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DENSITY PROBLEMS IN SOBOLEV’S SPACES ON TIME SCALES
AMINE BENAISSA CHERIF! AND FATIMA ZOHRA LADRANI?

ABSTRACT. In this paper, we present a generalization of the density some of the
functional spaces on the time scale, for example, spaces of rd-continuous function,
spaces of Lebesgue A-integral and first-order Sobolev’s spaces.

1. INTRODUCTION

The theory of time scales, which has recently received a lot of attention, was
originally introduced by Stefan Hilger in his Ph.D. Thesis in 1988 in order to unify,
extend and generalize continuous and discrete analysis (see Hilger [4]).

Recently, the Lebesgue A-integral has been introduced by Bohner and Guseinov
in [2, Chapter 5]. For the fundamental relationship between Riemann and Lebesgue
A-integrals see A. Cabada, D. Vivero [3]. The first study Sobolev’s spaces on time
scales R. Agarwal et al. (see [7]).

In this paper, we study the density relationship between some of the functional
spaces on the time scale, for example, spaces of rd-continuous function, spaces of
Lebesgue A-integral and first-order Sobolev’s spaces.

2. PRELIMINARIES

We will briefly recall some basic definitions and facts from time scale calculus that
we will use in the sequel.

Let T be a closed subset of R. It follows that the jump operators o,p : T — T
defined by

o(t):=inf{se€T:s>t} and p(t):=sup{se€T:s <t}
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(supplemented by inf () := sup T and sup @) := inf T) are well defined. The point ¢ € T
is left-dense, left-scattered, right-dense, right-scattered if p(t) = t, p(t) < t, o(t) =
t, o(t) > t, respectively. If T has a right-scattered minimum m, define Ty, := T — {m},
otherwise, set T, = T. If T has a left-scattered maximum M, define T* := T — { M},
otherwise, set T* = T.

Definition 2.1 ([1]). The function ¢ : T — R will be called rd-continuous provided
it is continuous at each right-dense point and has a left-sided limit at each point, we
write ¢ € Crq(T) = Crq(T, R).

Definition 2.2 ([1]). Assume ¢ : T — R is a function and let ¢ € T*. Then we define

¢ to be the number (provided it exists), with the property that given any ¢ > 0,

there is a neighbourhood U of ¢ (i.e., U = (t — 0,t + §) N'T) for some 6 > 0 such that
lp(o(t)) — p(s) — *(t)[o(t) — s]| < elo(t) —s|, forall seU.

We call ¢ the delta (or Hilger) derivative of ¢ at t.

Lemma 2.1 ([3]). The set of all right-scattered points of T is at most countable, that
is, there are J C N and {t;};e; C T such that

Ri={t €T, ot) >t} = {t;},cs.

In order to do this, given a function ¢ : T —R, we need an auxiliary function
which extends ¢ to the interval [a, b] defined as

) o), ifteT,
(2.1) (1) = { o(ty), ifte (t;,o(t)) forall j e J.
Let E C T, we define
(2.2) Je={j€J:t;€ENR} and E=EU U,y 0 ().

Proposition 2.1 ([3]). Let A C T. Then A is a A-measurable if and only if, A is
Lebesgue measurable.
In this case the following properties hold for every A-measurable set A.

1. Ifb¢ A, then
(2.3) pa (A) = po (A) + 3 p(ty);

2. pa (A) = urg (A) if and only if b ¢ A and A has no right-scattered point.

Theorem 2.1 ([3]). Let E C T be a A-measurable such that b ¢ E, let E be the set
defined in (2.2), let ¢ : T =R be a A-measurable function and ¢ : [a,b] — R be the
extension of ¢ to [a,b]. Then, ¢ is Lebesgue A-integrable on E if and only if ¢ is
Lebesgue integrable on E and we have

(2.4 Lewat=[ewa=[ pwa+ ¥ nit)e ).

Jj€JE
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We state some of their properties whose proofs can be found in [7,8].

