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TWO-DIMENSIONAL WAVELET WITH MATRIX DILATION
M =21 AND ITS APPLICATION IN SOLVING INTEGRAL
EQUATIONS

MAHDIEH TAHAMI' AND ATAOLLAH ASKARI HEMMAT?3

ABSTRACT. In this study, using a one-dimensionl MRA we constructed a two-
dimensional wavelet as well as four masks which are not related to the MRA. Finally,
we provide some examples to prove the applicability of our construction in case of
finding numerical solution of two-dimensional first kind Fredholm integral equations.

1. INTRODUCTION

Let {V;} be a one-dimensional multiresolution analysis (MRA) with scaling function
¢ and mother wavelet ¢, then ®(z,y) = ¢(z)p(y) is a scaling function for two-
dimensional MRA and in this case, we have 3 mother wavelets

(L) 0%a,y) = o(@)¥(y),  V(z.y) = v(@)(y), Pi(x,y) = (@) (y).
It means that {\I/;(S’t) : J,8,t € Z,r = a,b,d} consists of an orthonormal basis for
L3(R). For more details see [1,3,9].

In applications, finding a way to construct a wavelet with a smaller frequency domain
and correspondingly increase in time domain is of great importance. The higher the
number of mother wavelets, the more accurate the answer would be. Finding a way
to minimizing frequency domain and so maximizing accuracy is so important. For
more details see [3].

In Section 2, first we refer to the meaning of a two-dimensional wavelet by matrix
dilation and then we present a way to construct a two-dimensional wavelet with small
frequency domain and high accuracy by using a two-dimensional MRA and four masks
which are not related to the MRA. In Section 3, we will find numerical solution for
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two first kind Fredholm integral equations. This kind of equations provide an ill-posed
system, i.e., there might be no solutions or no unique solution and even no stable
solution. Solving this type of integral equation is not easy.

2. TwoO-DIMENSIONAL WAVELET WITH MATRIX DILATION M = 2]

In the subject of wavelet with matrix dilation M, we shall assume that M is a fixed
quadratic integer matrix such that all its eigenvalues are greater than one in modulus,
m = | det M|. In this paper we consider M = 21, especially.

Definition 2.1 ([8]). A collection of closed subspaces V; C L*(R?), j € Z, is called
a multiresolution analysis (MRA) in L*(R?) with matrix dilation M if the following
conditions hold:

MRAL: V; C Vjy, for all j € Z;

MRA2: Ujez V; is dense in L*(R?);

MRA3: ez V; = {0}: |

MRA4: f e V;if and only if f(M~7-) € V; for all j € Z;

MRASB: there exists a function ¢ € V; such that the sequence {¢(- +m, - +n) } ez
forms an orthonormal basis in Vg (¢ is called scaling function).

Let ¢ be a scaling function for an MRA. Using properties MRA1, MRA5 and
notation
Jisy == m2f(M? - +(s,t), j,s,t€Z,
we get the refinement equation
(2.1) ¢= D habrsn, D |hel® < o0
s,teZ s,t€Z

Applying the Fourier transform,

d6r,&) = [ [ dla.y)e S dudy,
to both sides of above equality, we get
9(€1,6) = mo(M™H(61,62)) (M (&1, &),

where

1 .
o —= 2mi(sn1+t
mo(n1,m2) = m™2 E hste (smttn2)
S,tEL

As in the one-dimensional case, the function myg is called a mask. For more details
see [8].

Ezample 2.1. Let M = 21 and ¢(x,y) = Xjo,1)x[0,1)(%,y). From (2.1), we have
¢(£L’,y) = 2 Z hs,t¢(2$ + 57 2y _'_ t)>

S,tEZ

and we conclude that

¢($a y) = Q[h—l,—1¢(2$_ 1a 2y— 1) +h_170¢<29§'— 17 y)+h0,—1¢(2'xa 2y— 1) +h0,0¢($a y)]a
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where h_y _1,h_10,ho-1,h00 = %
Hence,
1 1 1 1

1 s . .
— = [ Zp2mi(=&—&) 4 —2mi(—&) 4 — 2mi(—&2) 4 —
mo(&1,€2) 5 (26 +5e + 3¢ + 2).

Definition 2.2 ([8]). If A is a nonsingular integer 2 x 2 matrix, we say the vectors
(k,1), (s,t) € Z* are congruent modulo A and write (k,1) = (s,t) (mod A) if (k,l) —
(s,t) = A(p,q) for some (p,q) € Z* The integer lattice Z? is partitioned into
cosets with respect to the congruence introduced above. Any set containing only one
representative of each coset is called a set of digits of the matrix A. When it does not
matter which set of digits is chosen, we shall assume that it is chosen arbitrarily and
denote it by D(A).

