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BI-UNIVALENT FUNCTION SUBCLASSES WITH
(p, q)-DERIVATIVE OPERATOR LINKED TO HORADAM

POLYNOMIALS

S. R. SWAMY1, DANIEL BREAZ2, LUMINITA-IOANA COTÎRLĂ3, AND KALA VENUGOPAL4

Abstract. In the open unit disk {ς ∈ C : |ς| < 1}, two subclasses of bi-univalent
functions related to Horadam polynomials are presented and examined in this paper.
For functions belonging to the recently established classes, we obtain the estimates
of the first two coefficients. Furthermore, an estimate of the Fekete-Szegö problem
is provided for functions in these classes. We also provide some observations and
draw relevant connections to earlier research.

1. Preliminaries

The quantum calculus is very important because it is applied in numerous subfields
within computer science, mathematics, physics, and other relevant disciplines. The
significance of the q-derivative operator is demonstrated by its ability to be applied
to various subclasses of holomorphic functions. Jackson [27] first investigated the
q-analogue of the derivative and integral operator in 1908, along with some of its
uses. Later, in [26], the concept of q-extension of the family of starlike functions
was introduced. Subsequently, q-calculus was studied in the context of theory of
univalent functions by Srivastava [38] and several mathematicians: the q-analogue
of the Ruscheweyh operator was presented in [29]; authors looked at some of its
applications for multivalent functions in [7, 8]; the convolution concept was used in
[56] to establish the q-starlike functions linked to the generalized conic domain. Many
authors have recently published several articles on sbclasses of q-starlike functions
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and other related classes (see [2, 17, 19, 31, 42–44, 47]). Scholars investigating these
topics might find Srivastava’s expository review paper [39] to be beneficial.

Furthermore, the extension of the q-calculus to the (p, q)-calculus, was taken into
consideration by the researchers. The (p, q)-calculus, which includes the (p, q)-number,
is first examined around the same time (1991) and subsequently on its own by [6, 11,
12,54]. In [12], the (p, q)-number was explored as a way to unify or generalize various
forms of q-oscillator algebras. The investigation of the (p, q)-number in [11] allows for
the construction of a (p, q)-Harmonic oscillator. The (p, q)-numbers are investigated in
[54] in order to calculate the (p, q)-Stirling numbers. Fibonacci oscillators were studied
with the presentation of the (p, q)-number in [6]. Consequently, many mathematical,
physical, and chemical problems require knowledge of (p, q)-calculus. Expanding upon
the previously mentioned papers, numerous scientist have studied the (p, q)-calculus
in a variety of research fields since 1991. A syntax for embedding the q-series into
a (p, q)-series was given by the results in [28]. Additionally, they looked into (p, q)-
hypergeometric series and discovered some outcomes that matched (p, q)-extensions
of the well-known q-identities. The q-identities are extended correspondingly to
yield the (p, q)-series (see, e.g., [5]). We provide some basic definitions of the (p, q)-
calculus concepts used in this paper. The (p, q)-bracket number is given by [j]p,q =
pj−1 + pj−2q + pj−3q2 + · · · + pqj−2 + qj−1 = pj−qj

p−q
, p ̸= q, which is an extesion of

q-number (see [27]), that is [j]q = 1−qj

1−q
, q ̸= 1. Note that [j]p,q is symmetric and if

p = 1, then [j]p,q=[j]q.
Let {ζ ∈ C : |ζ| < 1} = D be the open unit disk, and let the set of complex numbers

be C. Let N represent the natural number set and R the real number set.

Definition 1.1 ([53]). Let 0 < q < p ≤ 1 and g be a function defined on C. Then
the (p, q)-derivative of g is defined by

Dp,qg(ζ) = g(pζ) − g(qζ)
(p− q)ζ , ζ ̸= 0,

and Dp,qg(0) = g′(0), provided g′(0) exists.

We note that Dp,qζ
j = [j]p,qζ

j−1 and Dp,q ln(ζ) = ln(p/q)
(p−q)ζ . Also, we observe that

[j]p,q → j if p = 1 and q → 1−. Therefore, Dp,qg(ζ) → g′(ζ) as p = 1 and q → 1−. Any
function’s (p, q)-derivative is a linear operator. More accurately Dp,q(ag(ζ) + bh(ζ)) =
aDp,qg(ζ) + bDp,qh(ζ), for any constants a and b. The product rule and quotient rule
are satisfied by the (p, q)-derivative (see [35]). The exponential functions are used to
define the (p, q)-analogues of many functions, including sine, cosine, and tangent, in
the same way as their well-known Euler expressions. In addition, the (p, q)-derivatives
of these functions have been examined by Duran et al. [15].
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The set of functions g that are regular in D and have the following form is repre-
sented by A:

(1.1) g(ζ) = ζ +
∞∑

j=2
djζ

j, ζ ∈ D,

with g′(0) − 1 = 0 = g(0). S represents a sub-set of A that consists of univalent
functions in D. If g ∈A is of the form (1.1), then

(1.2) Dp,qg(ζ) = 1 +
∞∑

j=2
[j]p,qdjζ

j−1, ζ ∈ D.