Definition 2.3 ([7]). Let p € [1,+00). Then, the set LY (T,R) is a Banach space
together with the norm defined for every ¢ € L% (T,R) as

P
HSOHLQ(T,R) - </[a7b)mr |90($)|pA3>
We denote by:

C* (T,R) {gp : T — R : ¢ is A-differentiable on T* and ¢~ € C (']I‘k ]R)} ,
C (T,R) := {(p T — R : ¢ is A-differentiable on T* and ¢® € C,q (']I‘ R)} :

Theorem 2.2 ([8]). Let p € [1,00), then, we have the following properties:
1. Coq (T, R) is dense in L\ (T,R);
2. LX(T,R) is dense in L) (T,R);
3. C!(T,R) is dense in C(T,R).

Theorem 2.3 ([7]). Let p € [1,400). The set W'P(T,R) is a Banach space together
with the norm defined for every ¢ € WP(T,R) as

A
Ilwinmy = 121 mm + %] 5 orgy

3. MAIN RESULTS

In this section, assume that T is bounded with @ := min T and b := max T and for
simplification, we note

le,d)r =[c,d)NT and [c,dly =[c,d]NT, forallecdeT.
Remark 3.1. C(T,R) and C,4(T, R) are Banach spaces together with the norm defined
by
lplloo := sup |@(t)].

tela,b]r
Set
I={jeJ:p(t;)=1;}.

To derive main results in this section, we need the following lemma.

Lemma 3.1. Let p € [1,400[, C(T,R) is dense in C,q(T,R) provided with the
induced topology of L' (T,R).

Proof. For all i € I, we defined r; by r; = {t; : t; <t;}. Let (v},), .y be a sequence
defined by

v = (t;), foralliel.
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Then, for all i € I, we have (v}), € (ri,t;). Let (t), oy be a sequence on time scale T
defined by

(3.1) t! = inf {ti—v;,ti)T, forallneN, i eI
Let ¢ € Cp4 (T, R), we consider the sequence function (¢),,cy given by

o (t;) + T t—t;), iftelth,t;]y foraliel,
n (1) = lirgl o (1), ! if t = b,

tb—

@ (), if not.

Set t € [t!,t;]y, for all ¢ € I, which implies that

[pn (1) — o (D] <l ()] + | (O] + | (1) — ¢ (8] ‘ i

<2|oll + ]90 (t:) — (ti)‘
<4l

Finally, we get that|p, (t) — ¢ (t)| < 4||¢|l, for all ¢ € [a,b);. It is clear that (¢,),
is continuous in T. Now, we show that (¢,), .y converges to ¢ in LR\ (T,R). I
particular, we have
[ len®) =0 @F At = [lon®) -0 ()F At < 2|02, [ At
[ab An An
=47 |15 1a (An),
with A, = U [t},ti)y, for all n € N. From (2.3), we have
icl
pa(A) A A+ Y ul)
el telti by
Sl 5 (1)
i€l il
<2} (tz‘ —ti) <> v
iel il
b—a
(3.2) < Z (t:) < Sor
’LEI
Therefore, we obtain
—a
lon — go||Lp R S 47 || o|I% T for all n € N.
The proof is complete. O

Remark 3.2. C'(T,R) and C},(T, R) are Banach spaces together with the norm defined
by
lelli = llelloo + 12 loo-
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Let us define a second type of extension for a function ¢ on [a, b]. We introduce the
following function

o(t), ifteT,
(3.3) ¢@:{¢w%ﬁ@@Nttﬂ+wm,ﬁte@m(»hmm]ej

Lemma 3.2. If ¢ : [a,b] — R belongs to C' (a,b), then o belongs to C}, (T, R).
Proof. We note ¢ = ¢r, then v is A—differentiable on T*, and 9* is given by

wA(w{ © (1), if t € TF\R,

) — ot
¢W(%ﬂ¢“XiH:@eTHMMUGJ
1 (t;

Now, we show that ¢* is rd-continuous. Let ¢ € T* a left-dense or a right-dense point
and prove that

lim v (s) = & (1).
Since ¢ € C' (a,b), then for all € > 0, there exists a > 0, such that
(3.4) ' (s)—¢ ()| <e, forallse(t—at+a).