Example 2.2. For M = 21, we consider
D(M) = {SO = (OvO)a S1 = (07 _1)7 S9 = (_170)7 §3 = (_1a _1)}

Theorem 2.1 ([8]). Suppose an MRA {V,};ez is generated by a scaling function
¢ with mask my and the system {¢(- + (s,t))}stez is orthonormal. Let D(M*) =
{s0,--+,8m_1}. Let there exist functions m, € L*([0,1] x [0,1]), v = 0,...,m — 1,
such that the matriz

(2.2) M = {m, (&, &) + M sp) by

is unitary, that is, MM* = MM = I. Take the functions v, v =1,... . m — 1,
defined by the equalities

(&1, &) = my (M (61, ) (M1 (€1, &)).
Then the system {1/Jj(l’()kl)} is an orthonormal basis in the space L?(R?).

The following lemma is a portrait of some remark in [8, page 93].

Lemma 2.1. Let ¢ be a scaling function with mask

m—1
1 .
mo(&1,€2) =m™2 Y b, ePmien ),
k=0
such that hoy,’s are real numbers, k =0,...,m — 1, and 7 |hox|* = 1. Define
L m—1 .
m,(€1,&) =m™2 Y kY e2milenni),
k=0
v = 0 v —_ _ hg,khg,u _ . )
where hiy = hg ,, i =0, — 350%, v=1,...,m — 1. Then the matriz
7 7 ' —"0,0

M = {m, (&1, ) + M*Ls) yr

18 unitary.

Proof. Since 37! Wy P =1forv=1,...,m—1, and St hy h e = 0 for v # pu,

M is unitary. O
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Ezample 2.3. Consider mask mg in example (2.1),

. 1 1 1 —2mify 1 —2mi&1 1 —27Ti(£1+§2)>
mo(&1,&2) = 9 <2+26 +2€ +2e ‘
Take
1 1 n 1 ]_ . n ]_ ;
mnl1,60) = 5 (5 (CDEIZeT I g (21 g (PR Ere)),

for n = 1,2,3, where [-] denotes integer part. Hence,

mo(&1,&2) ™Mo (51752 %) Mo (51 5,52) mo(& —1¢ %)
(2'3) M — (51, 52) my (51752 %) m1( 2,52) ml(fl - %752 - %)

m2(§1 2) m2<§ %) mo (51 2752) m2(§1 - % 3 %)

m3(§1, 52) ms3 (51752 %) ms (51 ) ms (51 - % S — %)
is unitary.

Since the matrix (2.2) is unitary we have some useful formulas for m,, v =
0,...,m—1, as

(2.4) S (€0 €) + M) = 1

For all V,M:o,...,m—szo

(2.5) mZ_l my ((€1,&2) + M s )M (&1, &) + M*sp) = 0, for v # p,
and -

Z |mu((£1752)+M*_13k)|2:17 fork:(),...,m—l,

v=0
and forall k=1,...,m —1,

m—1

(2.6) Z: my((&, &) + M 'sp)m, (€, &) = 0.

Theorem 2.2. Let f(z,y) be a function such that {f(- —s,- —t) : s,t € Z} is
an orthonormal system and let mo(&1, &) = 33, eg h2, €™ E0H2) and m, (&,&) =
23 sen WY, €M8T) 1y = 1.2 3, are masks with matriz dilation M = 2I such that
(2.3) is unitary. Define

:Zh?7tf(a:—s,y—t), n=20,123.
s,t

Then
(2.7) {F,(-—2k,-—=2l) :n=0,...,3, k,l € Z}

is an orthonormal basis for span{f(- —s,- —t) : s,t € Z}.
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Proof. First of all, we calculate some useful formulas.
By definition of F,,, for v = 1,2, 3,

(2.8) F (&1, &) = 2m, (€1, &) f (1, &)
Since {f(- —s,- —t) : s,t € Z} is an orthonormal set so

1, ifs=t=0,

0, o.w,

<ﬂf0—&-—ﬂ>={

and since

(fi f(=s,-—1))

<f< ) —2mi(s-+t-) // |f 517 |2 2mi(s€1+t€2)
-3 e ) pemes e g dg,

= [ [ S1i + k& + Do ag e,
kil

noticing Fourier cofficients, we conclude that

(2.9) Z f&+k&+D*P=1 ae,

Also, by (2.4), (2.5), (2.8) and (2.9), we have

A L)
R A )

