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ON SOME COMBINATORIAL PROPERTIES OF GENERALIZED
COMMUTATIVE PELL AND PELL-LUCAS QUATERNIONS

DOROTA BROD AND ANETTA SZYNAL-LIANA

ABSTRACT. Generalized commutative quaternions generalize elliptic, parabolic and
hyperbolic quaternions, bicomplex numbers, complex hyperbolic numbers and hy-
perbolic complex numbers. In this paper, we study generalized commutative Pell
quaternions and generalized commutative Pell-Lucas quaternions. We present some
properties of these numbers and relations between them.

1. INTRODUCTION

Let n > 0 be an integer. The nth Pell number P, is defined in the following way
P, =2P, 1+ P, 5, for n > 2 with P, = 0, P, = 1. Solving the above recurrence
equation we obtain the direct formula of the form

(1+vV2)" = (1—v2)"
2v/2 ’
named also as the Binet formula for Pell numbers.

The nth Pell-Lucas number @), is defined by Q,, = 2Q,_1 + Q,_2, for n > 2, with
Qo = Q1 = 2. The Binet formula for Pell-Lucas numbers has the form

Qn = (1+\/§)n+ (1 - \/ﬁ)n

The first six terms of the Pell sequence and Pell-Lucas sequence are 0,1,2,5,12,29
and 2, 2,6, 14, 34, 82, respectively.

The Pell and Pell-Lucas numbers belong to the class of numbers of the Fibonacci
type and have applications also in the theory of hypercomplex numbers (see [1-3,9-12]).
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Key words and phrases. Quaternions, generalized quaternions, Pell numbers, Pell-Lucas numbers.
2020 Mathematics Subject Classification. Primary: 11B37. Secondary: 11B39.

DOI

Received: February 03, 2023.

Accepted: April 05, 2023.

889



890 D. BROD AND A. SZYNAL-LIANA

In this paper, we use the Pell and Pell-Lucas numbers in the theory of generalized
commutative quaternions.
Let Hf 4 be the set of generalized commutative quaternions x of the form

X =g+ x161 + 12620 + TI3esz,
where quaternionic units ey, es, e3 satisfy the equalities
2 _ 2 _ 2 _
(1.1) e;=a, e=p, e;=af,
(1.2) €16y = €961 = €3, e9e3 = e3ey = fe;  and  eze; = ejez = e,

and Lo, T1,x2,T3, X, 5 € R.

The generalized commutative quaternions generalize elliptic quaternions (a < 0,
p = 1), parabolic quaternions (« = 0, § = 1), hyperbolic quaternions (a > 0, 5 = 1),
bicomplex numbers (o« = —1, § = —1), complex hyperbolic numbers (o« = —1, 8 = 1)
and hyperbolic complex numbers (o« =1, = —1).

Generalized commutative quaternions were introduced in [8]. The authors defined
generalized commutative quaternions of the Fibonacci type — generalized commutative
Horadam quaternions.

For integers p, ¢,n and n > 0 Horadam defined the numbers W,, = W,,(Wy, W1;p, q)
by the recursive equation W,, = p-W,,_; —q-W,,_o, for n > 2, with fixed real numbers
Wy, Wi. Let ty, to be the two distinct real roots of the equation t* — pt + ¢ = 0. Then,
the Binet type formula for the Horadam numbers has the form W, = At} + Bt},

where t; = 22— PP —4q by = pJ”p A = MWk, p o Woh ZVI We have P,

t1—ta
W, (0, 1; 2, —1) and Qn = W (2,2,27 1), so the Pell and Péll Lucas numbers are
special cases of Horadam numbers.

The nth generalized commutative Horadam quaternion gcH, is defined as
gcHy, =Wy, + Wipier + Wioeo + Wigses.
In [8], it was presented the following result.