We define  on (t — a,t +a) by € (s) = ¢ (s)—¢ (t) (t — s). By (3.4) we have ’f/ (s)’ <

g, for all s € (t — a,t + «) . Then £ is an e-Lipschitz function on (t — a, t + «), so we

get

p (1) =@ (s)
T—8

And we have lsig%a(s) = t. There exists v > 0, such that |0 (s) —t| < ¢, for all

s€(t—vt+7) NT. Put 6 = min(a,) for all s € (t—39,t+ ) NT. We consider
the following two cases.
If s is right-dense, then

o (1) =R (s)| = | (1) = ¢ (s)] < e
If s is right-scattered, one has o (s),s € (t — d,t + 0) N'T, then
ASW—w%ﬂ—ww@»_¢@)<e

o(s)—s -
Finally, we obtain that ¢® is a continuous function at right-dense points in T, and
its left-sided limits exist at left dense points in T. [l

Lemma 3.3. Let p € [1,+o00[, C'(T,R) is dense in C};(T,R) provided with the
induced topology of WA (T, R).

(T,
Proof. Let ¢ € C, (T, R), we define P, by
Pi, (8) = @ () + ¢ (6) (t = t:) + aha (1, 1:) + Bhy (t,1;), for all t € [t 4],

o' (1) — <e, foralls,7€(t—a,t+a) and 7 # s.




220 A. BENAISSA CHERIF AND F. Z. LADRANI

where (t},), oy is defined in (3.1) and (hy), are polynomials defined in [1], we choose
« and [ such that

(3.5) P, (t;) = (t;) and PzAn (t;) =p? (t;) , foralliel,neN.
Then « and 3 is the solution of the following system

ahy (87, t:) + Bhs (87, 1) = @ (17) — @ (t;) — > (t:) ha (7, 13)
ahy (87, ;) + Bhy (87, 1;) = o (t7) — > (L) -

Let (¢n),en be a sequence defined by

P, (), iftelth tj], foralliel,
on (t) =< limp(t), ift=0,

e (1), if not.

By (3.5), we conclude that ¢,, is A-differentiable on T* and (gpﬁ) is continuous in T*.
For all i € I, we get

[l —emlars
[th,t:[NT

(le O+ I ()] + [0 (1) 1 (¢, 1)) At

[t:ril it [mT

[tzﬂti[rﬂr
<2|[pllog ha (i, 8) + H%DAHOO ha (t:, 17')

I EAC R GIPN
[t%,ti[ﬂT

= [t ;[T (’SOA <t)’ + ‘SOA (t:)

(3.7) <2|®|| b (t 47) + lavha (8], 1) + Bhy (8], 13)]

+ |ahy (£ ;) + Bha (t,1:)]) At

For all ¢ € I, we define 1, on [}, ;) by
Miin (8) = ahy, (8,t;) + Bhyy (s, t;), forall k€ N.

Hence, we deduce that

(3.8) Mg () = ahy_y (s,t;) + Bhy, (5,;) = My—1,in (s), forall s € [tfl, ti)qu :
by (3.8), we get

(3.9) Mk,in ()] < /:i Mk—1in (T)] AT, forallk € N;s € [ti, ti>qu :

Since, |171,in (8)] < |in (87)] for all s € [t4, t;)y, using the inequality (3.9), we find

(3.10) Mo ()] < (6 = ) |min ((1)], forall s € [t 8;)
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and
(3.11) M3 ()] < (85 = 1) Iuim (1)), forall s € [t,,,8:)
By (3.10), we obtain
|aha (&7, t:) + Bhs (&, )] < (G = £) [ (£7)]
<t —17) [ (1) — ¢ (t:)
(3.12) <2(t:; —7) |*)

and by (3.11), we have
Jehs (87, t0) + Bha (87 4:)] < (8 — 1) [ im (87)]
<(t —t?)Q\soA (t7) — ™ (t:)
(3.13) <2 (t; —tM)>.