F,,
20+ 1 2k 2041
+> u<§1 *52 )Fu<§1_27£2_2)
k.l
2k+1 20\ = 2k +1 21
+ lFu<§1 —2>Fu<51—27§2—2>
—~ 2k +1 2041 2k +1 2041
+ZFV<£1_ 9 752_ 92 ) <§1 9 752_2>
k.l

9 2%k 2 2k 21\ |?
=4 v a0 I 5 0 Y
z m <§1 §o — ) m (51 5 & — 5 ) <§1 &2 9 )
44 my<gl—§2 2”1)%(51_2’“&_2”1)
l

27 2
xf(& 52—2”1>

653
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+4Y " m <§1 2k+1§2—2l>mu<§1 2k+1§2—2l>
ol

2 2
f<§1 2]64—152 2l>

2k +1 20+ 1 2k +1 20+ 1
+4Zmu(§1— 5 52—2>mu<§1 5 &2 — 5 )

2
y f<£1_2k+1 §2_2l+1>

X

2 7 2

i T o (- Y

+m,, <§1 — ;afz) my (51 — ;752) +m, (51 — ;,52 - ;) my (51 — ;,52 — ;)]
(2.10)
4, if p=v,
- {0, if p #v.
Now we are ready to show that {F,(-—2k,-—2l) : v =0,...,3},,ez is an orthonormal
set. By (2.10),

(Fy, F (- —2s,-—2t))
—//F&& &&Vm“@%@

(I+1)/2 p(k —_ .
/ +1 2/ +1 51762) (61 g) 47r7,(s§1+t§2)d§1d€2

—/ / ZF (61 5r&t ) <£1+ ,§2+é> ') g, e,

_{1, ifv=pand s=t=1,

0, o.w.

Now we will show that the set (2.7) will generate the set {f(- —s,- —t) : s,t € Z}.
In this order we will use the bellow equalities:

my (&1, &2) + my, <§1,§2 - ;) +m, (fl — ;7§2> +m, (51 _ ;52 _ ;)
_9 Z B,y 28]

Tm@@g—m(@@—;)+m(&—;@)—m(&—;&—;)
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271'2 (2s&1+(2t41)¢
=2 Z h2s 2t+1 1+ ) 2)

my (&1, €2) + My, <51 2 — ;) —my (fl - ;,52) —my (51 - ;fz - ;)
—22h2s+1 o€ 2mi(( 2s+1)£1+2t§2)

1 1 1 1
m(€ &) = m (66— 5 ) —mo (6 - 5.6) +m (6 - 3.6 )
(211) =9 Z h25+1 2t+1627m (2s+1)61+(2t+1)&2) ‘

Hence, by (2.4), (2.6) and (2.11), we have

> hp o Fo(- + 2k, +20) + h;mﬂ(- + 2k, -+ 21) + hngz(- + 2k, -+ 21)
k,l

o~

+ h%k 21F3(' + 2k, + QZ)] (€1, €2)

=2 Z Z g2 21 e iREIF2I) my, (&1, &2) f(fl, &)

v=0 k,l

= [ mo (&1, &2) + mo (51:52 - ;) +mg (51 - ;’§2>

+ mo <§1 - ;52 - ;)} mo(fla&)f(fl,&) + {m1(§17§2) +my (51752 - ;)
+ my (51 - ;&) +my <§1 - ;752 - ;)} mi(61,&) f(&,&)

+ {mz(fl,&) + my (51752 - ;) + my (51 - ;52>
+ My <€1 - ;,52 - ;)} ma(&1, &) f (&1, &) + [m3(51»f2) +ms <fl>§2 - ;)
+mg (fl - ;&) +m3 (fl - 5,52 - ;)] ms (&1, &) f(fbfZ)

A 3 A 3 —
—(61.6) > Imul@, &) + flene) Som (6.6 - 3 ) m(6.&)
v=0 v=0
3
S (GRAD A
v=0
3 —
Hf6ne) Xm (6 56— 5)m@ae)
=/(&,&).

