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ON THE NORMALIZED LAPLACIAN SPECTRUM OF SOME
GRAPHS

RENNY P. VARGHESE1 AND D. SUSHA1

Abstract. In this paper we determine the normalized Laplacian spectrum of dupli-
cation vertex join of two graphs, duplication graph, splitting graph and double graph
of a regular graph. Here we investigate some graph invariants like the normalized
Laplacian energy, Kemeny’s constant and number of spanning tree of these graphs.

1. Introduction

All graphs explained in this paper are undirected, without parallel edges and loops.
Let G = G(V,E) be a graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set
E(G). The adjacency matrix, A(G) = (aij)n×n, is an n × n symmetric matrix with
rows and columns are indexed by vertices of G where aij = 1 if the vertices vi and
vj are adjacent in G, 0 elsewhere. The characteristic polynomial of A is of the form
fG(A : x) = det(xIn − A) where In is the identity matrix of order n. The roots of
fG(A : x) = 0 constitute the eigenvalues of G. We denote these as λ1 ≥ λ2 ≥ · · · ≥ λn
and form the A - spectrum of G.

Let di be the degree of the vertex vi in G and D(G) = diag(d1, d2, . . . , dn) be the
diagonal degree matrix of G. The matrix D−1/2 is a diagonal matrix with diagonal
entries 1√

di
for all i. Chung in [5] introduced a new matrix called, normalized Laplacian

matrix of a graph G. It is defined to be the matrix L̃(G) = D−1/2LD−1/2, whose
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(i, j)th - entry is given by,

L̃ij =


1, if vi = vj and di 6= 0,
−1√
didj

, if vi and vj are adjacent,

0 otherwise.

The roots of the characteristic equation of L̃ are known as the normalized Laplacian
eigenvalues of G. Since L̃(G) is symmetric and positive semi definite matrix, its
eigenvalues are all real and non negative of the form 0 = σ1 ≤ σ2 ≤ · · · ≤ σn. These
eigenvalues together their multiplicities is called normalized Laplacian spectrum or
L̃-spectrum of G and is denoted by L̃Spec(G).

The mathematicians like Chen and Zhang express the resistance distance in terms
of normalized Laplacian eigenvalues and vectors of the graph G [4]. Also they propose
degree-Kirchhoff index is closely related to spectrum of the normalized Laplacian. The
concept of limit point for the normalized Laplacian eigenvalues are used by Kirkkland
in [9]. In [1] Banergee and Jost investigated, how the normalized spectrum is affected
by some operations like mofit doubling, graph splitting or joining. Renny and Susha
defined some new join and corona based on duplication graph of an arbitrary graph
(see [13, 14]).

Motivated by these, in this paper we are interested in finding the normalized
Laplacian spectrum of duplication, splitting and double graph of a regular graph
G. Also we define and determine the normalized Laplacian spectrum of Duplication
vertex join of two regular graphs G1 and G2.

The arrangement of the paper in section wise as follows. Section 2 describes
the necessary preliminaries. In Section 3, we determine the normalized Laplacian
spectrum of duplication vertex join of two graphs, duplication, splitting, double graph
of a regular graph. Then in the last section we discuss some applications such as
normalized Laplacian energy, the Kemeny’s constant and number of spanning tree of
these graphs.

2. Preliminaries

Definition 2.1 ([8,11,12]). Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn}
and U(G) = {u1, u2, . . . , un} be the vertex set of another copy of G. The double
graph, D2(G), is the graph obtained by joining ui to every vertices in N(vi), the
neighbourhood set of vi of G, for each i. If we remove the edges of the copy of G
in vertex set U(G) in the double graph we get the splitting graph, splt(G), of G.
Removing the edges of two copies of G in the double graph, then it is called the
duplication graph, DG, of G.

Lemma 2.1 ([6]). Let M =
[
M1 M2
M2 M1

]
be a symmetric block matrix of order 2× 2.