We say that g1 is subordinate to g2 for g1, g2 ∈ A regular in D, if there is a
Schwarz function ψ(ζ) that is regular in D with |ψ(ζ)| < 1, ψ(0) = 0, such that
g1(ζ) = g2(ψ(ζ)) (see [16]). The notation g1 ≺ g2 or g1(ζ) ≺ g2(ζ), ζ ∈ D, denotes
this subordination. Specifically, when g2 ∈ S, we have

g1(ζ) ≺ g2(ζ) ⇔ g1(0) = g2(0) and g1(D) ⊂ g2(D).

The Koebe theorem (see [16]) states that the inverse of each function g in S is given
by

(1.3) g−1(w) = w − d2w
2 + (2d2

2 − d3)w3 − (5d3
2 − 5d2d3 + d4)w4 + · · · = f(w)

satisfying ζ = g−1(g(ζ)), g(g−1(w)) = w, |w| < r0(g) and 1/4 ≤ r0(g), ζ, w ∈ D. In
D, a member g of A given by (1.1) is called bi-univalent if g ∈ S and g−1 ∈ S. The set
of such functions in D is represented by σ. 1

2 log
(

1+ζ
1−ζ

)
, − log(1 − ζ) and ζ

1−ζ
are some

of the functions in the σ family. Nevertheless, despite being in S, ζ− ζ2

2 , ζ
1−ζ2 , and the

Koebe function do not belong to σ. For a concise analysis and to discover some of the
remarkable characteristics of the family σ, see [9, 10, 30,51] and the citation provided
in these papers. Similar to the well-known subclasses of the family S, Srivastava et al.
[45] have introduced a number of subclasses of the family σ. In reality, many writers
have since investigated a variety of alternative subfamilies of σ as follow-ups to the
aforementioned subfamilies (see, for example [14,20,21,41,52]). The majority of these
publications focus on the analysis of the Fekete-Szegó problem of functions in distinct
σ subclasses.

The (p, q)-calculus was used previously to study several subclasses of the class S

and the class σ. In [46], the subordination principle is used to define the classes of
(p, q)-starlike and (p, q)-convex functions. Novel subclasses of the class σ associated
with (p, q)-differential operators have also been presented and examined in a number
of studies (refer to [3, 4, 13,23,32,33]).

The Horadam polynomials Hj(κ, u, v; r, s) (or Hj(κ)) have recently been studied
and quantified using the recurrence relation given below by Horzum and Koçer [24]
(see also [25]):

(1.4) Hj(κ) = rκHj−1(κ) + sHj−2(κ),
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with H1(κ) = u, H2(κ) = vκ, where κ, r, s, u, v ∈ R, and j ∈ N\{1, 2}. It is evident
from (1.4) that

(1.5) H3(κ) = rvκ2 + su = Z.

For j ∈ N, the sequence Hj(κ), has the following generating function (see [24]):

(1.6) H(κ, ζ) :=
∞∑

j=1
Hj(κ)ζj−1 = (v − ur)κζ + u

1 − rκς − sζ2 ,

where κ ∈ R, ζ ∈ C with κ ̸= R(ζ) .
For specific selections of u, v, r and s, Horadam polynomials Hj(κ, u, v, ; , r, s) leads

to various known polynomials (see [40]). Interesting findings regarding coefficient
estmates and Fekete-Szegö functional [18] have been found in [22,34,36,48,49,55] for
members of certain subclasses of σ associated with Horadam polynomials.

We present two new subclasses of σ subordinate to polynomials Hj(κ) as in (1.4)
and its generating function (1.6). The Fekete-Szegö functional on specific subclasses
of σ and the patterns in the citations discussed above on coefficient-related problems
serve as the inspiration for these families. H(κ, ς) is as in (1.6), g−1(w) = f(w) as in
(1.3), κ ∈ R, ζ ∈ D and w ∈ D are assumed throughout this paper, unless otherwise
mentioned.

Definition 1.2. A function g in σ that possesses the series (1.1) is said to be a part
of the class Yτ,δ

σ,p,q(ν,κ), ν ≥ 1, 0 < δ ≤ 1 and τ ≥ 1, if

1
2

ν[Dp,q(ζDp,qg(ζ))]τ + (1 − ν)
Dp,qg(ζ)

+
(
ν[Dp,q(ζDp,qg(ζ))]τ + (1 − ν)

Dp,qg(ζ)

) 1
δ


≺1 − u+ H(κ, ζ)

and

1
2

ν[Dp,q(wDp,qf(w))]τ + (1 − ν)
Dp,qf(w) +

(
ν[Dp,q(wDp,qf(w))]τ + (1 − ν)

Dp,qf(w)

) 1
δ


≺1 − u+ H(κ, w).

