ )φ̌Ě − Ŝ(Ě, W̌ )φ̌F̌ ].(5.4)

By combining (5.2), (5.3) and (5.4), we have

R̂(Ě, F̌ )φ̌W̌ − φ̌R̂(Ě, F̌ )W̌ − 1
2n [Ŝ(F̌ , φ̌W̌ )Ě − Ŝ(Ě, φ̌W̌ )F̌ ](5.5)

+ 1
2n [Ŝ(F̌ , W̌ )φ̌Ě − Ŝ(Ě, W̌ )φ̌F̌ ] = 0.

Taking F̌ = ξ in (5.5) and using (2.3), (3.5) and (3.6), we find

− ǧ(Ě, φ̌W̌ )ξ + 1
2nŜ(Ě, φ̌W̌ )ξ − η̌(W̌ )φ̌Ě − η̌(W̌ )φ̌2Ě + (2n+ ψ̌)

2n η̌(W̌ )φ̌Ě = 0.

Taking inner product of the above equation with ξ and making use of (2.1) and (2.3)
yields Ŝ(Ě, φ̌W̌ ) = 2nǧ(Ě, φ̌W̌ ), which by setting W̌ = φ̌W̌ and using (2.2) gives

(5.6) Ŝ(Ě, W̌ ) = 2nǧ(Ě, W̌ )− ψ̌η̌(Ě)η̌(W̌ ).
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Now, taking W̌ = ξ in (5.6), we find
(5.7) Ŝ(Ě, ξ) = (2n+ ψ̌)η̌(Ě).
Thus, from (4.4) and (5.7), we obtain
(5.8) λ̌ = −(2n+ ψ̌).
Hence, (5.6) together with (5.8) leads to the following theorem.

Theorem 5.1. If a (2n+1)-dimensional LP -Kenmotsu manifold M with a connection
∇̂ admitting Ricci soliton is φ̌-projectively semisymmetric, then M is an η−Einstein
manifold and its Ricci solition will be expanding, shrinking or steady according to
ψ̌ < −2n, ψ̌ > −2n or ψ̌ = −2n.

Definition 5.2. An LP -Kenmotsu manifold with a connection ∇̂ is called φ̌-conci-
rcularly semisymmetric if V̂ (Ě, F̌ ) · φ̌ = 0 for all Ě, F̌ on M .

Analogous to the equation (1.3), the concircular curvature tensor with a connection
∇̂ is given by

(5.9) V̂ (Ě, F̌ )W̌ = R̂(Ě, F̌ )W̌ − r̂

2n(2n+ 1)[ǧ(F̌ , W̌ )Ě − ǧ(Ě, W̌ )F̌ ].

Suppose that a (2n+ 1)-dimensional LP -Kenmotsu manifold with a connection ∇̂
is φ̌-concircularly semisymmetric, therefore
(5.10) (V̂ (Ě, F̌ ) · φ̌)W̌ = V̂ (Ě, F̌ )φ̌W̌ − φ̌V̂ (Ě, F̌ )W̌ = 0,
for all Ě, F̌ , W̌ on M . From (5.9), it follows that

V̂ (Ě, F̌ )φ̌W̌ =R̂(Ě, F̌ )φ̌W̌ − r̂

2n(2n+ 1)[ǧ(F̌ , φ̌W̌ )Ě − ǧ(Ě, φ̌W̌ )F̌ ],(5.11)

φ̌V̂ (Ě, F̌ )W̌ =φ̌R̂(Ě, F̌ )W̌ − r̂

2n(2n+ 1)[ǧ(F̌ , W̌ )φ̌Ě − ǧ(Ě, W̌ )φ̌F̌ ].(5.12)

Combining (5.10), (5.11) and (5.12), we have

R̂(Ě, F̌ )φ̌W̌ − φ̌R̂(Ě, F̌ )W̌ − r̂

2n(2n+ 1)[ǧ(F̌ , φ̌W̌ )Ě − ǧ(Ě, φ̌W̌ )F̌ ]

+ r̂

2n(2n+ 1)[ǧ(F̌ , W̌ )φ̌Ě − ǧ(Ě, W̌ )φ̌F̌ ] = 0,

which, by taking F̌ = ξ and using (2.3), (2.4) and (3.5), takes the form

(5.13)
[

r̂

2n(2n+ 1) − 1
]
ǧ(Ě, φ̌W̌ )ξ +

[
r̂

2n(2n+ 1) − 1
]
η̌(W̌ )φ̌Ě + η̌(W̌ )φ̌2Ě = 0.