Then the eigenvalues of M are those of M1 +M2 together with M1 −M2.
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Proposition 2.1 ([6]). Let P0, P1, P2 and P3 be matrices of order n1×n1, n1×n2, n2×
n1, n2 × n2 respectively. Then

det
[
P0 P1
P2 P3

]
=

det(P0) det(P3 − P2P
−1
0 P1), if P0 is invertible

det(P3) det(P0 − P1P
−1
3 P2), if P3 is invertible.

Remark 2.1. Let G be a r-regular graph with adjacency matrix A. Then normalized
Laplacian matrix is I − A

r
[5].

Figure 1. Duplication, splitting and double graph of K4

3. Normalized Laplacian Spectrum of Some Graphs

In this section we determine the normalized Laplacian spectrum of duplication
vertex join of two graphs, duplication, double and splitting graph of a regular graph.

3.1. Normalized Laplacian spectrum of duplication vertex join.
Definition 3.1. For i = 1, 2, let Gi be graphs on ni vertices. Let DG1 be the
duplication graph of G1. The duplication vertex join of G1 and G2 is denoted by
G1OG2 and is the graph obtained from DG1 and G2, by joining every vertex of G1 to
all the vertices of G2.
Example 3.1. The following, Figure 2 illustrate the Definition 3.1.

Figure 2. Duplication vertex join of C5 and K2.

Let Gi, i = 1, 2, be ri-regular graphs on ni vertices and mi edges. Then G1OG2 has
2n1 + n2 vertices and 2m1 +m2 + n1n2 edges.
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Theorem 3.1. For i = 1, 2, let Gi be ri-regular graphs on ni vertices with spectrum
λi1(G) ≥ λi2(G) ≥ · · · ≥ λini

(G). Then the normalized Laplacian spectrum of G1OG2
is 0, 1− λ2k

n1+r2
, 1± λ1i√

r1(n2+r1)
, i = 2, 3, . . . , n1, k = 2, 3, . . . , n2. Together with the roots

of the equation

x2 − 3n1 + 2r2

n1 + r2
x+ 2n1n2 + 2n1r1 + n2r2

(n1 + r2)(n2 + r1)
= 0.

Proof. Let Gi, i = 1, 2, be ri-regular graphs on ni vertices. Let V (G1) =
{v1, v2, . . . , vn1} be the vertex set of G1 and U(G1) = {x1, x2, . . . , xn1} is the ad-
ditional vertices corresponding to each vertex of G1. Let V (G2) = {u1, u2, . . . , un2}
be the vertex set of G2.

Under this vertex partitioning the adjacency matrix of G1OG2 is,

A =

 0n1 A1 Jn1×n2

A1 0n1 0n1×n2

Jn2×n1 0n2×n1 A2

 ,
where A1 and A2 are the adjacency matrix of G1 and G2 respectively. J denote matrix
with all entries equal to 1 and 0 is the zero matrix of appropriate order. The degree
of the vertices of G1OG2 are dG1OG2(vi) = n2 + r1, dG1OG2(xi) = r1, i = 1, 2, . . . , n1
and dG1OG2(uj) = n1 + r2, j = 1, 2, . . . , n2.

The diagonal degree matrix of G1OG2 is

D =

 (r1 + n2)In1 0 0
0 r1In1 0
0 0 (n1 + r2)In2

 .
Hence, the Laplace adjacency matrix of G1OG2 is

L =

 (r1 + n2)I −A1 −Jn1×n2

−A1 r1I 0n1×n2

−Jn2×n1 0n2×n1 n1In2 + L2

 ,
where L2 is the Laplacian matrix of G2. Also,

D−1/2 =



In1√
r1 + n2

0 0

0 In1√
r1

0

0 0 In2√
n1 + r2


.
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By simple calculation we get

D−1/2LD−1/2 = L̃ =



In1

−A1√
r1(n2 + r1)

−Jn1×n2√
(n1 + r2)(n2 + r1)

−A1√
r1(n2 + r1)

In1 0

−Jn2×n1√
(n1 + r2)(n2 + r1)

0 In2 −
A2

n1 + r2


.