Theorem 1.1 (Binet type formula for generalized commutative Horadam quaternions
8]). Let n >0 be an integer. Then

gcH,, = At} (1 + tie1 + tfeg + ti’eg) + Bty (1 + toer + t%eg + tg’eg,) )

2. MAIN RESULTS

Let n > 0 be an integer. The nth generalized commutative Pell quaternion gc®P,
and the nth generalized commutative Pell-Lucas quaternion gcQ,, are defined as

gcj)n :Pn + Pn+161 + Pn+262 + Pn+3€37
gCQn :Qn + QnJrlel + Qn+2€2 + Qn+3€37

respectively, where P, is the nth Pell number, @),, is the nth Pell-Lucas number and
ey, ea, ez are units which satisfy (1.1) and (1.2).
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Using the above definitions we can give initial generalized commutative Pell and
Pell-Lucas quaternions, i.e.,

gcPy = e1 + 2e5 + Segs,

gcP1 =14 2e1 + Heg + 12e3,
gcPy =2 + bey + 12e5 + 29e3,
gcQy = 2 + 2eq + b6ey + 14es,
gcQy = 2 + 6ey + 1dey + 3des,
gcQy = 6 + 14e; + 34eq 4 82e3.

Proposition 2.1. Let n > 0 be an integer. Then the generalized commutative Pell
quaternions satisfy the recurrence relation

(2.1) gcP, =29cP, 1 + gcP, o, forn > 2,
with initial conditions
gcPo =e1 + 2e9 + bes,  gcPy =1+ 2e + beg + 12e3.

Proposition 2.2. Let n > 0 be an integer. The generalized commutative Pell-Lucas
quaternions satisfy

gcQ, =29c9, 1+ gcQ, o, formn>2,
with gcQp = 2 + 2e1 + b6ey + 1des, gcQy = 2 + 6ey + 14es + 34es.

In this paper, we will focus on properties of generalized commutative Pell-Lucas
quaternions and we will show some dependencies between generalized commutative
Pell quaternions and generalized commutative Pell-Lucas quaternions. As a special
case of Theorem 1.1 we get the following remark.

Remark 2.1. Let n > 0 be an integer. Then

(1;/\?) (1+ 1+ V2)er + (3+2v2)ea + (7 + 5V2)es)

_ (1;\/?) (1 +(1—=v2)ey + (3—2V2)ey + (7T — 5\/§)€3>

(2.2) gcP, =

and

(23)  geQu =(1+v2)" (1+(1+V2er + (3+2v2)ex + (T+5v2)es)
+(1-v2)" (14 (1= v2)er + (3—2v2)er + (7 — 5v2)es)
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For simplicity of notation let

1 1
ti=1-v2, ty=1+V2 A:_ﬁy BZﬁ’
1+ (1= v2)er + (3 —2V2)es + (7 — 5v2)es,
1+ (14 v2)er + (34 2v2)es + (T4 5v2)es.

Then we can write (2.2) and (2.3) as

(2.4)

> S
I

ta

(2.5) gcP, = At + Btity
and
(2.6) 9cQ,, =t + 5,

respectively, where t1, ty, A, B, t, {5 are given by (2.4).

Theorem 2.1 (General bilinear index-reduction formula for generalized commutative
Pell-Lucas quaternions). Let a > 0, b > 0, ¢ > 0, d > 0 be integers such that
a+b=c+d. Then

9¢Qq - geQy — geQ. - geQq = (t5th + 15t} — 515 — 15¢) 165,
where ty, ta, 1, ty are given by (2.4).
Proof. Using (2.6) we have
9¢Qq - gcQy — geQ. - geQq
= (156, + t5t2) (6 + thty) — (t560 + t52) (HF1 + t562)
=t90 1565 + tatat5 ) — t51 13t — t5Eatdt,
= (52 + 1t} — 1524 — #51) ufa,

which ends the proof. 0
Moreover, tito = —1 and
(27) tAltAQ = tAQtAl =1—« + 6 — 066 —+ (2 + 2B)€1 -+ (6 — 60()62 + 1263.

For special values of a, b, ¢, d we obtain Catalan, Cassini, Halton, Vajda and
d’Ocagne type identities.