1= ;,52) mu(fi,fé)
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Similarly, we have

Z hi o1 Fo (- + 2k, - +20) + h3, o1 Py (- + 2k, -+ 20)

o~

+ W Fo (- 4 2k, -+ 20) + By oy Fs (- + 2k, - + 21) | (&1, 62)
—JEZEI%MHe%”“ﬁM” my(€1,6)f(61,6)
v=0 k,l
3
=e 2 f (£, &) > |:mu(§17 &) —my, (51,52 ) +m, (5 ;,52)

v=0

- (6= 5.6 - 5) | @ &)
=[f(- = D](E. &)

and

Zh k1,2 F0( + 2k, 4 20) + hogyy g F1 (- + 2K, -+ 20) + Dy oy Fo(- + 2K, - + 21)

o~

+ h3y g o Fs(- 4 2k, -+ 20) | (&1,&)

=2 Z Z h2k+1 26 2W2(2k§1+2l£2 my (517 62)f(€17 52)

v=0 k,l

—e 72 f(£),6,) ;i:o [mu(él,&) +m, (51752 — ;) —m, (fl - ;,§2>
(6= 3.6 — 5 )| @8 = 176 — 1,6 )

and

Z hgk+1,2l+1F (- + 2k, +20) + h2k+1 o Fr (- + 2k, -+ 21)

~

(&1, &)

+ h2k+1 o1 Fo(- + 2k, - +21) + h2k+1 o1 F3(- + 2k, - 4 21)

3 e —
=2 Z Z hgk,2162m(2k§1+2l§2)my(51, &)

v=0 k,l

v=0
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+my, <§1 - ;fz - ;)] my (&1, &2)

=[/C =1, =D&, &). 0

The above theorem shows that wavelet filters can be used to split any space spanned
by two-dimensional orthonormal functions f(- — s, - —t) into four parts. We can apply
this method to the space W, spanned by the ¢ (- — s, — t) in a two-dimensional
multiresolution analysis with matrix dilation 27. In particular, if we choose arbitrary
functions m,, in Theorem 2.2 we have the following.

Corollary 2.1. Let ¢p € L*(R?) be a two-dimensional wavelet which is generated

by an MRA {V;}jez and let m,, v =0,...,3, are masks not necessary related to 1.
Define

¢V('T7y):zh;t¢(x_s7y_t>7 V:O7"'73'
st
Then {1 o011 ¥ = 0,...,3}jk1ez consists of an orthonormal basis for Span{y} o, o) :
vV = O, ey 3}j,k,l€Z'

Proof. Let W, be the orthonormal complement in V;.; of V;. Since Wy =
span{y(- — k,- —1) : k,l € Z}, by preceding theorem,

Wo =span{y°(- — 2k,- — 21) : I,k € Z} P span{¢' (- — 2k,- —21) : I,k € Z}
P span{v®(- — 2k, —21) : I,k € Z} P span{y? (- — 2k,- —21) : I,k € Z}
—Wy W DWW D W

Since each Wg, j =0,...,3, is generated by translations of ¥’(- — 2k, — 2[), by
dilation we can construct corresponding orthonormal bases for each W,, and their
union is again a basis for span{@/)‘;”(zml) v =0,...,3}jkiez OJ

Corollary 2.2. Let vy be a one dimensional wavelet with scaling function ¢. Consider
masks m,,, v =0,...,3, which is asserted in Theorem 2.2. Define

U =3 "Rl —s,-—1), i=1,....3,
s,t

Uor=3N"hL (=5, —t), i=1,...,3,
s,t

U =3"hl (- —s,-—t), i=1,...,3.
s,t

Then, by Corollary 2.1,
{Wlyeay i 7 =0,b,d, i=0,...,3}

is an orthonormal basis for L*(R?), where W", r = a,b,d are defined as (1.1).
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3. CONSTRUCTING AN EXAMPLE AND APPLICATION OF EXAMPLE

3.1. Example. Consider one-dimensional Haar wavelet with scaling function ¢ =

X[0,1)
1 if v € {O 1)
i
) x 17 2 )
(@) -1, ifxe {, 1) ,

0, 0.W.,
then
1
Lo ifre(0.Dye o).
a - 1
\\ (SU,ZI)— —17 1f§[7€ [O,l),yE |:2,].>7
0, 0.W.,

—_

—
[\]

if x e ,y €10,1),

?

1, ifre [0) Ly €[0,1),

[\

0, 0.W.,

1 1
1, ifx,ye[0,2> or x,y € {2,1>,
e = it ng)we [5) oaefpr)weog)
’ -1, if — -1 -1 —
, ifxe 0,2 Y € 5 or x € 5 Y € 072 ,
0, 0.W.