For particular selections of p, q, ν and τ , the family Yτ,δ
σ,p,q(ν,κ) includes many new

and existing subfamilies of σ. This is shown below.
1. Hδ

σ,p,q(ν,κ) ≡ Y1,δ
σ,p,q(ν,κ), ν ≥ 1, 0 < δ ≤ 1, is the set of members g of σ that

satisfy

1
2

νDp,q(ζDp,qg(ζ)) + (1 − ν)
Dp,qg(ζ)

+
(
νDp,q(ζDp,qg(ζ)) + (1 − ν)

Dp,qg(ζ)

) 1
δ


≺1 − u+ H(κ, ζ)
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and

1
2

νDp,q(wDp,qf(w)) + (1 − ν)
Dp,qf(w) +

(
νDp,q(wDp,qf(w)) + (1 − ν)

Dp,qf(w)

) 1
δ


≺1 − u+ H(κ, w).

2. Iτ,δ
σ,p,q(κ) ≡ Yτ,δ

σ,p,q(1,κ), 0 < δ ≤ 1 and τ ≥ 1, is the set of elements g of σ that
satisfy

1
2

 [Dp,q(ζDp,qg(ζ))]τ

Dp,qg(ζ)
+
(

[Dp,q(ζDp,qg(ζ))]τ

Dp,qg(ζ)

) 1
δ

 ≺ 1 − u+ H(κ, ζ)

and

1
2

 [Dp,q(wDp,qf(w))]τ

Dp,qf(w) +
(

[Dp,q(wDp,qf(w))]τ

Dp,qf(w)

) 1
δ

 ≺ 1 − u+ H(κ, w).

3. If p = 1 and q → 1− in the set Yτ,δ
σ,p,q(ν,κ), then we obtain a subset Υτ,δ

σ (ν,κ),
τ ≥ 1, 0 < δ ≤ 1, ν ≥ 1, which is the collection of members g of σ that satisfy

1
2

ν[(ζg′(ζ))′]τ + (1 − ν)
g′(ζ) +

(
ν[(ζ g′(ζ))′]τ + (1 − ν)

g′(ζ)

) 1
δ

 ≺ 1 − u+ H(κ, ζ)

and

1
2

ν[(wf ′(w))′]τ + (1 − ν)
f ′(w) +

(
ν[(wf ′(w))′]τ + (1 − ν)

f ′(w)

) 1
δ

 ≺ 1 − u+ H(κ, w).

4. Zτ
σ,p,q(ν,κ) ≡ Yτ,1

σ,p,q(ν,κ), ν ≥ 1 and τ ≥ 1 is the set of elements g of σ that
satisfy {

ν[Dp,q(ζDp,qg(ζ))]τ + (1 − ν)
Dp,qg(ζ)

}
≺ 1 − u+ H(κ, ζ)

and {
ν[Dp,q(wDp,qf(w))]τ + (1 − ν)

Dp,qf(w)

}
≺ 1 − u+ H(κ, w).

Remark 1.1. i) Hδ
σ,p,q(1,κ) ≡ I1,δ

σ,p,q(κ);
ii) H1

σ,p,q(ν,κ) ≡ Z1
σ,p,q(ν,κ);

iii) Zτ
σ,p,q(1,κ) ≡ Iτ,1

σ,p,q(κ).

Definition 1.3. A function g in σ that possesses the series (1.1) is said to be a part
of the class Tτ,δ

σ,p,q(γ,κ), 0 ≤ γ ≤ 1, 0 < δ ≤ 1 and τ ≥ 1, if

1
2

 ζ(Dp,qg(ζ))τ

γg(ζ) + (1 − γ)ζ +
(

ζ(Dp,qg(ζ))τ

γg(ζ) + (1 − γ)ζ

) 1
δ

 ≺ 1 − u+ H(κ, ζ)
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and

1
2

 w(Dp,qf(w))τ

γf(w) + (1 − γ)w +
(

w(Dp,qf(w))τ

γf(w) + (1 − γ)w

) 1
δ

 ≺ 1 − u+ H(κ, w).

For particular selections of γ, τ , and δ, the family Tτ,δ
σ,p,q(γ,κ) includes many new

and preexisting subfamilies of σ, as shown below.
1. Cτ,δ

σ,p,q(κ) ≡ Tτ,δ
σ,p,q(0,κ), 0 < δ ≤ 1 and τ ≥ 1, is the set of members g of σ that

satisfy
1
2
(
(Dp,qg(ζ))τ + (Dp,qg(ζ))

τ
δ

)
≺ 1 − u+ H(κ, ζ)

and
1
2
(
(Dp,qf(w))τ +Dp,qf(w) τ

δ

)
≺ 1 − u+ H(κ, w).

2. Dτ,δ
σ,p,q(x) ≡ Tτ,δ

Σ,p,q(1,κ), 0 < δ ≤ 1 and τ ≥ 1, is the family of elements g of σ
that satisfy

1
2

ζ(Dp,qg(ζ))τ

g(ζ) +
(
ζ(Dp,qg(ζ))τ

g(ζ)

) 1
δ

 ≺ 1 − u+ H(κ, ζ)

and
1
2

w(Dp,qf(w))τ

f(w) +
(
w(Dp,qf(w))τ

f(w)

) 1
δ

 ≺ 1 − u+ H(κ, w).