Corollary 2.1 (Catalan type identity for generalized commutative Pell-Lucas quater-
nions). Let n >0, k > 0 be integers such that n > k. Then

2 n tl K tg k NN
9cQn ik - ek — (9cQ,)" = (—1) () + () — 2| tits,

to t1

where t1, ty and L1ty are given by (2.4) and (2.7), respectively.
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Corollary 2.2 (Cassini type identity for generalized commutative Pell-Lucas quater-
nions). Let n > 1 be an integer. Then
9cQni1 - 9cQn_1 — (9¢Q,)* = 8(—=1)"*1 111,
where 1ty is given by (2.7).

Corollary 2.3 (The first Halton type identity for generalized commutative Pell-Lucas
quaternions). Let n >0, m >0, r > 0 be integers such that n > r. Then

gCQerr ’ gCQn - gCQr ’ gCQern = <_1)T (tgir - t?ﬂq) (tgn o tgl) flf?a
where t1, ty and Gty are given by (2.4) and (2.7), respectively.

Corollary 2.4 (The second Halton type identity for generalized commutative Pel-
I-Lucas quaternions). Let n > 0, k > 0, s > 0 be integers such that n > k, n > s.
Then

o (t\F ta\ * t1\* ta\*\ ~
gCQn+k : gCank - gch+S . gCans = (_1) <t2) + <tl> - (tg) - (tl) t1t27

where t1, ty and Gty are given by (2.4) and (2.7), respectively.

Corollary 2.5 (Vajda type identity for generalized commutative Pell-Lucas quater-
nions). Letn >0, m >0, k > 0 be integers such that n > k, n > m. Then

9CQmik - 9cQp_ — gcQyy, - gcQ,,

=(=1)" (t”z“’” <<2>k - 1) +i" ((Z)k - 1)) tata,

where t1, ty and Gty are given by (2.4) and (2.7), respectively.

Corollary 2.6 (d’Ocagne type identity for generalized commutative Pell-Lucas quater-
nions). Let n >0, m > 0 be integers such that n > m. Then

969y - 9eQui1 — gQui1 - geQu = 2V2(=1)" (7™ — 157™) i1y,
where t1, ty and L1ty are given by (2.4) and (2.7), respectively.

Theorem 2.2 (General bilinear index-reduction formula for generalized commutative
Pell and Pell-Lucas quaternions). Let a >0, b >0, ¢ > 0, d > 0 be integers such that
a+b=c+d. Then

9ePa 9o = gele - geQa = (Atits + Bisty — Atity — Btst)) it

where t1, ty, A, B and {15 are given by (2.4) and (2.7), respectively.
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Proof. Using (2.5) and (2.6) we have
gcPq - gcQy — gcP. - gcQq
_ afl af bl bl cf cf ey ey
= (At + Btsty) - (86 + t46y) — (At + Btsty) - (¢161 + t362)
=AtS11t58y + BtStytht, — AtSHt3, — Btsiytit
= (Atith + Btgt] — At5t] — Btst]) fufa,
which ends the proof. U

For special values of a, b, ¢, d we can obtain another dependencies between gener-
alized commutative Pell quaternions and generalized commutative Pell-Lucas quater-
nions, for example a dependency similar to PyQy1; — PjQn i of Pell and Pell-Lucas
numbers from [7].

Corollary 2.7. Letn >0, j > 0, k > 0 be integers. Then
9cPr - gcQpyj — gcPj - geQpiy = (At — BtY) (tlft% — t{t’;) s,
where ty, ta, A, B and ity are given by (2.4) and (2.7), respectively.

We recall some well-known properties of Pell and Pell-Lucas numbers which can be
found in [5, 6]

(28) Pn+1 + Pnfl - QTU
(29) Pn+1 - Pn—l :2Pn7
(2.10) Qni1 + Qno1 =8Py,
(2.11) Qn1 — Qn-1 =2Qn,
(212) Pn+Pn—1 :%la
(213) Qn + Qn—l :4Pn7
n n _ 2

(2.14) SR =2

1=0 4
(2.15) > Qi =2P, 1.