Taking inner product of (5.13) with ξ and making use of (2.1) and (2.3), we get
r̂ = 2n(2n+ 1), ǧ(Ě, φ̌W̌ ) 6= 0.

This leads to the following theorem.
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Theorem 5.2. If a (2n+ 1)-dimensional LP -Kenmotsu manifold with a connection
∇̂ is φ̌-concirculary semisymmetric, then the scalar curvature is constant.

Definition 5.3. An LP -Kenmotsu manifold with a connection ∇̂ is called
φ̌-conformally semisymmetric if Ĉ(Ě, F̌ ) · φ̌ = 0 for all Ě, F̌ on M .

Analogous to the equation (1.4), the conformal curvature tensor with a connection
∇̂ is given by

Ĉ(Ě, F̌ )W̌ =R̂(Ě, F̌ )W̌ − 1
(2n− 1)[Ŝ(F̌ , W̌ )Ě − Ŝ(Ě, W̌ )F̌

(5.14)

+ ǧ(F̌ , W̌ )Q̂Ě − ǧ(Ě, W̌ )Q̂F̌ ] + r̂

2n(2n− 1)[ǧ(F̌ , W̌ )Ě − ǧ(Ě, W̌ )F̌ ].

Suppose that a (2n+ 1)-dimensional LP -Kenmotsu manifold with a connection ∇̂ is
φ̌-conformally semisymmetric, therefore

(5.15) (Ĉ(Ě, F̌ ) · φ̌)W̌ = Ĉ(Ě, F̌ )φ̌W̌ − φ̌Ĉ(Ě, F̌ )W̌ = 0,

for all Ě, F̌ , W̌ on M . From (5.14), it follows that

Ĉ(Ě, F̌ )φ̌W̌ =R̂(Ě, F̌ )φ̌W̌ − 1
(2n− 1)[Ŝ(F̌ , φ̌W̌ )E(5.16)

− Ŝ(Ě, φ̌W̌ )F̌ + ǧ(F̌ , φ̌W̌ )Q̂Ě − ǧ(Ě, φ̌W̌ )Q̂F̌ ]

+ r̂

2n(2n− 1)[ǧ(F̌ , φ̌W̌ )Ě − ǧ(Ě, φ̌W̌ )F̌ ],

φ̌Ĉ(Ě, F̌ )W̌ =φ̌R̂(Ě, F̌ )W̌ − 1
(2n− 1)[Ŝ(F̌ , W̌ )φ̌Ě(5.17)

− Ŝ(Ě, W̌ )φ̌F̌ + ǧ(F̌ , W̌ )φ̌Q̂Ě − ǧ(Ě, W̌ )φ̌Q̂F̌ ]

+ r̂

2n(2n− 1)[ǧ(F̌ , W̌ )φ̌Ě − ǧ(Ě, W̌ )φ̌F̌ ].

Combining (5.15), (5.16) and (5.17), we have

R̂(Ě, F̌ )φ̌W̌ − φ̌R̂(Ě, F̌ )W̌ − 1
(2n− 1)[Ŝ(F̌ , φ̌W̌ )Ě − Ŝ(Ě, φ̌W̌ )F̌

+ ǧ(F̌ , φ̌W̌ )Q̂Ě − ǧ(Ě, φ̌W̌ )Q̂F̌ ] + 1
(2n− 1)[Ŝ(F̌ , W̌ )φ̌Ě − Ŝ(Ě, W̌ )φ̌F̌

+ ǧ(F̌ , W̌ )φ̌Q̂Ě − ǧ(Ě, W̌ )φ̌Q̂F̌ ] + r̂

2n(2n− 1)[ǧ(F̌ , φ̌W̌ )Ě − ǧ(Ě, φ̌W̌ )F̌ ]

− r̂

2n(2n− 1)[ǧ(F̌ , W̌ )φ̌Ě − ǧ(Ě, W̌ )φ̌F̌ ] = 0,



ON LP -KENMOTSU MANIFOLDS 823

which by replacing Ě = ξ and making use of (2.3), (2.4), (3.5), (3.6) and (3.8) takes
the form2n+ ψ̌

2n− 1 −
r̂

2n(2n− 1) − 1
 (ǧ(Ě, φ̌W̌ )ξ + η̌(W̌ )φ̌E) + 1

(2n− 1) Ŝ(Ě, φ̌W̌ )ξ(5.18)

+ 1
(2n− 1) η̌(W̌ )φ̌Q̂Ě − η̌(W̌ )φ̌2Ě = 0.