3. If p = 1 and q → 1− in the class Tτ,δ
σ,p,q(ν,κ), then we have a subset Γτ,δ

σ (ν,κ),
τ ≥ 1, 0 < δ ≤ 1, 0 ≤ γ ≤ 1 of g ∈ σ that satisfy

1
2

 ζ(g′(ζ))τ

γg(ζ) + (1 − γ)ζ +
(

ζ(g′(ζ))τ

γg(ζ) + (1 − γ)ζ

) 1
δ

 ≺ 1 − u+ H(κ, ζ)

and

1
2

 w(f ′(w))τ

γf(w) + (1 − γ)w +
(

w(f ′(w))τ

γf(w) + (1 − γ)w

) 1
δ

 ≺ 1 − u+ H(κ, w).

4. Oτ
σ,p,q(γ,κ) ≡ Tτ,1

σ,p,q(γ,κ), 0 ≤ γ ≤ 1 and τ ≥ 1, is the group of g ∈ σ that
satisfy

ζ(Dp,qg(ζ))τ

γg(ζ) + (1 − γ)ζ ≺ 1 − u+ H(κ, ζ)

and
w(Dp,qf(w))τ

γf(w) + (1 − γ)w ≺ 1 − u+ H(κ, w).

Remark 1.2. i) Dτ,1
σ,p,q(x) ≡ Oτ

σ,p,q(1,κ);
ii) Γτ,1

σ (ν,κ) ≡ Oτ
σ,p=1,q→1−(γ,κ).
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In Section 2, we find estimates for |d2|, |d3| and |d3 − µd2
2|, µ ∈ R, for functions

in Yτ,δ
σ,p,q(ν,κ). In Section 3, we find estimates for |d2|, |d3| and |d3 − µd2

2|, µ ∈ R,
for functions in Tτ,δ

σ,p,q(γ,κ). Interesting results are also presented along with relevant
connections to the published research.

2. Results for the Class Yτ,δ
σ,p,q(ν,κ)

First, we determine the coefficient estimates for any function g ∈ Yτ,δ
σ,p,q(ν,κ), the

class as defined in Definition 1.2.

Theorem 2.1. Let 0 < δ ≤ 1, ν ≥ 1 and τ ≥ 1. If g ∈ Yτ,δ
σ,p,q(ν,κ), then

|d2| ≤
2δ|vκ|

√
|vκ|√

|(2δ(δ + 1)X + (1 − δ)W 2[2]2p,q)(vκ)2 − (δ + 1)2W 2[2]2p,qZ|
,(2.1)

|d3| ≤ 4δ2(vκ)2

(δ + 1)2W 2[2]2p,q

+ 2δ|vκ|
(δ + 1)U [3]p,q

,(2.2)

and for µ ∈ R

(2.3) |d3 − µd2
2| ≤


2δ|vκ|

(δ+1)U [3]p,q
, |1 − µ| ≤ J,

4δ2|vκ|3 |1−µ|
|(2δ(δ+1)X+(1−δ)2W 2[2]2p,q)(vκ)2−(δ+1)2W 2[2]2p,qZ| , |1 − µ| ≥ J,

where

J =
∣∣∣∣∣(2δ(δ + 1)X + (1 − δ)W 2[2]2p,q)v2κ2 − (δ + 1)2W 2[2]2Z

2δ(1 + δ)U [3]p,qv2κ2

∣∣∣∣∣ ,(2.4)

X =U [3]p,q + V [2]2p,q,(2.5)
U =ντ [3]p,q − 1,(2.6)

V =1 − ντ [2]p,q +
ντ(τ − 1)[2]2p,q

2 ,(2.7)

W =ντ [2]p,q − 1,(2.8)
and Z is as in (1.5).

Proof. Let g ∈ Yτ,δ
σ,p,q(γ,κ). Then, because of Definition 1.3, we obtain

1
2

ν[Dp,q(ζDp,qg(ζ))]τ + (1 − ν)
Dp,qg(ζ)

+
(
ν[Dp,q(ζDp,qg(ζ))]τ + (1 − ν)

Dp,qg(ζ)

) 1
δ

(2.9)

=1 − u+ H(κ,m(ζ))
and

1
2

ν[Dp,q(wDp,qf(w))]τ + (1 − ν)
Dp,qf(w) +

(
ν[Dp,q(wDp,qf(w))]τ + (1 − ν)

Dp,qf(w)

) 1
δ

(2.10)

=1 − u+ H(κ, n(w)),
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where

(2.11) m(ζ) = m1ζ +m2ζ
2 +m3ζ

3 + · · · and n(w) = n1w + n2w
2 + n3w

3 + · · · ,

are some functions holomorphic in D with |m(ζ)| < 1, |n(w)| < 1 and is known that

(2.12) |mi| ≤ 1 and |ni| ≤ 1, i ∈ N.