Substituting (3.13) in (3.6), we get
[ 1ea®) =18 < (2l0l + %)) (=) + kuwz; (t; — 17)
i€ €

[aab)T
(3.14) <2 @l + - at 1) 4]
It follows from (3.12) and (3.7), that
(3.15) [ et -rwlar<afed| T t- ) < o ¢
[a,b)T i€l

By inequality (3.14) and (3.15), we obtain that (i), converges to ¢ in W' (T, R).
Finally, by Holder’s inequality, we conclude that (,), converges to ¢ in W ” (T, R).
O

Remark 3.3. Let E | F, G be three spaces such that £ C F' C G and (G,7) is a
topological space.

1) If Fis dense in (G, 7) and E is dense in (F,7), then E is dense in (G, 7).
2) If E is dense in G, then F is dense in G.

The following theorem is a new generalization of the Theorem 2.2.
Theorem 3.1. Let p € [1,+o0], then C (T,R) is dense in L\ (T,R).

Proof. Let p € [1,400[, we have C'(T,R) C C,4(T,R) C L% (T,R). By Lemma 3.1
and Theorem 2.2, hence C,q (T, R) is dense in L (T,R) and C (T,R) is dense in
Cra (T, R) provided with the induced topology of LX (T,R). Then, by Remark 3.3,
we obtain C (T, R) is dense in LX (T,R). O

The following results are consequences of Theorem 3.2.
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Proposition 3.1. Let p € [1,+o00], then C, (T,R) is dense in L (T,R).

Proof. Let p € [1,400[. By Theorem 2.2, we have C}, (T,R) is dense in C (T,R),
then C}, (T,R) is dense in C (T, R) provided with the induced topology of LA (T,R),
and we have C (T, R) is dense in LY (T,R), by Remark 3.3 , we conclude C (T, R) is
dense in L\ (T,R). O

As a proposition of the previous result, we deduce the following corollary.
Corollary 3.1. Let p € [1,400), then WA (T,R) is dense in C (T, R).

Proof. We have C1,(T,R) ¢ W”(T,R) ¢ C(T,R), by Theorem 2.2, C,(T,R)
is dense in C(T,R). Therefore, Remark 3.3 implies that Wx” (T,R) is dense in
C (T,R). 0

In the same way, we find the following corollary.
Corollary 3.2. Let p € [1,400), then WA (T,R) is dense in Cyq (T, R).
Corollary 3.3. Let p € [1,400), then WA (T,R) is dense in L (T,R).

The next result show that spaces C; (T,R) and C* (T, R) are dense in Wx* (T, R).
Theorem 3.2. Let p € [1,400), C, (T,R) is dense in WA? (T, R).

Proof. Let ¢ € WA (T,R), by Corollary 3.9 in [7], we have g € W'? (a,b). Since
C' ((a,b)) is dense in WP (a,b), then there exists a sequence (1), .y € C' (a,b) that
converges to @ in W (a,b). Let (), oy be a sequence defined by

©n = Y1, foralln e N.
By Lemma 3.2, we get (¢,), € C}y (T,R). Now we show that (¢,), converges to ¢
in WL (T,R), we have
|@n =Py = 100 = ooz

by Corollary 3.10 in [7], there exists a constant C' > 0 which only depends on (b — a)
such that
lopn — QOHWXP('JT,R) < Cllvn = @l »

we prove that (¢,), converges to ¢ in WA? (T, R). O
Theorem 3.3. Let p € [1,400|, then C* (T, R) is dense in WA? (T, R).

Proof. Let p € [1,400[. We have C' (T,R) ¢ C%,(T,R) ¢ WA”(T,R). By Lemma
3.3 and Theorem 3.2, hence C, (T, R) is dense in Wr* (T,R) and C* (T, R) is dense
in C!, (T,R) provided with the induced topology of Wx” (T,R). Then, by Remark
3.3, we obtain C' (T, R) is dense in WA” (T,R). O
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4. CONCLUSION

Finally, we give a diagrams that summarizes the main results
Crq (T, R) Cra (T, R)
1 \J
WaP(TR) — LA(T,R) — LL(T.R)

) T
C' (T, R) C (T,R)

For T is bounded and p € [1,+00).
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