Now consider the masks in the Example (2.3), we have

1

hg,o :h87_1 = h0—1,0 = hg1,—1 = 9
1 1
hé,o :h(l),—l = 9 hl—l,O = h1—1,—1 = Ty
1 1
h(2)0 :h2—10 = ) h(2)—1 = h2—1_1 =5

So, we have

0
\IJ%O(':&y) = Z hg,tqja(x —$Y— t)

s,it=—1

1
25[‘11“(% y) + ¥z, y + 1)+ V(x4 1,y) + V' (z + 1,y + 1)]
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1 1 1
3 if (x,y) € [0,1) x |0, 5) or (z,y) € [-1,1) x |0, 5)
1
or (I7y) € [_17 1) X [_17 __> )
R N |
_57 if (l‘,y) € [_17 1) X [57 1) or (ZL’,y) € [_17 1) X _570) )
0, 0.W.

Similary,

Ur0(z,y) = %[\I}’"(x,y) + 0 (z,y+ 1)+ ¥ (x+1,y) + 9 (z+1L,y+1)], r=0b,d,
and

T (2, ) :%[qﬂ(x, W) LUy 4+ 1) — U (et Ly) - U+ Ly+ 1), r=abd
T2z, ) :%[klfr(x, ) = V(e + 1) L U (@t Ly) - U@+ Ly+ 1), r—abd
(e, y) =5 [V ()~ Wy + 1)~ (e Ly) 4 W a4 Ly + 1)), 7= abd
Hence, {270"™1(27. -2k, 27-=21) : i =0,...,3, r =a,b,d, j, k,| € Z} is an orthonormal

basis for L*(R?).
The diagram of the 12 mother wavelets is shown in Figures 1-12.

FIGURE 1. U*%(z,y)

3.2. Application of example in solving two dimensional first kind Fredholm
integral equation. Now we are going to show that our example consists a useful
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FIGURE 3. U*?(z,y)

basis wavelet to find numerical solution for the first kind Fredholm integral equations.
A two-dimensional first kind Fredholm integral equation has the following form

(3.1) F) = [ [ b 08 (s, D)dsdr

where k(x,y,s,t) and f(x,y) are known functions and u(z,y) is an unknown function
to be determined. To solve (3.1), if {U,;, : 7,k € Z} is a wavelet basis let 5 be a finite
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FIGURE 5. W0(z, y)

subset of it. If 4 is an approximated solution for (3.1) which is compute by § take

7= /Cd /abk:(x,y,s,t)g(ﬂ(s,t))dsdt— Fla,y).

To find @, we have to solve the system (7,y) = 0 for all y € . Since first kind
Fredholm integral equations generate ill-conditioned systems, to solve the mentioned
system we use Tikhonov regularization. Note that if @ is a solution for (3.1), then
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FIGURE 7. Ub2(z,y)

I7]]2 = 0. Then we are going to find @ such that ||7||2 be the smallest. We named the
value of ||7||2 as L?>-norm of error. For more details see [2,4,7,9].

Now by using wavelet basis which was presented in the former subsection, we are
going to solve two following examples.
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FIGURE 9. W40(x, y)

Example 3.1. Consider the integral equation

1 el 15(99442% + 16549
/ / (225 + yt*)u(s, t)dsdt = ( v y)
0 Jo

131072

We have
i(z,y) = — 3.78777TV* (. y) — 3.787TTV* (x,y) — 3.78TTTVU*?(z, )
— 3.78TTTU3 (2, 7) — 2.276W"0 (2, ) — 2.276 W (2, y)
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FIGURE 11. ¥4%(z,y)

— 2.2769°% (2, y)2.2760" (2, y) + O (2, y) + ¥ (z,y) + ¥ (z,y)
+ 0z, y).
The L?-norm of error equals 1.42968 x 10711,
If we use two-dimensional Haar wavelets which are made by (1.1), our numerical

solution is —7.57553W%(z, y) —4.552¥°(x, y) + ¥¥(z, y) and the L2-norm of error equals
1.03387 x 1078,
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FIGURE 12. ¥43(z,y)

FExample 3.2. Consider integral equation

/01 /Ol(ar2 +yt) (WP (s, 1) — uls, t))dsdt =

(1245 m) (222 + y)
127 )
We have

i(z,y) =0.08418320*°(z, y) 4+ 0.0841832W ! (z,y) + 0.0841832W*?(x, 3)
4 0.08418320%3(z, y) + 0.145072W%° (. i) + 0.145072T%! (2, y)
+0.145072W%2 (2, ) + 0.1450720%3 (2, 9) + 0.1450720 %0 (2, )
+0.1450720% (1, ) + 0.1450720%2 (2, ) + 0.1450720%3 (2, 3/).

The L?-norm of error equals 1.13239 x 1077,
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