Now, taking inner product of (5.18) with ξ and making use of (2.1) and (2.3), we
obtain

(5.19) Ŝ(Ě, φ̌W̌ ) =
[
(2n− 1) + r̂

2n − (2n+ ψ̌)
]
ǧ(Ě, φ̌W̌ ).

By replacing W̌ by φ̌W̌ in (5.19) and then using (2.2), (2.4), (3.6), we get

Ŝ(Ě, W̌ ) =
[
(2n− 1) + r̂

2n − (2n+ ψ̌)
]
ǧ(Ě, W̌ )(5.20)

+
[
(2n− 1) + r̂

2n − 2(2n+ ψ̌)
]
η̌(Ě)η̌(W̌ ).

Taking W̌ = ξ in (5.20), we find
(5.21) Ŝ(Ě, ξ) = (2n+ ψ̌)η̌(Ě).
Thus, from (4.4) and (5.21), we obtain
(5.22) λ̌ = −(2n+ ψ̌).
Hence, (5.20) together with (5.22) leads to the following theorem.

Theorem 5.3. If a (2n+1)-dimensional LP -Kenmotsu manifold M with a connection
∇̂ admitting Ricci soliton is φ̌-conformally semisymmetric, then M is an η−Einstein
manifold and its Ricci solition will be expanding, shrinking or steady according to
ψ̌ < −2n, ψ̌ > −2n or ψ̌ = −2n.

Definition 5.4. An LP -Kenmotsu manifold with a connection ∇̂ is called φ̌-D-
conformally semisymmetric if B̂(Ě, F̌ ) · φ̌ = 0 for all Ě, F̌ on M .

Analogous to the equation (1.5), the D−conformal curvature tensor with a connec-
tion ∇̂ is given by

B̂(Ě, F̌ )W̌ =R̂(Ě, F̌ )W̌ + 1
2(n− 1)[Ŝ(Ě, W̌ )F̌ − Ŝ(F̌ , W̌ )Ě(5.23)

+ ǧ(Ě, W̌ )Q̂F̌ − ǧ(F̌ , W̌ )Q̂Ě − Ŝ(Ě, W̌ )η̌(F̌ )ξ
+ Ŝ(F̌ , W̌ )η̌(Ě)ξ − η̌(Ě)η̌(W̌ )Q̂F̌ + η̌(F̌ )η̌(W̌ )Q̂Ě]

− k̂ − 2
2(n− 1)[ǧ(Ě, W̌ )F̌ − ǧ(F̌ , W̌ )Ě] + k̂

2(n− 1)[ǧ(Ě, W̌ )η̌(F̌ )ξ

− ǧ(F̌ , W̌ )η̌(Ě)ξ + η̌(Ě)η̌(W̌ )F̌ − η̌(F̌ )η̌(W̌ )Ě],
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where k̂ = r̂+4n
(2n−1) .

Suppose that a (2n+ 1)-dimensional LP -Kenmotsu manifold with a connection ∇̂
is φ̌-D-conformally semisymmetric, therefore

(5.24) (B̂(Ě, F̌ ) · φ̌)W̌ = B̂(Ě, F̌ )φ̌W̌ − φ̌B̂(Ě, F̌ )W̌ = 0,

for all Ě, F̌ , W̌ on M . From (5.23), it follows that

B̂(Ě, F̌ )φ̌W̌ =R̂(Ě, F̌ )φ̌W̌ + 1
2(n− 1)[Ŝ(Ě, φ̌W̌ )F̌ − Ŝ(F̌ , φ̌W̌ )Ě + ǧ(Ě, φ̌W̌ )Q̂F̌

(5.25)

− ǧ(F̌ , φ̌W̌ )Q̂Ě − Ŝ(Ě, φ̌W̌ )η̌(F̌ )ξ + Ŝ(F̌ , φ̌W̌ )η̌(Ě)ξ]

− k̂ − 2
2(n− 1)[ǧ(Ě, φ̌W̌ )F̌ − ǧ(F̌ , φ̌W̌ )Ě] + k̂

2(n− 1)[ǧ(Ě, φ̌W̌ )η̌(F̌ )ξ

− ǧ(F̌ , φ̌W̌ )η̌(Ě)ξ],

φ̌B̂(Ě, F̌ )W =φ̌R̂(Ě, F̌ )W̌ + 1
2(n− 1)[Ŝ(Ě, W̌ )φ̌F̌ − Ŝ(F̌ , W̌ )φ̌Ě

(5.26)

+ ǧ(Ě, W̌ )φ̌Q̂F̌ − ǧ(F̌ , W̌ )φ̌Q̂Ě − η̌(Ě)η̌(W̌ )φ̌Q̂F̌

+ η̌(F̌ )η̌(W̌ )φ̌Q̂Ě]− k̂ − 2
2(n− 1)[ǧ(Ě, W̌ )φ̌F̌ − ǧ(F̌ , W̌ )φ̌Ě]

+ k̂

2(n− 1)[η̌(Ě)η̌(W̌ )φ̌F̌ − η̌(F̌ )η̌(W̌ )φ̌Ě].