Since Gi is ri-regular, it has an eigenvector jni
, a vector with all entries equal to 1,

corresponding to the eigenvalue ri. All other eigenvectors are orthogonal to jni
. Let

λ2i be an eigenvalue of G2 with eigenvector Z such that jTn2Z = 0 Then (0, 0, Z)T is
an eigenvector of L̃ corresponding to the eigenvalue 1− λ2i

n1+r2
.

This is because,

L̃

0
0
Z

 =

 0
0

Z − A2Z
n1+r2

 =
(

1− λ2i

n1 + r2

)0
0
Z

 .

Therefore, 1− λ2i

n1+r2
for i = 2, 3, . . . , n2, is an eigenvalue corresponding to the eigen-

vector (0, 0, Z)T .
Let X be an eigenvector corresponding to the eigenvalue λ1i of G1. Then (X,X, 0)T

is an eigenvector corresponding to the eigenvalue 1− λ1i√
r1(n2+r1)

. For,

L̃

XX
0

 =


X − A1X√

(r1(n2 + r1)
−A1X√

(r1(n2 + r1)
+X

0

 =
1− λ1i√

r1(n2 + r1)


XX

0

 .

Therefore, 1 − λ1i√
r1(n2+r1)

for i = 2, 3, . . . , n1, is an eigenvalue corresponding to the
eigenvector (X,X, 0)T . Similarly we can prove (−X,X, 0)T is an eigenvector corre-
sponding to the eigenvalue 1 + λ1i√

r1(n2+r1)
for i = 2, 3, . . . , n1.

Thus we obtain n2 − 1 + 2(n1 − 1) = 2n1 + n2 − 3 eigenvalues of L̃ all orthogonal
to (j, 0, 0)T , (0, j, 0)T and (0, 0, j)T .
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The remaining three vectors of L̃ are of the form τ = (αj, βj, γj)T for (α, β, γ) 6=
(0, 0, 0). Let v be an eigenvalue of L̃ with eigenvector τ . Then from L̃τ = vτ we get,

α− r1√
r1(n2 + r1)

β − n2√
(n1 + r2)(n2 + r1)

γ = vα,(3.1)

− r1√
r1(n2 + r1)

α + β + 0γ = vβ,(3.2)

− n1√
(n1 + r2)(n2 + r1)

α + 0β + (1− r2

n1 + r2
γ = vγ.(3.3)

By solving above three equations we get the cubic equation as,

(3.4) x3 − 3n1 + 2r2

n1 + r2
x2 + 2n1n2 + 2n1r1 + n2r2

(n1 + r2)(n2 + r1)
x = 0.

Now the theorem follows. �

Corollary 3.1. If G2 ∼= Kn2 (totally disconnected graph with n2 vertices), then the
normalized Laplacian of G1OG2 consists of 0, 2, αi and βi together with 1, repeats n2
times, where αi = 1− λ1i√

r1(n2+r1)
, βi = 1 + λ1i√

r1(n2+r1)
, i = 2, 3, . . . , n1.

Proof. If G2 is totally disconnected or Kn2 then r2 = 0. The cubic equation (3.4)
reduces to

x3 − 3x2 + 2x = 0.
On solving we get the solution as x = 0, 1, 2. The remaining eigenvalues are obtained
from Theorem 3.1. Hence the corollary is proved. �

3.2. Normalized Laplacian spectrum of duplication, splitting and double
graph.

Theorem 3.2. Let G be a r-regular graph on n vertices with adjacency spectrum
{r = λ1, λ2, . . . , λn}. Then the normalized Laplacian spectrum of the duplication
graph, DG, consists of 1± λi

r
for i = 1, 2, . . . , n.