From (2.9)–(2.11), it follows that

1
2

ν[Dp,q(ζDp,qg(ζ))]τ + (1 − ν)
Dp,qg(ζ)

+
(
ν[Dp,q(ζDp,qg(ζ))]τ + (1 − ν)

Dp,qg(ζ)

) 1
δ

(2.13)

=1 − u+ H1(κ) + H2(κ)m(ζ) + H3(κ)m2(ζ) + · · ·

and

1
2

ν[Dp,q(wDp,qf(w))]τ + (1 − ν)
Dp,qf(w) +

(
ν[Dp,q(wDp,qf(w))]τ + (1 − ν)

Dp,qf(w)

) 1
δ

(2.14)

=1 − u+ H1(κ) + H2(κ)n(w) + H3(κ)n2(w) + · · · .

In the light of (1.4), we determine from (2.13) and (2.14) that

1
2

ν[Dp,q(ζDp,qg(ζ))]τ + (1 − ν)
Dp,qg(ζ)

+
(
ν[Dp,q(ζDp,qg(ζ))]τ + (1 − ν)

Dp,qg(ζ)

) 1
δ

(2.15)

=1 + H2(κ)m1ζ + [H2(κ)m2 + H3(κ)m2
1]ζ2 + · · ·

and

1
2

ν[Dp,q(wDp,qf(w))]τ + (1 − ν)
Dp,qf(w) +

(
ν[Dp,q(wDp,qf(w))]τ + (1 − ν)

Dp,qf(w)

) 1
δ

(2.16)

=1 + H2(κ)n1w + [H2(κ)n2 + H3(κ)n2
1]w2 + · · · .

Using (1.2) and comparing (2.15) and (2.16), we have

(2.17) (δ + 1)W [2]p,q

2δ d2 = H2(κ)m1,

(2.18)
(
δ + 1

2δ

)(
U [3]p,qd3 + V [2]2p,qd

2
2

)
+
(

1 − δ

4δ2

)
W 2[2]2p,qd

2
2 = H2(κ)m2+H3(κ)m2

1,

(2.19) −(δ + 1)W [2]p,q

2δ d2 = H2(κ)n1

and
(2.20)(
δ + 1

2δ

)(
U [3]p,q(2d2

2 − d3) + V [2]2p,qd
2
2

)
+
(

1 − δ

4δ2

)
W 2[2]2p,qd

2
2 = H2(κ)n2 +H3(κ)n2

1,
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where U , V and W are as mentioned in (2.6), (2.7) and (2.8), respectively. From
(2.17) and (2.19), we easily obtain

(2.21) m1 = −n1,

and also

(2.22)
(δ + 1)2W 2[2]2p,q

2δ2 d2
2 = (m2

1 + n2
1)(H2(κ))2.

The bound on |d2| is obtained by adding (2.18) and (2.20)

(2.23)
[(
δ + 1
δ

)
X +

(
1 − δ

2δ2

)
W 2[2]2p,q

]
d2

2 = H2(κ)(m2 + n2) + H3(κ)(m2
1 + n2

1),

where X is as in (2.5). The value of m2
1 + n2

1 from (2.22) is substituted in (2.23),
yielding

(2.24) d2
2 = 2δ2H3

2(κ)(m2 + n2)
(2δ(δ + 1)X + (1 − δ)W 2[2]2p,q)H2

2(κ) − (δ + 1)2W 2[2]2p,qH3(κ) .

Using (1.5) and applying (2.12) to the coefficients m2 and n2 yields (2.1).
We deduct (2.20) from (2.18) to get the bound on |d3|:

(2.25) d3 = d2
2 + H2(κ)(m2 − n2)(

δ+1
δ

)
U [3]p,q

.

Then in view of (2.21) and (2.22), (2.25) becomes

d3 = 2δ2H2
2(κ)(m2

1 + n2
1)

(δ + 1)2W 2[2]2p,q

+ δH2(κ)(m2 − n2)
(δ + 1)U [3]p,q

,

and applying (2.12) for the coefficients m1,m2, n1 and n2 we get (2.2).
From (2.24) and (2.25), for µ ∈ R, we get in view of (1.4) that

|d3 − µd2
2|

=|H2(κ)|
∣∣∣∣∣
(
B2(µ,κ) + δ

(δ + 1)U [3]p,q

)
m2 +

(
B2(µ,κ) − δ

(δ + 1)U [3]p,q

)
n2

∣∣∣∣∣ ,
where

B2(µ,κ) = 2δ2(1 − µ)H2
2(κ)

(2δ(δ + 1)X + (1 − δ)W 2[2]2p,q)H2
2(κ) − (δ + 1)2W 2[2]2p,qH3(κ) .