Combining (5.24), (5.25) and (5.26), we have

R̂(Ě, F̌ )φ̌W̌ − φ̌R̂(Ě, F̌ )W̌ + 1
2(n− 1)[Ŝ(Ě, φ̌W̌ )F̌ − Ŝ(F̌ , φ̌W̌ )Ě(5.27)

+ ǧ(Ě, φ̌W̌ )Q̂F̌ − ǧ(F̌ , φ̌W̌ )Q̂Ě − Ŝ(Ě, φ̌W̌ )η̌(F̌ )ξ + Ŝ(F̌ , φ̌W̌ )η̌(Ě)ξ]

− 1
2(n− 1)[Ŝ(Ě, W̌ )φ̌F̌ − Ŝ(F̌ , W̌ )φ̌Ě + ǧ(Ě, W̌ )φ̌Q̂F̌ − ǧ(F̌ , W̌ )φ̌Q̂Ě

− η̌(Ě)η̌(W̌ )φ̌Q̂F̌ + η̌(F̌ )η̌(W̌ )φ̌Q̂Ě]− k̂ − 2
2(n− 1)[ǧ(Ě, φ̌W̌ )F̌ − ǧ(F̌ , φ̌W̌ )Ě]

+ k̂ − 2
2(n− 1)[ǧ(Ě, W̌ )φ̌F̌ − ǧ(F̌ , W̌ )φ̌Ě] + k̂

2(n− 1)[ǧ(Ě, φ̌W̌ )η̌(F̌ )

− ǧ(F̌ , φ̌W̌ )η̌(Ě)]ξ − k̂

2(n− 1)[η̌(Ě)η̌(W̌ )φ̌F̌ − η̌(F̌ )η̌(W̌ )φ̌Ě] = 0.
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By taking F̌ = ξ in (5.27) and then using (2.1), (2.3), (3.5), (3.6) and (3.8) takes the
form

4 + ψ̌ − 2k̂
2(n− 1) [ǧ(Ě, φ̌W̌ )ξ + η̌(W̌ )φ̌Ě] + 1

n− 1 Ŝ(Ě, φ̌W̌ )ξ − η̌(W̌ )φ̌2Ě(5.28)

+ 1
n− 1 η̌(W̌ )φ̌Q̂Ě = 0.

Inner product of (5.28) with ξ and making use of (2.1) and (2.3) gives

(5.29) Ŝ(Ě, φ̌W̌ ) =
 ψ̌

2 + 2− k̂
 ǧ(Ě, φ̌W̌ ).

Now, we replace W̌ by φ̌W̌ in (5.29) and using (2.2), (2.4) and (3.6), we get

(5.30) Ŝ(Ě, W̌ ) =
 ψ̌

2 + 2− k̂
 ǧ(Ě, W̌ )−

 ψ̌
2 + k̂ + 2n− 2

 η̌(Ě)η̌(W̌ ).

Taking W̌ = ξ in (5.30), we find

(5.31) Ŝ(Ě, ξ) = (2n+ ψ̌)η̌(Ě).
Thus, from (4.4) and (5.31), we obtain

(5.32) λ̌ = −(2n+ ψ̌).
Hence, (5.30) together with (5.32) leads to the following theorem.

Theorem 5.4. If a (2n + 1)-dimensional LP -Kenmotsu manifold M with a con-
nection ∇̂ admitting Ricci soliton is φ̌-D-conformally semisymmetric, then M is an
η−Einstein manifold and its Ricci solition will be expanding, shrinking or steady
according to ψ̌ < −2n, ψ̌ > −2n or ψ̌ = −2n.

Example 5.1. Let on a 3-dimensional manifold M = {(w̌1, w̌2, w̌3) ∈ R3 : w > 0},
where (w̌1, w̌2, w̌3) are the standard coordinates of R3, the linearly independent vector
fields that at each point of M are given by

v1 = w̌3∂

∂w̌1
, v2 = w∂

∂w̌2
, v3 = w∂

∂w̌3
= ξ.