Proof. Let A be the adjacency matrix of G. The Laplacian and normalized Laplacian
matrix of DG are

L =
[
rIn −A
−A rIn

]
and L̃ =

 In
−A
r

−A
r

In

 .
Since G is r-regular with n vertices, the duplication graph DG is also an r-regular
graph on 2n vertices with eigenvalues ±λi, i = 1, 2, . . . , n. By Remark 2.1, the
normalized Laplacian eigenvalues of DG are 1± λi

r
, i = 1, 2, . . . , n. �

Theorem 3.3. Let G be an r-regular graph on n vertices with adjacency spectrum
{r = λ1, λ2, . . . , λn}. Then the normalized Laplacian spectrum of the splitting graph,
splt(G), consists of 1− λi

r
, 1 + λi

2r for i = 1, 2, . . . , n.
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Proof. Let A and D be respectively the adjacency matrix and diagonal degree matrix

of G. The Laplacian matrix of splt(G) is L =
[

2rIn − A −A
−A rIn

]
.

Also D =
[

2rIn 0
0 rIn

]
and D−1/2 =

[ In√
2r 0
0 In√

r

]
.

The normalized Laplacian matrix is

L̃ = D−1/2LD−1/2 =


In −

A

2r
−A
r
√

2
−A
r
√

2
In

 .
The characteristic polynomial of L̃ is

det(xI − L̃) = det


(x− 1)In + A

2r
A

r
√

2
A

r
√

2
(x− 1)In

 .
Using Proposition 2.1 and the result [6] that, if λi is an eigenvalue of A then P (λi) is
an eigenvalue of P (A), for any polynomial P (x). We arrive at

fG(L̃ : x) = (x− 1)ndet
(

(x− 1)In + A

2r −
A2

2r2(x− 1)

)

= det
(

(x− 1)2In + (x− 1)A2r −
A2

2r2

)

=
n∏
i=1

(
(x− 1)2 + (x− 1)λi2r −

λ2
i

2r2

)

=
n∏
i=1

(
x2 − (4r − λi

2r )x+ 2r2 − rλi − λ2
i

2r2

)

=
n∏
i=1

(
x− 1− λi

2r

) (
x− 1 + λi

r

)
.

Thus we obtain the normalized Laplacian spectrum. �

Theorem 3.4. Let G be an r-regular graph on n vertices with adjacency spectrum
{r = λ1, λ2, . . . , λn}. Then the normalized Laplacian spectrum of the double graph,
D2(G), consists of 1, repeats n times and 1− λi

r
for i = 1, 2, . . . , n.

Proof. Let A be the adjacency matrix of G. The Laplacian and normalized Laplacian
matrix of D2(G) are

L =
[

2rIn − A −A
−A 2rIn − A

]
and L̃ =

 In −
A

2r
−A
2r

−A
2r In −

A

2r

 .
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As like the proof of the Theorem 3.2 and using Remark (2.1), we get the normalized
Laplacian eigenvalues of D2(G). �

4. Applications

In this section we discuss some applications of normalized Laplacian spectrum.
Here we determine the normalized Laplacian energy, Kemeny’s constant and number
of spanning tree of the different graphs under consideration.

4.1. Normalized Laplacian energy. In [10], I. Gutman defined the graph energy,
E(G), as the sum of the absolute value of its eigenvalues. Let G be a graph on n
vertices with adjacency spectrum λ1 ≥ λ2 ≥ · · · ≥ λn then energy

E(G) =
n∑
i=1
|λi|.

Let G be a graph on n vertices and normalized Laplacian spectrum 0 = σ1 ≤ σ2 ≤
· · · ≤ σn. The normalized Laplacian energy is denoted by L̃E(G) and is defined in [3]
as

(4.1) L̃E(G) =
n∑
i=1
|σi − 1|.