Clearly

|d3 − µd2
2| ≤


2δ|H2(κ)|

(δ+1)U [3]p,q
, 0 ≤ |B2(µ,κ)| ≤ δ

(δ+1)U [3]p,q
,

2|H2(κ)||B2(µ,κ)|, B2(µ,κ)| ≥ δ
(δ+1)U [3]p,q

,

which results in (2.3) with J as in (2.4) and Z as in (1.5). □
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Corollary 2.1. Let us assume that τ = 1 in Theorem 2.1. Then, for any function
g ∈ Hδ

σ,p,q(ν,κ) the upper bounds of |d2|, |d3| and |d3 −µd2
2|, µ ∈ ℜ, are given by (2.1),

(2.2) and (2.3), respectively, with U = U1 = ν[3]p,q − 1, V = V1 = 1 − ν[2]p,q, W =
W1 = −V1 and X = X1 = U1[3]p,q + V1[2]2p,q. To change U1, V1, W1 and X1 for U , V ,
W and X, respectively, for J in (2.4) and Z, as stated in (1.5).

Corollary 2.2. Let us assume that ν = 1 in Theorem 2.1. Then for any function
g ∈ Iτ,δ

σ,p,q(κ) the upper bounds of |d2|, |d3| and |d3 − µd2
2|, µ ∈ ℜ, are given by (2.1),

(2.2) and (2.3), respectively, with U = U2 = τ [3]p,q − 1, V = V2 = 1 − τ [2]p,q +
τ(τ−1)[2]2p,q

2 , W = W2 = τ [2]p,q − 1 and X = X2 = U2[3]p,q + V2[2]2p,q. For J in (2.4),
U2, V2, W2 and X2 should be used in place of U , V , W and X, respectively, and Z,
as stated in (1.5).

Taking p = 1 and q → 1− in the Theorem 2.1, we get the following.

Corollary 2.3. Let 0 < δ ≤ 1, τ ≥ 1 and ν ≥ 1. If g ∈ Υτ,δ
σ (ν,κ), then

|d2| ≤
δ|vκ|

√
2|vκ|√

|(δ(δ + 1)Y + 2(1 − δ)(2ντ − 1)2)(vκ)2 − 2(δ + 1)2(2ντ − 1)2Z|
,

|d3| ≤
(

δvκ
(δ + 1)(2ντ − 1)

)2

+ 2δ|vκ|
3(δ + 1)(3ντ − 1) ,

and for µ ∈ R

|d3 − µd2
2| ≤


2δ|vκ|

3(δ+1)(3ντ−1) , |1 − µ| ≤ J1,
2δ2|vκ|3 |1−µ|

|(δ(δ+1)Y +2(1−δ)(2ντ−1)2)(vκ)2−2(δ+1)2(2ντ−1)2Z| , |1 − µ| ≥ J1,

where

J1 =
∣∣∣∣∣(δ(δ + 1)Y + 2(1 − δ)(2ντ − 1)2)(vκ)2 − 2(δ + 1)2(2ντ − 1)2Z

3δ(δ + 1)(3ντ − 1)v2κ2

∣∣∣∣∣ ,
Y = 8ντ 2 − 7ντ + 1 and Z is as in (1.5).

Remark 2.1. i) In Corollary 2.3, δ = 1 yields Theorem 2.2 of Swamy and Sailaja [50].
Moreover, we obtain Corollaries 2.3 and 2.4 of Swamy and Sailaja [50], for τ = 1 and
ν = 1, respectively.

ii) Using δ = τ = ν = 1 in Corollary 2.3 we derive Corollary 1 of Horhan et al. [34].

Taking δ = 1 in the above theorem, we get the following.

Corollary 2.4. If g ∈ Zτ
σ,p,q(ν,κ), ν ≥ 1 and τ ≥ 1, then

|d2| ≤
|vκ|

√
|vκ|√

|X(vκ)2 −W 2[2]2p,qZ|
, |d3| ≤ (vκ)2

W 2[2]2p,q

+ |vκ|
U [3]p,q

,
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and for µ ∈ R

|d3 − µd2
2| ≤


|vκ|

U [3]p,q
, |1 − µ| ≤

∣∣∣Xv2κ2−W 2[2]2Z
U [3]p,qv2κ2

∣∣∣ ,
|vκ|3 |1−µ|

|X(vκ)2−W 2[2]2p,qZ| , |1 − µ| ≥
∣∣∣Xv2κ2−W 2[2]2Z

U [3]p,qv2κ2

∣∣∣ ,
where X, U , V and W are as detailed in (2.5), (2.6), (2.7) and (2.8), respectively.

Remark 2.2. i) In Corollary 2.4, q → 1− and p = 1 yields Theorem 2.2 of Swamy and
Sailaja [50]. Moreover, we obtain Corollaries 2.3 and 2.4 of Swamy and Sailaja [50],
for τ = 1 and ν = 1, respectively.

ii) Using ν = τ = 1, q → 1− and p = 1 in Corollary 2.4 we derive Corollary 1 of
Horhan et al. [34].

3. Results for the Class Tτ,δ
σ,p,q(γ,κ)

First, we calculate the coefficient estimates for any function g ∈ Tτ,δ
σ,p,q(γ,κ), the

class as defined in Definition 1.3.