Suppose the Lorentzian metric ǧ is defined by
ǧ(v1, v1) = ǧ(v2, v2) = 1, ǧ(v3, v3) = −1, ǧ(v1, v2) = ǧ(v2, v3) = ǧ(v1, v3) = 0.

Suppose the 1-form η̌ is defined by η̌(Ě) = ǧ(Ě, v3) = ǧ(Ě, ξ) for all Ě on M , and
the (1, 1)-tensor field φ̌ is defined by

φ̌v1 = −v1, φ̌v2 = −v2, φ̌v3 = 0.
Then, using the linearity of ǧ and φ̌, we have

η̌(ξ) = −1, φ̌2Ě = Ě + η̌(Ě)ξ, ǧ(φ̌Ě, φ̌F̌ ) = ǧ(Ě, F̌ ) + η̌(Ě)η̌(F̌ ),
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for all Ě, F̌ on M . Thus, (φ̌, ξ, η̌, ǧ) defines a Lorentzian almost paracontact metric
structure on M . Also, we have
(5.33) [v1, v2] = 0, [v1, v3] = −v1, [v2, v3] = −v2.

From the Koszul’s formula for ǧ, we calculate
∇̌v1v1 =− v3, ∇̌v1v2 = 0, ∇̌v1v3 = −v1, ∇̌v2v1 = 0,(5.34)
∇̌v2v2 =− v3, ∇̌v2v3 = −v2, ∇̌v3v1 = 0, ∇̌v3v2 = 0, ∇̌v3v3 = 0.

Also, one can easily verify that

∇̌Ěξ = −Ě − η̌(Ě)ξ and (∇̌Ěφ̌)F̌ = −ǧ(φ̌Ě, F̌ )ξ − η̌(F̌ )φ̌Ě.
Therefore, M is an LP -Kenmotsu manifold. From (1.1), (5.33) and (5.34), we obtain

Ř(v1, v2)v1 =− v2, Ř(v2, v3)v1 = 0, Ř(v1, v3)v1 = −v3,(5.35)
Ř(v1, v2)v2 =v1, Ř(v1, v3)v2 = 0, Ř(v2, v3)v2 = −v3,

Ř(v1, v2)v3 =0, Ř(v1, v3)v3 = −v1, Ř(v2, v3)v3 = −v2,

from which it is clear that Ř(Ě, F̌ )W̌ = ǧ(F̌ , W̌ )Ě − ǧ(Ě, W̌ )F̌ . Hence, (M, φ̌, ξ, η̌, ǧ)
is an LP -Kenmotsu manifold of unit constant curvature. By virtue of (1.8) and (5.35),
we obtain

∇̂v1v1 =− v3, ∇̂v2v1 = 0, ∇̂v3v1 = 0, ∇̂v1v2 = 0, ∇̂v2v2 = −v3,

∇̂v3v2 =0, ∇̂v1v3 = 0, ∇̂v2v3 = 0, ∇̂v3v3 = 0.
From (3.2) and (5.35), we can easily obtain

R̂(v1, v2)v1 =0, R̂(v1, v3)v1 = −v3, R̂(v2, v3)v1 = 0,(5.36)
R̂(v1, v2)v2 =0, R̂(v1, v3)v2 = 0, R̂(v2, v3)v2 = −v3,

R̂(v1, v2)v3 =0, R̂(v1, v3)v3 = 0, R̂(v2, v3)v3 = 0.
From (5.35) and (5.36), we calculate the Ricci tensors as follows:

Š(v1, v1) = Š(v2, v2) = 2, Š(v3, v3) = −2,
and

Ŝ(v1, v1) = Ŝ(v2, v2) = 1, Ŝ(v3, v3) = 0.
Therefore, we find ř = 6 and r̂ = 2, where ψ̌ = −2. Hence, (3.4) is satisfied. From
(2.5), (1.6) and (1.7), we find

Φ̌(v1, v1) =Φ̌(v2, v2) = −1, Φ̌(v3, v3) = 0,
Ť (vi, vj) =0, i = j = 1, 2, 3,
Ť (v1, v2) =0, Ť (v1, v3) = v1, Ť (v2, v3) = v2,

(∇̂v1 ǧ)(v1, v3) =(∇̂v2 ǧ)(v2, v3) = −1, (∇̂v3 ǧ)(v1, v2) = 0,
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respectively. Thus, the connection ∇̂ defined on M is a QSNM. Now, by putting
F = W = vi in (4.3) and summing up, we find 2 = 3(1 − λ̌) − 1 implies λ̌ = 0.
Thus, a Ricci soliton on an LP -Kenmotsu manifold with a connection ∇̂ is steady for
ψ̌ = −2n = −2.
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