=0

Using (2.8)—(2.13) it immediately follows

Theorem 2.3. Let n > 0. Then

(i) gcPpi1 + gcPp_1 = gcQp;
(i) gcPpy1 — gcPn_1 = 29cPy;
(iil) gcQni1 + geQ, 1 = 8gcPy;
(iv) gcQui1 — gcQ, 1 = 2gcQy;
(V) gcPn + gcPp1 = %;
(vi) gcQ, + gcQ,_1 = 4gcP,,.
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Now we give formulae for the sum of generalized commutative Pell and Pell-Lucas
quaternions.

Theorem 2.4. Let n > 0. Then

zn:gcfpl _ 9cQn11 — gcQ
1=0 4

Proof. Using (2.14), we have

n

> 9P = gePo+ gePr + -+ + gcP,
1=0

=(Py + Prey + Pyey + Paes) + (Pr + Paey + Psey + Pyes)

+ -+ (Py+ Pojier + Prioes + Pyises)
=(Po+ P+ + F,)

+ (Pt Pt + P+ By — Roe

+(PB+ P+ + P+ P+ P —FPy— Pres

+(Ps+ Pyt + Pzt o+ Pi+P— Py — P — P)es
:Qn+1_2+ <Qn+2—2 —O) e

4 4
Qn —2 Qn -2
() e (B )
:Qn+1 + Qnioe1 + Qnizes + Qnyaes 2+ 2e; + Geo + 14es
4 4
ZQCQnH — gcQ
4 9
which ends the proof. O

In the same way, using (2.15), we can prove the following result.

Theorem 2.5. Let n > 0. Then

n

> gcQ = 2(gcPpiq — gcPo) -
1=0

Now, we give a matrix representation of the generalized commutative Pell and
Pell-Lucas quaternions. In [4], Ercolano gave a matrix representation of the Pell
sequence defining the matrix generator M = [ ? (1) ] . Then M"™ = l PIZH PP" 1 ,

n n—1
for integer n > 1.
Let R(n) = 9P 9P be a matrix of order 2 with entries being general-
gc?n—l ng)n—Q
ized commutative Pell quaternions.
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Theorem 2.6. Let n > 2 be an integer. Then

lgcﬂ’n gcPn ] [ gePy gePy

a [ gcPr gcPy
Proof. If n = 2 then by simple calculations the result immediately follows. Assume
that the equality holds for all integers 2,3, ..., n. We shall prove that the equation is
true for integer n + 1. Using our assumption and formula (2.1) we obtain

gcPy  gcPy .Mn_Q.M__gcng gcPr | 121 n_Q. 2 1
gcPy gcPy - | 9cPr gcPo 10 10

- _gc’Pn gcP, 121
__gCﬂ)nfl gC?nf2 10

[ 2g¢P, + Py gcP,
L 2gcg)n—1 + gC:Pn—2 gC:Pn—l

n—2
gdpn—l gcg)n—2 ] M .

B [ gcPni1 gcP,
9P gcPn |

which ends the proof. U
In the same way we can obtain the matrix generator for the generalized commutative

Pell-Lucas quaternions.

Let S(n) = 9 96Qn-y be a matrix with entries being the generalized
gcgn—l gCQn—Q

commutative Pell-Lucas quaternions.

Theorem 2.7. Let n > 2 be an integer. Then

9c9n g1 | _ | 9c92 gcQi | 4 no
9cQn1 gcQn 2 | | 9cQ1 gcQp '

At the end, we give the generating functions for gc®P,, and gcQ,,.

Theorem 2.8. The generating function for the generalized commutative Pell quater-

nion gcP, is

o(t) = 9¢Po + (9¢Pr = 2gcPo)t _ €1+ 2e5 + Seg + (L + €5 + 2e3)t.
1—2t—1¢? 1—2t—1¢?