Theorem 4.1. Let G1 be an r1 regular graph on n1 vertices and G2 ∼= Kn2, totally
disconnected graph. Then,

L̃E(G1OG2) = 2 + 2(E(G1)− r1)√
r1(n2 + r1)

.

Proof. We have λ1 = r1 and E(G) = ∑n1
i=1 |λ1i| = r1 + ∑n1

i=2 |λ1i|. By Corollary 3.1
and (4.1) we get,

L̃E(G1OG2) = n2 × 0 + 2 +
n1∑
i=2

|λ1i|√
r1(n2 + r1)

+
n1∑
i=2

| − λ1i|√
r1(n2 + r1)

= 2 + 2√
r1(n2 + r1)

n1∑
i=2
|λ1i|

= 2 + 2(E(G1)− r1)√
r1(n2 + r1)

. �

Theorem 4.2. Let G be a r-regular graph with n vertices. Then
(a) L̃E(DG) = 2

r
E(G);

(b) L̃E(D2G) = 1
r
E(G);

(c) L̃E(splt(G)) = 3
2rE(G).

Proof. The proof follows from Theorem 3.2, Theorem 3.4 and Theorem 3.3. �
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4.2. Kemeny’s constant. Kemeny’s constant K(G), of a graph G is defined as the
expected number of steps required for the transition from a starting vertex vi called
origin to a destination vertex, which is chosen randomly according to a stationary
distribution of unbiased random walks on G [2, 7]. Also K(G) is a constant and
is independent of the choice of the origin vi. Let G be a graph on n vertices and
normalized Laplacian spectrum 0 = σ1 ≤ σ2 ≤ · · · ≤ σn then Kemeny’s constant is
the sum of all reciprocal normalized Laplacian eigenvalues except 1/σ1. Thus we can
write,

(4.2) K(G) =
n∑
i=2

1
σi
.

Theorem 4.3. For i = 1, 2, let Gi be ri-regular graph on ni vertices with adjacency
spectrum {ri = λi1, λi2, . . . , λini

}. Then the Kemeny’s constant of G1OG2 is

K(G1OG2) = (3n1 + 2r2)(n2 + r1)
2n1n2 + 2n1r1 + n2r2

+
n2∑
i=2

n1 + r2

n1 + r2 − λ2i
+

n1∑
j=2

2r1(n2 + r1)
n2r1 + r2

1 − λ2
1j
.

Proof. Since for i = 1, 2, Gi is ri-regular graph on ni vertices and let η1 and η2 be the
roots of the quadratic equation x2 − 3n1+2r2

n1+r2
x+ 2n1n2+2n1r1+n2r2

(n1+r2)(n2+r1) = 0. Then

1
η1

+ 1
η2

= η1 + η2

η1η2

= (3n1 + 2r2)(n2 + r1)
2n1n2 + 2n1r1 + n2r2

,

K(G1OG2) =
n2∑
i=2

n1 + r2

n1 + r2 − λ2i
+ 1
η1

+ 1
η2

+
n1∑
j=2


√
r1(n2 + r1)√

r1(n2 + r1) + λ1j
+

√
r1(n2 + r1)√

r1(n2 + r1)− λ1j


= (3n1 + 2r2)(n2 + r1)

2n1n2 + 2n1r1 + n2r2
+

n2∑
i=2

n1 + r2

n1 + r2 − λ2i

+
√
r1(n2 + r1)

n1∑
j=2

2
√
r1(n2 + r1)

r1(n2 + r1)− λ2
1j
.

On simplification we get the required result. �

Theorem 4.4. Let G be an r-regular graph on n vertices with adjacency spectrum
{r = λ1, λ2, . . . , λn}. Let K(G) be the Kemeny’s constant of G, then

(1) K(DG) = K(G) + r
∑n
i=1

1
r+λi

;
(2) K(splt(G)) = K(G) + 2r∑n

i=1
1

2r+λi
;

(3) K(D2(G)) = K(G) + n.
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Proof. (1) Since G is r-regular with adjacency spectrum {r = λ1, λ2, . . . , λn}, the
normalized Laplacian spectrum consists of 1 − λi

r
, for i = 1, 2, . . . , n. Therefore,

K(G) = ∑n
i=2(1− λi

r
)−1.