Theorem 3.1. Let 0 < δ ≤ 1, τ ≥ 1 and 0 ≤ ν ≤ 1. If g ∈ Tτ,δ
σ,p,q(γ,κ), then

|d2| ≤
2δ|vκ|

√
|vκ|√

|(2δ(δ + 1)(A+ S) + (1 − δ)B2)(vκ)2 − (δ + 1)2B2Z|
,(3.1)

|d3| ≤ 4δ2(vκ)2

(δ + 1)2B2 + 2δ|vκ|
(δ + 1)A,(3.2)

and for µ ∈ R

(3.3) |d3 − µd2
2| ≤


2δ|vκ|

(δ+1)A , |1 − µ| ≤ Q,
4δ2|vκ|3 |1−µ|

|(2δ(δ+1)(A+S)+(1−δ)B2)(vκ)2−(δ+1)2B2Z| , |1 − µ| ≥ Q,

where

Q =
∣∣∣∣∣(2δ(δ + 1)(A+ S) + (1 − δ)B)2)v2κ2 − (δ + 1)2B)2Z

2δ(1 + δ)Av2κ2

∣∣∣∣∣ ,(3.4)

A =τ [3]p,q − γ,(3.5)

S =
τ(τ − 1)[2]2p,q

2 − γτ [2]p,q + γ2,(3.6)

B =τ [2]p,q − γ,(3.7)

and Z is as in (1.5).

Proof. Let g ∈ Tτ,δ
σ,p,q(γ,κ). Following that, due to Definition 1.3, we obtain

(3.8) 1
2

 ζ(Dp,qg(ζ))τ

γg(ζ) + (1 − γ)ζ +
(

ζ(Dp,qg(ζ))τ

γg(ζ) + (1 − γ)ζ

) 1
δ

 = 1 − u+ H(κ,m(ζ))
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and

(3.9) 1
2

 w(Dp,qf(w))τ

γf(w) + (1 − γ)w +
(

w(Dp,qf(w))τ

γf(w) + (1 − γ)w

) 1
δ

 = 1 − u+ H(κ, n(w)),

where m(ζ) and n(w) are regular functions as given in (2.11) satisfying (2.12).
By going through the steps in the proof of Theorem 2.1 to obtain (2.13), (2.14),

(2.15), and (2.16), one can easily get the following in view (3.8) and (3.9).

(δ + 1)B
2δ d2 =H2(κ)m1,(3.10) (

δ + 1
2δ

)(
Ad3 + Sd2

2

)
+
(

1 − δ

4δ2

)
B2d2

2 =H2(κ)m2 + H3(κ)m2
1,(3.11)

−(δ + 1)B
2δ d2 =H2(κ)n1(3.12)

and

(3.13)
(
δ + 1

2δ

)(
A(2d2

2 − d3) + Sd2
2

)
+
(

1 − δ

4δ2

)
B2d2

2 = H2(κ)n2 + H3(κ)n2
1,

where A, S and B are as mentioned in (3.5), (3.6) and (3.7), respectively. From (3.10)
and (3.12), we easily obtain
(3.14) m1 = −n1,

and also

(3.15) (δ + 1)2B2

2δ2 d2
2 = (m2

1 + n2
1)(H2(κ))2.

We add (3.11) and (3.13) to obtain the bound on |d2|:

(3.16)
((

δ + 1
δ

)
(A+ S) +

(
1 − δ

2δ2

)
B2
)
d2

2 = H2(κ)(m2 + n2) + H3(κ)(m2
1 + n2

1).

The value of m2
1 + n2

1 from (3.15) is substituted in (3.16) to obtain

(3.17) d2
2 = 2δ2H3

2(κ)(m2 + n2)
(2δ(δ + 1)(A+ S) + (1 − δ)B2)H2

2(κ) − (δ + 1)2B2H3(κ) .

Using (1.5) and applying (2.12) for the coefficients m2 and n2, we obtain (3.1).
We subtract (3.13) from (3.11) to get the bound on |d3|:

(3.18) d3 = d2
2 + H2(κ)(m2 − n2)(

δ+1
δ

)
A

.

Then in view of (3.14) and (3.15), (3.18) becomes

d3 = 2δ2H2
2(κ)(m2

1 + n2
1)

(δ + 1)2B2 + δH2(κ)(m2 − n2)
(δ + 1)A ,

and applying (2.12) for the coefficients m1,m2, n1 and n2 we get (3.2).
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From (3.17) and (3.18), for µ ∈ R, we get in view of (1.4) that

|d3 − µd2
2| = |H2(κ)|

2

∣∣∣∣∣
(
B1(µ,κ) + δ

(δ + 1)A

)
m2 +

(
B1(µ,κ) − δ

(δ + 1)A

)
n2

∣∣∣∣∣ ,
where

B1(µ,κ) = 2δ2(1 − µ)H2
2(κ)

(2δ(δ + 1)(A+ S) + (1 − δ)B2)H2
2(κ) − (δ + 1)2B2H3(κ) .