Proof. Assuming that the generating function of the generalized commutative Pell

quaternion sequence {gcP,} has the form g(t) = > gcP,t", we obtain

n=0
(1 —2t — %) g(t) =(1 — 2t — t*)(gcPy + gePit + gePot* + -+ )
=gcPy + gcPit + gePot? + - -
— 2gcPot — gePt? — 2gcPot — - -
— gcPot? — gePit? — gePot® — - -
=gcPo + (gcP1 — 29c¢Po)t,
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since gcP,, = 2gcP,,_1 + gcP,_o and the coefficients of t", for n > 2, are equal to
Z€ero. ]

Theorem 2.9. The generating function for the generalized commutative Pell-Lucas
quaternion gcQ,, is

~gcQo + (9eQy — 2gcQo)t

t
9(t) 1— 2t — 2
. (2 + 261 + 662 + 1463) + (—2 + 261 + 262 + 663)t
N 1— 2t —¢t2 '
REFERENCES

[1] F. T. Aydin, On bicomplex Pell and Pell-Lucas numbers, Communications in Advanced Mathe-
matical Sciences 1(2) (2018), 142-155. https://doi.org/10.33434/cams.439752

[2] G. Bilgici and P. Catarino, Unrestricted Pell and Pell-Lucas quaternions, International Journal of
Mathematics and System Science 1(3) (2018), 1-4. http://dx.doi.org/10.24294/ijmss.v1i3.
816

[3] C. B. Cimen and A. Ipek, On Pell quaternions and Pell-Lucas quaternions, Adv. Appl. Clifford
Algebr. 26 (2016), 39-51. https://doi.org/10.1007/s00006-015-0571-8

[4] J. Ercolano, Matriz generators of Pell sequences, Fibonacci Quart. 17(1) (1979), 71-77.

[5] A.F.Horadam, Minmaz sequences for Pell numbers, Applications of Fibonacci Numbers 6 (1996),
231-249.

[6] A. F. Horadam, Pell identities, Fibonacci Quart. 9.3 (1971), 245-263.

[7] N. Patel and P. Shrivastava, Pell and Pell-Lucas identities, Global Journal of Mathematical
Sciences: Theory and Practical 5(4) (2013), 229-236.

[8] A. Szynal-Liana and I. Wloch, Generalized commutative quaternions of the Fibonacci type, Bol.
Soc. Mat. Mex. 281 (2022). https://doi.org/10.1007/s40590-021-00386-4

[9] A.Szynal-Liana and I. Wloch, Hypercomplex Numbers of the Fibonacci Type, Oficyna Wydawnicza
Politechniki Rzeszowskiej, Rzeszdw, 2019.

[10] A. Szynal-Liana and I. Wloch, On Pell and Pell-Lucas hybrid numbers, Comment. Math. 58(1-2)
(2018), 11-17. http://dx.doi.org/10.14708/cm.v58i1-2.6364

[11] A. Szynal-Liana and I. Wloch, The Pell quaternions and the Pell octonions, Adv. Appl. Clifford
Algebr. 26 (2016), 435-440. https://doi.org/10.1007/s00006-015-0570-9

[12] U.Tokeser, Z. Unal and G. Bilgici, Split Pell and Pell-Lucas quaternions, Adv. Appl. Clifford
Algebr. 27 (2017), 1881-1893. https://doi.org/10.1007/s00006-016-0747-x

FAacuLTYy OF MATHEMATICS AND APPLIED PHYSICS

RzEszow UNIVERSITY OF TECHNOLOGY,

AL. POWSTANCOW WARSZAWY 12, 35-959 RzESzOW, POLAND
Email address: dorotab@prz.edu.pl

Email address: aszynal@prz.edu.pl


https://doi.org/10.33434/cams.439752
http://dx.doi.org/10.24294/ijmss.v1i3.816
http://dx.doi.org/10.24294/ijmss.v1i3.816
https://doi.org/10.1007/s00006-015-0571-8
https://doi.org/10.1007/s40590-021-00386-4
http://dx.doi.org/10.14708/cm.v58i1-2.6364
https://doi.org/10.1007/s00006-015-0570-9
https://doi.org/10.1007/s00006-016-0747-x

	1. Introduction
	2. Main Results
	References