By Theorem 3.2 and (4.2) we get the Kemney’s constant as

K(DG) =
n∑
i=2

(
1− λi

r

)−1

+
n∑
i=1

(
1 + λi

r

)−1

= K(G) + r
n∑
i=1

1
r + λi

.

The other results obtained from Theorem 3.4, Theorem 3.3 and (4.2). �

4.3. Number of spanning tree. Let t(G) denote the number of spanning tree of
the graph G, the total number of distinct spanning subgraphs of G that are trees.
If G is a connected graph with n vertices and the normalized Laplacian spectrum
0 = σ1(G) ≤ σ2(G) · · · ≤ σn(G) then the number of spanning tree (see [5])

(4.3) t(G) =
∏n
i=1 di

∏n
i=2 σi∑n

i=1 di
.

Theorem 4.5. For i = 1, 2 let Gi be ri-regular graph on ni vertices with adjacency
spectrum {ri = λi1, λi2, . . . , λini

}. Then the number of spanning tree of G1OG2 is

t(G1OG2) = r1

n2∏
i=2

(n1 + r2 − λ2i)
n1∏
i=2

(n2r1 + r2
1 − λ2

1i).

Proof. Since for i = 1, 2, Gi is a ri-regular graph with ni vertices, there are n1 vertices
of degree n2 + r1, another n1 vertices are of degree r1 and n2 vertices are of degree
n1 + r2.

Let η1 and η2 be the roots of the quadratic equation

x2 − 3n1 + 2r2

n1 + r2
x+ 2n1n2 + 2n1r1 + n2r2

(n1 + r2)(n2 + r1)
= 0,

then we have

η1η2 = 2n1n2 + 2n1r1 + n2r2

(n1 + r2)(n2 + r1)
,∑

di = n1(n2 + r1) + n1r1 + n2(n1 + r2)
= 2n1n2 + 2n1r1 + n2r2,∏

di = (n2 + r1)n1rn1
1 (n1 + r2)n2 .

Hence, from (4.3), we get,

t(G1OG2) = (n2 + r1)n1rn1
1 (n1 + r2)n2

2n1n2 + 2n1r1 + n2r2
η1η2

n2∏
i=2

n1 + r2 − λ2i

n1 + r2

n1∏
j=2

r1(n2 + r1)− λ2
1j

r1(n2 + r1)

= r1

n2∏
i=2

(n1 + r2 − λ2i)
n1∏
i=2

(n2r1 + r2
1 − λ2

1i). �
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Theorem 4.6. Let G be a r-regular graph on n vertices with adjacency spectrum
{r = λ1, λ2, . . . , λn}. Let t(G) be the number of spanning tree of G then,

(1) t(DG) = t(G)
2
∏n
i=1(r + λi);

(2) t(splt(G)) = t(G)
3
∏n
i=1(2r + λi);

(3) t(D2(G)) = 22n−2rn t(G).
Proof. (1) Since G is r-regular with adjacency spectrum {r = λ1, λ2, . . . , λn}, the
normalized Laplacian spectrum of t(DG) consists of 1− λi

r
, for i = 1, 2, . . . , n. Therefore

t(G) = 1
n

∏n
i=2(r − λi). Also

∏n
i=2 di = r2nand

∑n
i=1 di = 2nr.

By Theorem 3.2 and (4.3) we get the

t(DG) =
r2n ∏n

i=2
r−λi

r

∏n
i=1

r+λi

r

2nr

= t(G)
2

n∏
i=1

(r + λi).

The other results follows from Theorem 3.4, Theorem 3.3 and (4.3). �
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