Clearly,

|d3 − µd2
2| ≤


|H2(κ)|
(δ+1)A , 0 ≤ |B1(µ,κ)| ≤ δ

(δ+1)A ,

|H2(κ)| · |B1(µ,κ)|, |B1(µ,κ)| ≥ δ
(δ+1)A ,

from which we conclude (3.3) with Q as in (3.4) and Z as in (1.5). □

Corollary 3.1. Let γ = 0 in the above theorem. Then, the upper bounds of |d2|, |d3|,
and |d3 − µd2

2|, µ ∈ ℜ, for any function g ∈ Hδ
σ,p,q(κ) are given by (3.1), (3.2) and

(3.3), respectively, with A = A1 = τ [3]p,q, S = S1 = τ(τ−1)[2]2p,q

2 and B = B1 = τ [2]p,q.
A1, S1 and B1 should be used in place of A, S and B, respectively, for Q in (3.4), and
Z is as stated in (1.5).

Corollary 3.2. Let γ = 1 in the above theorem. Then, the upper bounds of |d2|, |d3|
and |d3 − µd2

2|, µ ∈ ℜ, for any function g ∈ Iτ,δ
σ,p,q(κ) are given by (3.1), (3.2) and

(3.3), respectively, with A = A2 = τ [3]p,q − 1, S = S2 = 1 + τ(τ−1)[2]2p,q

2 − τ [2]p,q

and B = B2 = τ [2]p,q − 1. A2, S2 and B2 should be used in place of A, S and B,
respectively, for Q in (3.4), and Z is as stated in (1.5).

Taking p = 1 and q → 1− in the Theorem 3.1, we get the following.

Corollary 3.3. Let 0 < δ ≤ 1, τ ≥ 1 and 0 ≤ γ ≤ 1. If g ∈ Γτ,δ
σ (γ,κ), then

|d2| ≤
2δ|vκ|

√
2|vκ|√

|2δ(δ + 1)𭟋(vκ)2 − (δ + 1)2(2τ − γ)2Z|
,

|d3| ≤
(

2δvκ
(δ + 1)(2τ − γ)

)2

+ 2δ|vκ|
(δ + 1)(3τ − γ) ,

and for µ ∈ R

|d3 − µd2
2| ≤


2δ|vκ|

(δ+1)(3τ−γ) , |1 − µ| ≤ Q1,
2δ2|vκ|3 |1−µ|

|2δ(δ+1)𭟋(vκ)2−(δ+1)2(2τ−γ)2Z| , |1 − µ| ≥ Q1,

where
Q1 =

∣∣∣∣∣2δ(δ + 1)𭟋(vκ)2 − (δ + 1)2(2τ − γ)2Z

δ(δ + 1)(3τ − γ)v2κ2

∣∣∣∣∣ ,
𭟋 = (2τ + 1)(τ − γ) + γ2 + (1 − δ)(2τ − γ)2,

and Z is as given in (1.5).
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Remark 3.1. i) In Corollary 3.3, γ = 1 and τ = 1 yield Theorem 2 of Srivastava et al.
[40].

ii) Corollary 3.3, where δ = 1, yields Corollary 3.3 in [49]. Furthermore, Theorem
2.1 of [1] is obtained when γ = 1.

iii) In Corollary 3.3, δ = 1, τ = 1 and γ = 0 yield Corollary 2 of Horan et al. [34].

Corollary 3.4. If g ∈ Oτ
σ,p,q(γ,κ), 0 ≤ γ ≤ 1 and τ ≥ 1, then

|d2| ≤
|vκ|

√
|vκ|√

|(A+ S)(vκ)2 −B2Z|
, |d3| ≤ (vκ)2

B2 + |vκ|
A

,

and for µ ∈ R

|d3 − µd2
2| ≤


|vκ|
A
, |1 − µ| ≤

∣∣∣ (A+S)v2κ2−B2Z
Av2κ2

∣∣∣ ,
|vκ|3 |1−µ|

|(A+S)(vκ)2−B2Z| , |1 − µ| ≥
∣∣∣ (A+S)v2κ2−B2Z

Av2κ2

∣∣∣ ,
where Z, A, S and B are as mentioned in (1.5), (3.5), (3.6) and (3.7), respectively.

Remark 3.2. i) From Corollary 3.4, letting p = 1 and q → 1−, we obtain Corllary 3.3,
which is demonstrated in [49]. Moreover, Theorem 2.1 of [1] is obtained when γ = 1.

ii) We obtain Corollary 2 of Horan et al. [34], if we take p = 1, q → 1−, γ = 0 and
τ = 1 in Corollary 3.4.

4. Conclusion

This study establishes upper bounds on |d2| and |d3| for funcions in two subfamilies
of σ related to Horadam polynomials. Moreover, the Fekete-Szegö functional |d3 −
µd2

2|, µ ∈ R has been identified for functions in these subfamilies. By varying the
parameters in Theorem 2.1 and Theorem 3.1, we have been able to highlight a
number of implications. Additionally, pertinent links to the ongoing research are
found. Nevertheless, this paper does not address all of the significant subclasses of
σ that exist in the literature. For example, authors [32, 37] have examined various
subclasses involving operators introduced in (p, q)-calculus. It is recommended that
the interested reader review these papers and the associated references.

Acknowledgements. The authors express their gratitude to the referees for their
insightful comments and recommendations.
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